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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 155 { 162A CONTINUOUS DEPENDENCE OF FIXED POINTS OF�{CONTRACTIVE MAPPINGS IN UNIFORM SPACESVasil G. AngelovAbstract. The main purpose of the present paper is to establishedconditions for acontinuous dependence of �xed points of �-contractive mappings in uniform spaces.An application to nonlinear functional di�erential equations of neutral type havebeen made.The main purpose of the present paper is to establish when the convergenceof a sequence of �-contractive mappings in a uniform space implies a convergenceof the sequence of their �xed points. The notion a �-contractive mapping in auniform space has been introduced in [1]. In veiw of the applications given in[1] the problem of a continuous dependence of �xed points can be formulatedas a continuous dependence of the solutions of a nonlinear functional di�erentialequation on its right-hand side. As a particular case we obtain an extension of theresults from [2] and [3] in metric spaces.Since [4] contains the most general version of �xed point for �-contractive map-pings in uniform spaces we shall recall some basic de�nitions and results from[4].Let (X;A) be a complete Hausdor� uniform space with a uniformity generatedby saturated family of pseudometrics A = fd�(x; y) : � 2 Ag; A being an indexset (cf [5]) Let j : A ! A be a mapping and let jk(�) = j(jk�1(�)); j0(�) == �; (k = 1; 2; 3; : : :). Since j is not image of the element �0 2 A, that is j�1(�0) == f� 2 A : j(�) = �0g: In general we de�nej�n(�0) = f� 2 A : jn(�) = �0g (n = 2; 3; : : :) :The space X is called j-bounded if for every x; j 2 X and � 2 A there exists aconstant Q = Q(�; x; y) > 0 such thatdj�n(�)(x; y) 5 Q (�; x; y) <1 (n = 0; 1; 2; : : :) :1991 Mathematics Subject Classi�cation : 54H25, 54E15.Key words and phrases: completeHausdor� uniform space, �xed point, contractivemappings.Received May 15, 1990. 155



156 VASIL G. ANGELOVThe last inequality is in the sense de�ned in [4]. Further on we shall assume thatX is a j-bounded space.Let (�) be a family of contractive functions ��(t)R1+ ! R1+; R1+ = [0;1); � 22 A with the properties:��(t) is strictly increasing, continuous from the right,0 < ��(t) < t and �j(�)(t) 5 ��(t) for t = 0 and��(t1 + t2) 5 ��(t1) + ��(t2) for every t1; t2 > 0 :(�1)(�2) limn!1��(�j�1(�)(: : :�j�n(�)(t) : : : )) = 0which ought to be understand in the following sense: for every sequence �; �1; : : :: : : ; �n; : : : (�n 2 j�n(�)) limn!1��(��1(: : :��n(t) : : : )) = 0.The mapping T is called: 1) �-contractive if dj(�)(Tx; Ty 5 ��(d�(x; y)) forevery x; y 2 X and � 2 A; 2) contractive if dj(�)(Tx; Ty) < d�(x; y) for everyx; y 2 X and � 2 A; 3) j-regular when if fTnxg1n=0 is not d�-Cauchysequence, then it is not dj(�)-Cauchy sequence for every x 2 (or equivalently, iffTnxg1n=0) is dj(�)-Cauchy