Archivum Mathematicum

Anton Dekrét; Gabriela Vosmanská
 Natural transformations of 2-quasijets

Archivum Mathematicum, Vol. 27 (1991), No. 3-4, 155--160
Persistent URL: http://dml.cz/dmlcz/107416

Terms of use:

© Masaryk University, 1991
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)

Tomus 27 (1991), 155 - 160

NATURAL TRANSFORMATIONS OF 2-QUASIJETS

A. Dekrét, G. Vosmanská

(Received March 3, 1989)

Abstract

This paper deals with a concrete application of the theory of prolongation functors. We describe explicitly all natural transformations of quasijets of the second order into themselves.

The notion of quasijets of the second order was introduced by Pradines, [8]. In the case of the higher order we refer to [1]. As to the theory of prolongation functors we use methods developed by many authors mainly in [5], [6], [7], [8].

Let M be a smooth manifold and $p_{M}: T M \rightarrow M, p_{T M}: T T M \equiv T_{2} M \rightarrow T M$ be tangent bundles. A chart (x^{i}) on M induces the charts $\left(x^{i}, x_{1}^{i}\right),\left(x^{i}, x_{10}^{i}, x_{01}^{i}, x_{11}^{i}\right)$ on $T M, T_{2} M$, respectively. On $T_{2} M$ there is a canonical involution, see [2], with the following coordinate form $i_{2}:\left(x^{i}, x_{10}^{i}, x_{01}^{i}, x_{11}^{i}\right) \mapsto\left(x^{i}, x_{01}^{i}, x_{10}^{i}, x_{11}^{i}\right)$.

Let $T f$ denote the differential of a map: $f: M \rightarrow \bar{M}$. Let $\left(p_{T M}\right)$, ($T_{p_{M}}$) shortly denote the vector bundles $p_{T M}: T(T M) \rightarrow T M, T_{p_{M}}: T_{2} M \rightarrow T M$, respectively. Let $\left(p_{T M}\right)_{0},\left(T_{p_{M}}\right)_{0}$ be the sets of zero-vectors on $\left(p_{T M}\right),\left(T_{p_{M}}\right)$, respectively, and let $V_{0} T M$ be the set of vertical vectors on $T M$ along the set of zero-vectors on M. There exist three canonical embedding $E_{i}: T M \rightarrow T T M, i=1,2,3$:

$$
\begin{array}{ll}
E_{1}(T M)=\left(p_{T M}\right)_{0}, & E_{1}\left(x^{i}, x_{1}^{i}\right)=\left(x^{i}, x_{1}^{i}, 0,0\right) \\
E_{2}(T M)=\left(T_{p_{M}}\right)_{0}, & E_{2}\left(x^{i}, x_{1}^{i}\right)=\left(x^{i}, 0, x_{1}^{i}, 0\right) \\
E_{3}(T M)=V_{0} T M, & E_{3}\left(x^{i}, x_{1}^{i}\right)=\left(x^{i}, 0,0, x_{1}^{i}\right)
\end{array}
$$

Let M, N be smooth manifolds. A quasijet of the second order with source $x \in M$ and target $y \in N$ is map $\Phi:\left(T_{2} M\right)_{x} \rightarrow\left(T_{2} N\right)_{y}$ which is linear with respect to both vector bundle structures ($p_{T M}$) and ($T_{P_{M}}$).

Denote by $Q J_{x}^{2}(M, N)_{y}$ the set of all 2-quasijets with source x and target y. Let $Q J^{2}(M, N)$ indicate the set of all quasijets from M into N.

Let $\left(x^{i}\right),\left(y^{p}\right)$ be charts on M, N, respectively. In the induced charts on $T_{2} M$ and $T_{2} N$ a quasijet from M to N has the following form:

$$
y_{10}^{p}=b_{i}^{p} x_{10}^{i}, y_{01}^{p}=c_{i}^{p} x_{01}^{i}, y_{11}^{p}=e_{i j}^{p} x_{10}^{i} x_{01}^{j}+d_{i}^{p} x_{11}^{i}
$$

[^0]It induces the chart $\left(x^{i}, y^{p}, b_{i}^{p}, c_{i}^{p}, d_{i}^{p}, e_{i j}^{p}\right)$ on $Q J^{2}(M, N)$.
Let us recall that the manifold $J^{1}(M, N)$ of all 1 -jets from M into N can be identified with the set $\underset{x \in M, y \in N}{ } L\left(T_{x} M, T_{y} N\right)$ of all linear maps from $T_{x} M$ into $T_{y} N$, for all $x \in M, y \in N$.

