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BOUNDARY VALUE PROBLEM FOR SYSTEMS 

OF ORDINARY DIFFERENTIAL EQUATIONS 
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Abstract. By means of surjectivity theorems in JR" the correctness of the generalized boundary 
value problem for ordinary differential systems is investigated. A comparison theorem is proved 
which gives a necessary and sufficient condition for the correctness of the boundary value problem 
when its uniqueness is assured. 
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In the sequel the following theorem on surjectivity in Rn from [2], [3] will be 
used. Here it will be given as 

Lemma 1. Let g: Rn -* Rn be a continuous map. Then the following statements 
are true: 

(a) Ifg is injective, then g is a homeomorphism of Rn onto itself if and only if it 
satisfies the condition 
(1) l im|g(x) | = oo. 

1*1 - °o x 

(f . | denotes any norm in Rn.) 
(b) Ifg satisfies (1) and one of the conditions: 

Either 
there is an x0 e Rn such that for each x e Rn

9 x # x0, 

(2) , g(x) — x0 = k(x — x0) implies k ^ 0, 

or 
there is an x0 e Rtt such that for each x e Rn, x ^ *0> 
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(2') g(x) - x0 = k(x - x0) implies k ^ 0, 

/Ae/i g is surjective. 
Similarly as in [1], [2] under the generalized boundary value problem for the 

diferential system 

($) * ' x' = / ( / , x), tei,xe Rn, 

and for the given mapping F of the space C(i9 R
n) of all continuous vector 

functions x: i -• Rn we understand the problem to find a solution x(f) of the 
system (3) in the interval i for which F(x) is a given vector r e Rn, that is 

(4) F(x) = r. 

Here and in what follows we suppose that the function/satisfies local Cara-
th^odory conditions in ixRn and if S is the set of all noncontinuable solutions 
of the system (3), then 

(5) S n C{U Rn) * 0. 

Let in the space C(/, Rn) be a topology T given and let the functional F: C{i, Rn) -* 
-> jR" be continuous with respect to this topology. 
* Further we shall use the following definitions. 

Definition 1. We shall say that the functional F is injective with respect to the 
system (3) if it is injective on the set S n C(i, Rn). 

The functional F is surjective with respect to the system (3) if F(S n C(i, Rn)) =>= 
« R\ 

Definition 2. The generalized boundary value problem (3), (4) is said to be 
f-correct if F is injective and stirjective with respect to the system (3) and the 
inverse mapping CF.Isnca*"))""1 of the mapping F\SnCiitRn) is continuous as 
a mapping from #" to C(r, Rn). 

Denote x{t% r) the solution of the problem (3), (4) (if it exists). Hence F(x(t9 r)) = r 
and the t-cprrectness of the problem (3), (4) means that x(t, r) continuously depends 
on r withxrespect to the topology T. 

Let the functional G: C(/, /P1) -> Rn be continuous with respect to the topology T. 

Definition 3. The functional F is said to be subordinate to the functional G 
with respect to the differential system (3) if the following statement holds: 

If the sequence {(?(**)} is bounded in Rn, then the sequence {F(xk)} is bounded, 
too, for each sequence {xk} c S n C(i, Rn). 

Definition 4. The functional G is said to have the same (the opposite) orienta­
tion as the functional F with respect to the system (3) if the following implication 
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holds: G(x(f)) = kF(x(t)) implies k ^ 0 (k <; 0) for each solution x(t) eS n C(U Rn) 
such that F(x(0) ^ 0. 

The relation to have the same orientation is reflexive and symmetric* 
By means of the notions given above we can state 

Theorem 1. Let the boundary value problem (3), (4) be %-correct and let the 
functional G : C(i, Rn) -> Rn be continuous with respect to the topology T. 

Then the following statements are true: 
1. If the functional G is infective with respect to the system (3), then the boundary 

value problem (3), 

(6) G(x) = r 

is i-correct if and only if the functional F is subordinate to the functional G with 
respect to the system (3). 