sequence, then it is d�-Cauchy sequence).Theorem A. [4] Every �-contractive j-regular mapping T : X ! X has a unique�xed point �x 2 X and �x = limn!1Tnx for arbitrary x 2 X.Main resultsLet fTkg1k=1 be a sequence of operators Tk : X ! X : Every Tk has at lastone �xed point yk(k = 1; 2; 3; : : :). Let T0 : X ! X be a �-contractive j-regularmapping with �xed point y0. We say that the sequence fTkg1k=1 tends uniformlyto T0 if for every " > 0 there exists � = �(") such that d�(Tkx; T0x) < " for everyk > �; x 2 X;� 2 ATheorem 1. If the sequence fTkg1k=1 converges uniformly to T0, then the se-quence fykg1k=1 converges to y0:Proof. In view of the uniform convergence of the sequence fTkg1k=1 to T0 forevery " > 0; � 2 A there is �1 such that d�(Tky; T0y) < "=2 for every y 2 X.So that we have for k > �1d�(yk; y0) = d�(Tkyk; T0y0) 5 "2 + �j�1(�)(dj�1(�)(yk; y0)) :For "=22 we �nd �2 such that when k > �2 we havedj�1(�)(yk; y0) 5 "22 +�j�2(�)(dj�2(�)(yk; y0)) :



A CONTINUOUS DEPENDENCE OF FIXED POINTS 157Therefore for k > maxf�1; �2g the following inequalities are ful�lled:d�(yk; y0) 5 "2 + �j�1(�)( "22 + �j�2(�)(dj�2(�)(yk; y0))) 55 "2 + �j�1(�)( "22 ) + �j�1(�)(�j�2(�)(dj�2(�)(yk; y0))) 55 "2 + "22 ) + �j�1(�)(�j�2(�)(dj�2(�)(yk; y0))) :We can proceed in an analogous way and then obtain for k > Nn = maxf�1; �2; : : :: : : ; �ng d�(yk; y0) 5 "2 + "22 + � � �+ "2n +�j�1(�)(�j�2(�)(: : :: : :�j�n�1(�)(dj�n�1(�)(yk; y0)) : : : ) 55 "+ �j�1(�)�j�2(�)(: : :�j�n�1(�)(dj�n�1(�)(yk; y0)) : : : )) :Let us �x n su�ciently large such that�j�1(�)�j�2(�)(: : :�j�n�1(�)(dj�n�1(�)(yk; y0)) : : : ) < " :Then for k > Nn we have d�(yk; y0) < 2". Theorem 1 is thus proved. �Remark 1. If we replace the de�nition of �-contractive mapping by the followingone : d�(Tx; Ty) 5 ��(dj(�)(x; y)) then the assertion of Theorem 1 is also valid.We must only modify conditions (�1) and (�2), namely, ��(t) 5 �j(�)(t) andlimn!1��(�j(�)(: : :�jn(�)(t)) : : : ) = 0 :The de�nition of a j-bounded and j-regular mapping can be modi�ed in an obviousway.Remark 2. Let X be a quasicomplete uniform space. This means that everyclosed bounded subset of X is complete in the induced topology. Consequently ifT :: M ! M is a �-contractive mapping of a bounded closed set M � X intoitself, then T has a unique �xed point in M (cf. [1], Theorem 1).Further on we shall assume that X is a locally compact space. Let us recall therelations between locally compact spaces and uniformizable spaces (cf. [6]). Everycompletely regular T1-space is said to be a Tikhono�'s one. It is known (cf.[6])that every locally compact Hausdor� space is a Tikhono�'s space. On the otherhand X is uniformizable if and only if X is a completely regular space. So that weshall assume that X is a locally compact quasicomplete Hausdor� space. We shalldenote again by A its uniformity, that is, A = fd�(x; y) : � 2 Ag (cf.[5], [6]).