The embeddings $E_{i}, i=1,2,3$, determine three different submersions π_{i} : $Q J^{2}(M, N) \rightarrow J^{1}(M, N), i=1,2,3$, as follows:

$$
\begin{aligned}
& \pi_{1} z(u)=p_{T N}\left(z E_{1}(u)\right), \pi_{1} z=\left(x^{i}, y^{p}, b_{i}^{p}\right) \\
& \pi_{2} z(u)=T_{p_{N}}\left(z E_{2}(u)\right), \pi_{2} z=\left(x^{i}, y^{p}, c_{i}^{p}\right) \\
& \pi_{3} z(u)=p_{2}\left(z E_{3}(u)\right), \pi_{3} z=\left(x^{i}, y^{p}, d_{i}^{p}\right)
\end{aligned}
$$

where $p_{2} V T N \rightarrow T N$ denotes the projection on the second factor of the identification $V T N \equiv T N \times_{N} T N, z \in Q J_{x}^{2}(M, N), u \in T_{x} M$.
Lemma 1. Let $h \in J_{x}^{1}(M, N)_{y}$. Then there exists unique $h_{1}, h_{2} \in Q J_{x}^{2}(M, N)_{y}$ such that

$$
\begin{array}{ll}
\pi_{1}\left(h_{1}\right)=h, & h_{1}:\left(p_{T M}\right)_{x} \rightarrow 0 \subset\left(p_{T N}\right)_{y} \\
\pi_{2}\left(h_{2}\right)=h, & h_{2}:\left(T_{p_{M}}\right)_{x} \rightarrow 0 \subset\left(T_{p_{M}}\right)_{y}
\end{array}
$$

Proof. Let $h=\left(x^{i}, y^{p}, h_{i}^{p}\right)$. Consider $h_{1}=\left(x^{i}, y^{p}, b_{i}^{p}, c_{i}^{p}, d_{i}^{p}, e_{i j}^{p}\right)$. By the condition $\pi_{1}\left(h_{1}\right)=h, b_{i}^{p}=h_{i}^{p}$. The coordinate form of the condition $h_{1}\left(p_{T M}\right)_{x}=0$ is the following one

$$
c_{i}^{p} x_{01}^{i}=0, e_{i j}^{p} x_{10}^{i} x_{01}^{j}+d_{i}^{p} x_{11}^{i}=0 \text { for any } x_{01}^{i}, x_{10}^{i}, x_{11}^{i}
$$

It holds $c_{i}^{p}=0, d_{i}^{p}=0, e_{i j}^{p}=0$. Analogously, $h_{2}=\left(x^{i}, y^{p}, 0, h_{i}^{p}, 0,0\right)$.
Corollary. There are two embeddings $\kappa_{1}, \kappa_{2}: J(M, N) \rightarrow Q J^{2}(M, N) ; \kappa_{1}(h)=$ $h_{1}, \kappa_{2}(h)=h_{2}$.

This immediately gives
Proposition 1. Let $u \in Q J^{2}(M, N), c_{1}, c_{2}, c_{3} \in R$. Then by the rules

$$
u \mapsto \kappa_{i}\left(c_{1} \pi_{1}(u)+c_{2} \pi_{2}(u)+c_{3} \pi_{3}(u)\right), i=1,2
$$

are determined two families of maps from $Q J^{2}(M, N)$ into $Q J^{2}(M, N)$ of the following coordinate forms

$$
\begin{aligned}
& \kappa_{1}\left(c_{1} \pi_{1}(u)+c_{2} \pi_{2}(u)+c_{3} \pi_{3}(u)\right)=\left(x^{i}, y^{p}, c_{1} b_{i}^{p}+c_{2} c_{i}^{p}+c_{3} d_{i}^{p}, 0,0,0\right) \\
& \kappa_{2}\left(c_{1} \pi_{1}(u)+c_{2} \pi_{2}(u)+c_{3} \pi_{3}(u)\right)=\left(x^{i}, y^{p}, 0, c_{1} b_{i}^{p}+c_{2} c_{i}^{p}+c_{3} d_{i}^{p}, 0,0\right) .
\end{aligned}
$$