2. If the functional F is subordinate to the functional G with respect to the system (3) 
and the functional G has the same (the opposite) orientation as the functional F, 
then the functional G is surjective with respect to the system (3). 

Proof. Define the mapping H: Rn -» C(f, Rn) by the relation 

(7) H(r) = x(t, r) for each r e R\ 

Since the boundary value problem (3), (4) is T-correct, the mapping H: Rn •-> 
-> C(i9 R

n) is a homeomorphism of Rn onto S n C(i, JR"). Hence the mapping 

(8) g = GH 

from Rn into Rn is continuous and if the functional G is injective with respect to 
the system (3), then g is injective, too. We apply Lemma 1. The condition (1) means 
that the inverse image of each bounded subset in Rn under the mapping g is bounded 
inRn. 

1. Suppose that the functional G is injective with respect to the system (3) and 
that the functional F is subordinated to the functional G with respect to the 
system (3). 'Let {rk} be an arbitrary sequence of points in R!* and x* = x(t, rk) the 
corresponding sequence of solutions of the system (3) in the interval f, i.e. F(xk) = 
== rk, k = 1,2, ... If the sequence g(rk) = G(xk) is bounded, then the sequence 
{F(xk)} = {rk} is bounded, too. But this means that the condition (1) is fulfilled 
and thus, by Lemma 1, g is a homeomorphism of the space Rn onto itself. Then 
G as gH~x is a homeomorphism of the space S n C(/, Rn) onto R" and hence the? 
problem (3), (6) is t-correct. 

If, on the other hand, the problem (3), (6) is T correct, then G is a homeomorphic , 
mapping of the space S n C(i, Rn) onto Rn and g, determined by (8), is rhomeo-
morphism of Rn onto itself. By Lemma 1 the condition (1) is satisfied Let {G(xk)} 
be a bounded sequence. In view of the relation G(xk) ^.gir^) and (1) we get that 
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the sequence {/>} ~ {/fa*)} is also bounded. Hence the functional F is subordinate 
to the functional G with respect to (3). 

2. If the functional F is subordinate to the functional G with respect to the 
system (3) and the sequence {g(rk)} = {G(xk)} is bounded, then {F(xk)} = {rk} is 
bounded, too which means that the condition (1) is fulfilled. The mapping g 
satisfies the condition (2) with the point x0 = 0 if the equality G(x{t, r)) = kr = 
= kF(x(t, r)) implies k ^ 0 for each r ^ 0, reR". But this means that the 
functional G and F have the same orientation. Similarly the Condition (2') with 
x0 « 0 is fulfilled if G and F have the opposite orientation. 

In applications of Theorem 1 the initial value problem is often compared with 
the given boundary value problem. As the existence and the uniqueness of the 
solution to the initial value problem implies the T0-correctness of this problem 
where the topology x0 is the topology of uniform Convergence (of locally uniform 
convergence) on i when i is a compact (a noncompact) interval we get the following 

Corollary 1. (Compare with [2], p. 169). Let there exist a point t0 e i such that 
for each vector x0 e Rn there exists a unique solution x(t) on i to the initial value 
problem (3), 

(9) *(/0) = *o 
and let the functional G : C(i, Rn) -• Rn be continuous with respect to the topology r0. 

Then the following statements hold: 
1. If the boundary value problem (3), (6) has at most one solution for each vector 

r 6 Rn, then this problem is x0-correct if and only if the following implication holds: 

(10) If {xk} is a sequence of solutions of (3) on the interval i such that {G(xk)} is 
bounded, then {xk(t0)} is bounded. 

2. If the implication flO) as well as the implication: 
(11) IfG(x) = kx(t0), then k ^ 0 (k ^ 0)for each solution x(i) of (3) on i such 

that x(t0) #0, 

hold, then the boundary value problem (3), (6) has a solution for each re Rn. 
In the paper [3] two boundary value problems have been compared'. 
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