158 VASIL G. ANGELOVTheorem 2. Let (X;A) be a locally compact Hausdor� quasicomplete j-boundeduniform space. Let Tk : X ! X be a �-contractive mapping with �xed point ykfor any k = 0; 1; 2; : : :;i.e. d�(Tkx; Tky) 5 ��(dj(�)(x; y)). If fTkg1k=1 convergespointwise to y0, then the sequence fykg1k=1 converges to y0.Proof. Let us choose " > 0 and �1; : : : ; �p 2 A such that the neighbourhoodN"(�1; : : : ; �p)(y0) = fx 2 X : d�i(y0; x) 5 "g of y0 is a compact subset of X Thesequence fTkg1k=1 is equicontinuous and converges pointwise to T0. But N"(�1; : : :: : : ; �p)(y0) is compact and in view of the results of Ch. VII [6], fTkg1k=1 convergesuniformly on N"(�1; : : : ; �p)(y0) to 0. Then let for k > �s we have d�i(Tky; T0y) << "2s+1 (i = 1; 2; : : : ; p) for every y 2 N"(�1; : : : ; �p)(y0) and for k > Nn == maxf�1; : : : ; �ng (s = 1; : : : ; p) we haved�i(Tky; y0) = d�i(Tky; T0y0) 5 d�i(Tky; T0y) + d(�i)(T0y; T0y0) 55 "22 + ��0(dj(�)(y; y0)) 5 "22 + ��0( "23 + �j(�)(dj�2(�)(y; y0))) 55 "22 + ��0( "23 ) + ��0(�j(�)0(dj2(�)(y; y0))) 5 : : :5 "2 + � � �+ "2n +��0(�j(�)0(: : :�jn(�)0(djn+1(�)(y; y0)) : : : )) 55 "2 + ��0(: : :�jn�0(Q) : : : ) 5 "2 + "2 = " :We obtained that Tk maps N"(�1; : : : ; �p)(y0) into itself.Denote by Tk=N" the restriction of Tk to N"(�1; : : : ; �p)(y0). But X is quasi-complete and j-bounded. The same properties has and N"(�1; : : : ; �p)(y0). ThenTk=N" possesses a �xed point �yk for k > Nn in N"(�1; : : : ; �p)(y0). On the otherhand Tk has only one �xed point yk. Consequently �yk = yk 2 N"(�1; : : : ; �p)(y0)for k > Nn. So we have limk!1yk = y0 which completes proof of Theorem 2.Let A1 = fd�1(x; y) : �1 2 A1g be two families of pseudometrics for the sameset X. They will be called equivalent if and only if the identity mapping from(X;A1) to (X;A2) is a homomorphism. Further on, we shall assume that cardA1 = cardA2, so that we shall not di�er the index sets of equivalent families ofpseudometrics.A sequence of families of pseudometrics fAng1n=1 tends uniformly to a familyA0 if for every " > 0 there is N such that for every n > N; x; y 2 X and � 2 Ajd(n)� (x; y)� d(0)� (x; y)j < " :Proposition 1. Let fAng1n=1 be a sequence of families of pseudometrics on Xwhich tends uniformly to the familyA0 such that each An is equivalent to A0. LetfTng1n=1 be a sequence of �-contractive mappings converging pointwise on X to amapping T0. Then fTng1n=1 converges A0-uniformly for every compact set K 2 Xto T0 (Tn is �-contractive with respect to the family An).



A CONTINUOUS DEPENDENCE OF FIXED POINTS 159Proof. For an arbitrary " > 0 we choose � = "3 . Let for n > N; � 2 A andx; y 2 X, �� 2 j�1(�) the inequality holdsjd(n)�� (x; y) � d(0)�� (x; y)j < � :If n > N and x; y 2 X for which d(0)� (x; y) < � thend(0)� (Tnx; Tny) < �+d(n)� (Tnx; Tny) < �+d(n)�� (x; y) < �+�+d(0)�� (x; y) < 3� = " :We obtained: for every x; y 2 X; � 2 A, and �� 2 j�1(�) the inequality d(0)�� (x; y) << � implies d(0)� (Tnx; Tny) < " for n > N . On the other hand every Tk(k == 1; : : : ; N ) is uniformly continuous on the compact set K with respect to thefamily A0: Consequently the sequence fTng1n=1 is equicontinuous on K with re-spect to A0. But K is compact and then pointwise convergence of fTng1n=1 to T0implies a uniform convergence to T0 with respect to A0, which