The canonical involution i_{2} from T_{2} into T_{2} induces the involution $I_{2}: u \mapsto i_{2} u i_{2}$ on $\boldsymbol{Q J} J^{2}(M, N), I_{2}\left(x^{i}, y^{p}, b_{i}^{p}, c_{i}^{p}, d_{i}^{p}, e_{i j}^{p}\right)=\left(x^{i}, y^{p}, c_{i}^{p}, b_{i}^{p}, d_{i}^{p}, e_{i j}^{p}\right)$.

Let $u \in Q J_{x}^{2}(M, N)_{y}$. Denote by u_{1}, u_{2} the linear maps $\left(p_{T M}\right)_{x} \mapsto\left(p_{T N}\right)_{y}$, $\left(T_{p_{M}}\right)_{x} \mapsto\left(T_{p_{N}}\right)_{y}$, respectively, which are determined by u. Every $t \in R$ states the only two elements $U, \bar{U} \in Q J_{x}^{2}(M, N)$ such that $\pi_{1} U \doteq \pi_{1} u, U_{1}=t u_{1}$ and $\pi_{2} \bar{U}=\pi_{2} u, \bar{U}_{2}=t u_{2}$. In coordinates, $U=\left(x^{i}, y^{p}, b_{i}^{p}, t c_{i}^{p}, t d_{i}^{p}, t e_{i j}^{p}\right) \bar{U}=$ $\left(x^{i}, y^{p}, t b_{i}^{p}, c_{i}^{p}, t d_{i}^{p}, t e_{i j}^{p}\right)$. So t determines two mappings $\tau_{1}: u \rightarrow U, \tau_{2}: u \rightarrow \bar{U}$ indicated by the corresponding greek letters. For example if $t, c \in R$ then

$$
\gamma_{2}\left(\tau_{1}(u)\right)=\left(x^{i}, y^{p}, c b_{i}^{p}, t c_{i}^{p}, c t d_{i}^{p}, c t e_{i j}^{p}\right)
$$

We get
Proposition 2. In general, two real numbers t, c determined two transformations

$$
\begin{aligned}
& u \mapsto \gamma_{2} \tau_{1}(u) \\
& u \mapsto \gamma_{2} \tau_{1}\left(I_{2}(u)\right)
\end{aligned}
$$

from $Q J^{2}(M, N)$ into $Q J^{2}(M, N)$.
We are interested in finding all so called natural transformations on $Q J^{2}(M, N)$. We will state that the only natural transformations on $Q J^{2}(M, N)$ are the ones described in Proposition 1 and 2.

Let us recall that the manifolds of all holonomic, semiholonomic, non-holonomic 2-jets from M into N are submanifolds of $Q J^{2}(M, N)$. For instance the equations of the submanifold in the holonomic case are of the form: $d_{i}^{p}=c_{i}^{p}=b_{i}^{p}, e_{i j}^{p}=e_{j i}^{p}$. The composition rule for jets extends on quasijets by the composition of maps.

Let $H^{2} M, H^{2} N$ be the principal fibre bundle of all frames of the second order on M, N, respectively. Let G_{m}^{2}, G_{n}^{2} be the structure groups of $H^{2} M, H^{2} N$, respectively. For example, $H^{2} M$ is the space of all 2-jets of local diffeomorphisms from \mathbf{R}^{m} into M with target $0 \in \mathbf{R}^{m}$ and G_{m}^{2} is the set of all 2-jets $j_{0}^{2} \varphi$ of local diffeomorphisms $\varphi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{m}, \varphi(0)=0$. Then $H^{2} M \times H^{2} N$ is a principal fibre bundle with the structure group $G_{n}^{2} \times G_{m}^{2}$. It can be shown that $Q J^{2}(M, N) \rightarrow M \times N$ is associated with $H^{2} M \times H^{2} N$ with standard fibre $Q J_{0}^{2}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)_{0}$.

Let $f: M \rightarrow \bar{M}, g: N \rightarrow \bar{N}$ be local diffeomorphisms. Let $u \in T T_{x} M$, $h \in Q J_{x}^{2}(M, N)_{y}$. Then by the rule

$$
Q J^{2}(f \times g)(h)(u):=T T g \cdot h \cdot T T f^{-1}(u)
$$

is defined the map $Q J^{2}(f \times g)$ from $Q J^{2}(M, N)$ into $Q J^{2}(\bar{M}, \bar{N})$ which has the following coordinate form:

$$
\begin{align*}
\bar{y}_{10}^{p} & =g_{q}^{p} b_{j}^{q} f_{i}^{j} \bar{x}_{10}^{i}, \quad \bar{y}_{01}^{p}=g_{q}^{p} c_{j}^{q} f_{i}^{j} \bar{x}_{01}^{i}, \\
\bar{y}_{11}^{p} & =\left[g_{q r}^{p} b_{k}^{q} c_{l}^{r} f_{i}^{k} f_{j}^{l}+g_{q}^{p}\left(e_{k 1}^{q} f_{i}^{k} f_{j}^{l}+d_{k}^{q} f_{i j}^{k}\right)\right] \bar{x}_{10}^{i} \bar{x}_{01}^{j}+ \tag{1}\\
& +g_{q}^{p} d_{j}^{q} f_{i}^{j} \bar{x}_{11}^{i} .
\end{align*}
$$

Analogously as in [3] it can be proved that $Q J^{2}$ is a prolongation functor from category $M_{m} \times M_{n}$ into category of fibre bundles. Here M_{n} denotes category of all n-dimensional manifolds and their local diffeomorphisms.

Now in our case, a natural transformation from $Q J^{2}$ to $Q J^{2}$ can be formulated as a family of maps A such that if $h \in Q J^{2}(M, N)$ then

$$
Q J^{2}(f \times g) A_{M \times N}(h)=A_{\bar{M} \times \bar{N}} Q J^{2}(f \times g)(h)
$$

for any local diffeomorphisms $f: M \rightarrow \bar{M}, g: N \rightarrow \bar{N}$.
By the Krupka procedure [7] it can be shown that there is a bijection between the set of all natural transformation from $Q J^{2}$ to $Q J^{2}$ and the set of all $G_{m}^{2} \times G_{n}^{2}$ equivariant maps on $Q J_{0}^{2}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)_{0}$.

Let $\left(b_{i}^{p}, c_{i}^{p}, d_{i}^{p}, e_{i j}^{p}\right) \in Q J_{0}^{2}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)_{0},\left(f_{j}^{i}, f_{j k}^{i}\right) \in G_{m}^{2},\left(q_{q}^{p}, q_{q r}^{p}\right) \in G_{n}^{2}$. The equations (1) implies the following rule of an action of the group $G_{m}^{2} \times G_{n}^{2}$ on $Q J_{0}^{2}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)_{0}:$

$$
\begin{gather*}
\bar{b}_{i}^{p}=g_{q}^{p} b_{j}^{q} f_{i}^{j}, \bar{c}_{i}^{p}=g_{q}^{p} c_{j}^{q} f_{i}^{j}, \bar{d}_{i}^{p}=g_{q}^{p} d_{j}^{q} f_{i}^{j} \\
\bar{e}_{i j}^{p}=g_{q r}^{p} b_{k}^{q} c_{l}^{r} f_{i}^{k} f_{j}^{l}+g_{q}^{p} e_{k l}^{q} f_{i}^{k} f_{j}^{l}+g_{q}^{p} d_{k}^{q} f_{i j}^{k} . \tag{2}
\end{gather*}
$$

$\mathbf{A} \operatorname{map} \Phi: Q J_{0}^{2}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)_{0} \rightarrow Q J_{0}^{2}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)_{0}, \bar{b}_{i}^{p}=\beta_{i}^{p}(b, c, d, e), \bar{c}_{i}^{p}=\gamma_{i}^{p}(b, c, d, e)$, $\bar{d}_{i}^{p}=\delta_{i}^{p}(b, c, d, e), \bar{e}_{i j}^{p}=\eta_{i j}^{p}(b, c, d, e)$, where for example b is a shortened denoting of b_{j}^{q}, is $G_{m}^{2} \times G_{n}^{2}$-equivariant if $g \Phi(h)=\Phi g(h)$ for every $h \in Q J_{0}^{2}\left(\mathbf{R}^{m}, \mathbf{R}^{n}\right)_{0}$ and every $g \in G_{m}^{2} \times G_{n}^{2}$. In the case of the functions β_{i}^{p}, this condition is of the form, (use (2)):

$$
\begin{gather*}
g_{q}^{p} \beta_{j}^{q}(b, c, d, e) f_{i}^{j}= \tag{3}\\
=\beta_{i}^{p}\left(g_{q}^{p} b_{k}^{q} f_{j}^{k}, g_{q}^{p} c_{k}^{q} f_{j}^{k}, g_{q}^{p} d_{k}^{q} f_{j}^{k}, g_{q r}^{p} b_{k}^{q} c_{l}^{r} f_{i}^{k} f_{j}^{l}+g_{q}^{p} e_{k l}^{q} f_{i}^{k} f_{j}^{l}+g_{q}^{p} d_{k}^{q} f_{i j}^{k}\right)
\end{gather*}
$$

Analogously in the case of $\gamma_{i}^{p}, \delta_{i}^{p}, \eta_{i j}^{p}$.
In what follows it will be useful a modification of some Kolář and Janyška results on homogeneous functions, [4].

Lemma 2. Let $f\left(x^{i}, y^{p}, \ldots, z^{s}\right)$ be a smooth function defined on \mathbf{R}^{N} such that for every positive real number k a homogenity condition

$$
\begin{equation*}
k^{d} f\left(x^{i}, y^{p}, \ldots, z^{s}\right)=f\left(k^{a} x^{i}, k^{b} y^{p}, \ldots, k^{c} z^{s}\right) \tag{4}
\end{equation*}
$$

where $a, b, . r ., c$ are positive real numbers, $d \in \mathbf{R}$, are satisfied. Then non-zero functions of this property are sums of homogeneous polynomials of degrees (m, n, \ldots, q) in variables $\left(x^{i}, y^{p}, \ldots, z^{s}\right)$ such that

$$
\begin{equation*}
a m+b n+\cdots+c q=d \tag{5}
\end{equation*}
$$

If there is no positive integer solution (m, n, \ldots, q) of (5) then only $f=0$ satisfies (4).

Using the canonical injective group homomorphism $G_{m}^{1} \times G_{n}^{1} \rightarrow G_{m}^{2} \times G_{n}^{2}$ and restricting to the subgroup of homotheties in $G_{m}^{1},\left(f_{j}^{i}=k \delta_{j}^{i}, g_{g}^{p}=\delta_{p}^{q}, f_{j k}^{i}=0, g_{q r}^{p}=\right.$ 0), we get for (3):

$$
k \beta_{i}^{p}(b, c, d, e)=\beta_{i}^{p}\left(k b, k c, k d, k^{2} e\right)
$$

By Lemma 2, the functions β_{i}^{p} are linear according to the variables $b_{i}^{p}, c_{i}^{p}, d_{i}^{p}$ and independent on $e_{i j}^{p}$. It holds analogously in the cases of the functions $\gamma_{i}^{p}, \eta_{i}^{p}$. We have

$$
\begin{align*}
& \bar{b}_{i}^{p}=k_{1} b_{i}^{p}+k_{2} c_{i}^{p}+k_{3} d_{i}^{p} \\
& \bar{c}_{i}^{p}=k_{4} b_{i}^{p}+k_{5} c_{i}^{p}+k_{6} d_{i}^{p} \tag{6}\\
& \bar{d}_{i}^{p}=k_{7} b_{i}^{p}+k_{8} c_{i}^{p}+k_{9} d_{i}^{p} .
\end{align*}
$$

By (2) the condition of the $G_{m}^{2} \times G_{n}^{2}$-equivariance gives for the functions $\eta_{i j}^{p}$

$$
\begin{gather*}
g_{q r}^{p} \beta_{k}^{q} \gamma_{l}^{r} f_{i}^{k} f_{j}^{l}+g_{q}^{p} \eta_{k l}^{q} f_{i}^{k} f_{j}^{l}+g_{q}^{p} \delta_{k}^{q} f_{i j}^{k}=\eta_{i j}^{p}\left(g_{q}^{p} b_{k}^{q} f_{j}^{k}, g_{q}^{p} c_{k}^{q} f_{j}^{k},\right. \\
\left.g_{q}^{p} d_{k}^{q} f_{j}^{k}, g_{q r}^{p} b_{k}^{q} c_{l}^{r} f_{i}^{k} f_{j}^{l}+g_{q}^{p} e_{k l}^{q} f_{i}^{k} f_{j}^{l}+g_{q}^{p} d_{k}^{q} f_{i j}^{k}\right) \tag{7}
\end{gather*}
$$

In the case of the subgroup of homothetic maps on \mathbf{R}^{m} or $\mathbf{R}^{\boldsymbol{n}}$, respectively, (7) has the simple form

$$
k \eta_{i j}^{p}(b, c, d, e)=\eta_{i j}^{p}(k b, k c, k d, k e)
$$

or

$$
k^{2} \eta_{i j}^{p}(b, c, d, e)=\eta_{i j}^{p}\left(k b, k c, k d, k^{2} e\right)
$$

respectively. Then by Lemma $2 \eta_{i j}^{p}$ is linear according to $e_{i j}^{p}$, i.e. $e_{i j}^{p}=A_{i j q}^{p j k} e_{j k}^{q}$ and does not depend on b, c, d. Then (7), with respect to the subgroup $G_{m}^{1} \times G_{n}^{1}$, leads to finding all $G_{m}^{1} \times G_{n}^{1}$-equivariant linear maps on $\mathbf{R}^{n} \otimes \mathbf{R}^{m *} \otimes \mathbf{R}^{m *}$. By [10] such a map is of the form

$$
\eta_{i j}^{p}=\alpha e_{i j}^{p}+\beta e_{j i}^{p}
$$

Let $\pi_{1}^{2}: G_{m}^{2} \times G_{n}^{2} \rightarrow G_{m}^{1} \times G_{n}^{1}$ be the group homomorphism determined by the jet projection. Then (7) on Ker π_{1}^{2} gives

$$
\begin{gathered}
g_{q r}^{p}\left(k_{1} b_{i}^{q}+k_{2} c_{i}^{q}+k_{3} d_{i}^{q}\right)\left(k_{4} b_{j}^{r}+k_{5} c_{j}^{r}+k_{6} d_{j}^{r}\right)+ \\
+e_{i j}^{p}+e_{j i}^{p}+\left(k_{7} b_{k}^{p}+k_{8} c_{k}^{p}+k_{9} d_{k}^{p}\right) f_{i j}^{k}= \\
=\alpha\left(g_{q r}^{p} b_{i}^{q} c_{j}^{r}+e_{i j}^{q}+d_{k}^{p} f_{i j}^{k}\right)+\beta\left(g_{q r}^{p} b_{j}^{q} c_{i}^{r}+e_{j i}^{q}+d_{k}^{p} f_{i j}^{k}\right)
\end{gathered}
$$

Comparing these two polynomials we get

$$
\begin{aligned}
& k_{9}=\alpha+\beta, \alpha=k_{1} k_{5}, \beta=k_{2} k_{4}, k_{1} k_{4}=0, k_{1} k_{6}=0 \\
& k_{2} k_{5}=0, k_{2} k_{6}=0, k_{3} k_{4}=0, k_{3} k_{3}=0, k_{3} k_{6}=0 \\
& k_{7}=k_{8}=0
\end{aligned}
$$

There are the following four different cases of all solutions of these equations
(i) $k_{4}=k_{5}=k_{6}=0$,
i.e. $\bar{b}_{i}^{p}=k_{1} b_{i}^{p}+k_{2} c_{i}^{p}+k_{3} d_{i}^{p}, \bar{c}_{i}^{p}=0, \bar{d}_{i}^{p}=0, \bar{e}_{i j}^{p}=0$
(ii) $k_{1}=k_{2}=k_{3}=0$,
i.e. $\bar{b}_{i}^{p}=0, \bar{c}_{i}^{p}=k_{4} b_{i}^{p}+k_{5} c_{i}^{p}+k_{6} d_{i}^{p}, \bar{d}_{i}^{p}=0, \bar{e}_{i j}^{p}=0$
(iii) $k_{2}=k_{3}=k_{4}=k_{6}=0$,
i.e. $\bar{b}_{i}^{p}=k_{1} b_{i}^{p}, \bar{c}_{i}^{p}=k_{5} c_{i}^{p}, \bar{d}_{i}^{p}=k_{1} k_{5} d_{i}^{p}, \bar{e}_{i j}^{p}=k_{1} k_{5} e_{i j}^{p}$
(iiii) $k_{1}=k_{3}=k_{5}=k_{6}=0$,
i.e. $\bar{b}_{i}^{p}=k_{2} c_{i}^{p}, \bar{c}_{i}^{p}=k_{4} b_{i}^{p}, \bar{d}_{i}^{p}=k_{2} k_{4} d_{i}^{p}, \bar{e}_{i j}^{p}=k_{2} k_{4} e_{i j}^{p}$.

Comparing (i) - (iiii) and Propositions 1 and 2 we verify the following theorem
Theorem. There are the only following types of natural transformations of the functor $Q J^{2}$ into itself

$$
\begin{aligned}
& u \mapsto \kappa_{i}\left(k_{1} \pi_{1}(u)+k_{2} \pi_{2}(u)+k_{3} \pi_{3}(u)\right), i=1,2 \\
& u \mapsto \gamma_{2} \tau_{1}(u) \\
& u \mapsto \gamma_{2} \tau_{1}\left(I_{2}(u)\right)
\end{aligned}
$$

where γ_{2}, τ_{1} are maps determined by real numbers c, t by the procedure described at Proposition 2.

References

[1] Dekrét A., On quasijets, Časopis pro pěstování matematiky, Praha, 111, (1986), 345-352.
[2] Goldbillon C., Geométrie differentielle et méchanique analytique, Paris, 1969.
[3] Janyška J., Geometrical properties of prolongation functors, Časopis pro pěstování matematiky, Praha, 110 (1985), 77-86.
[4] Janyška J., Kolári I., Globaly defined smooth homogeneous functions, (in Czech), Lecture Notes, Brno 1983.
[5] Koláŕr I., Some natural operations in differential geometry, Proceedings of the conference on differential geometry and its application, J.E. Purkyně University Brno, 1986, 91-110.
[6] Koláŕ I., Vosmanská G., Natural operations with second order jets, Rendiconti del Circolo Matematico di Palermo (Suplemento - Proceedings of the 14th Winter School on Abstract Analysis, Srni, 4-18 January 1986), Serie II, n. 14 (1987), 179-186.
[7] Krupka D., Differential invariants, Lecture Notes, Brno 1979.
[8] Palais R.S., Terng G.L., Natural bundles have finite order, Topology, vol. 16 (1977), 271-272.
[9] Pradines J., Fibres vectoriels doubles symètriques et des jets holonomes d' ordre 2, C.R. Acad. Sci. Paris, Ser. A, 278 (1974), 1557-1560.
[10] Vadovičová I., Nonholonomic jets of second order and their applications, Thesis, VŠDS Žilina.

Anton Dekrét
katedra matematiky VŠld
Śtúrova 4
96053 Zvolen, Czechoslovakia
gabriela Vosmanská
katedra matematiky lF VŚz
Zemédélská 3
61300 Brno, Czechoslovakia

[^0]: 1991 Mathematics Subject Classification: 58A20, 53B05.
 Key words and phrases: quasijet, prolongation functor, natural transformations, equivariant map.