completes the proofof Proposition 1. �We shall introduce the notion j-locally compact space. The uniform space Xis said to be j-locally compact if for every point y0 and for every �nite col-lection �1; : : : ; �p 2 A there exists " = "(�1; : : : ; �p) > 0 such that the setK(�1; : : : ; �p)(y0; ") = fx 2 X : d�i(x; y0) 5 "(�1; : : : ; �p)g is compact and"(�1; : : : ; �p) 5 "(j(�1; : : : ; j(�p)) and K(�1; : : : ; �p)(y0; "(�1; : : : ; �p)) �� K(��1; : : : ; ��p)(y0; "(��1; : : : ; ��p)) for ��i 2 j�1(�i) (i = 1; 2; : : : ; p) .Theorem 3. Let (X;A) be a j-locally compact j-bounded quasicomplect uniformspace. The sequence fAng1n=1 and fTng1n=1 are as in Proposition 1. If T0 is �-contractive with respect to A0 and Tn has a �xed point yn (n = 0; 1; : : :), thenthe sequence fyng1n=1 tends to y0.Proof. For every �nite collection �1; : : : ; �p 2 A we �nd " = "(�1; : : : ; �p) > 0such that the set K(�1; : : : ; �p)(y0; ") is a compact. By Proposition 1 the sequencefTng1n=1 tends uniformly to T0 on K(�1; : : : ; �p)(y0; ").Let ��i 2 j�1(�i) (i = 1; : : : ; p). Then for a collection ��1; : : : ; ��p there exists" = "(��1; : : : ; ��p) > 0 such that K(��1; : : : ; ��p)(y0; "(��1; : : : ; ��p)) is a compactset. Consider the continuous function f in(z) = d0�i(y0; Tnz) on the compact setK(�1; : : : ; �p)(y0; "(�1; : : : ; �p)). Having in mind the de�nition of j-locally com-pactness we have f in(z) = d0�i(y0; Tnz) 5 ���i(d0��i(y0; z)) 5���i("(�1; : : : ; �p)) 5 ���i("(j(��1); : : : ; j(��p)) < "(�1; : : : ; �p)for every ��i 2 j�1(�i). Then�f�i = sup ff 0n(z) : z 2 K(�1; : : : ; �p)(y0; ")g < " (i = 1; 2; : : :; p)and � = max � f�i : i = 1; 2; : : : ; p	 < ".



160 VASIL G. ANGELOVIn view of uniform convergence of fTng1n=1 to T0 for � = " � � > 0 we �ndN such that for n = N and x 2 K(�i; : : : ; �p)(y0; ") we have d0�i(Tnx; T0x) < �Therefore we obtaind0�i(Tnx; y0) 5 d0�i(Tnx; T0x) + d�i(T0x; T0y0) 5 �+ "� � = " ;that is, for n = N the operator Tn maps K(�1; : : : ; �p)(y0; ") into itself.Denote by TnjK the restriction of Tn to K(�1; : : : ; �p)(y0; ") for each n = NBut TnjK is �-contractive with respect to An which mapsK(�1; : : : ; �p)(y0; ") intoitself. On the other hand A0 and An are equivalent and K(�1; : : : ; �p)(y0; ") is acompact with respect to An. Consequently TnjK has a �xed point yn and sinceTn has only one �xed point then yn 2 K(�1;m : : : ; �p)(y0; ") for n = N It followsthat yn ! y0.Theorem 3 is thus proved. �ApplicationsHere we shall apply the results obtained to some initial value problems considerin [1].Let us consider the initial value problems(1k) '0(t) = Fk(t; '(�; (t)); : : : ; '(�m(t)); '0(�1(t)); : : : ; '0(�n(t)));t > 0'(t) =  (t) ; '0(t) =  0(t) ; t 5 0 ;where '(t) is the unknown function. The deviations �i(t) = �l(t) (i � 1; : : : ;m;l = 1; : : : ; n) are of mixed type and in general case unbounded. After usual trans-formations, assuming  (0) = 0 problem (1k) can be reduced to the following one(x(t) = '0(t)) for t > 0 and �(t) =  0(t) for t 5 0):(2k) x(t) = Fk(t; Z �1(t)0 x(s) ds; : : : ; Z �m(t)0 x(s) ds; x(�1(t)); : : : ; x(�n(t)));t > 0 ; x(t) = �(t) ; t 5 0 :Let C(R1) be the linear topological space consisting of all continuous functionf(t) : R1 ! R1 with a topology generated by a saturated family of seminormsA =fk � kKg ; kfkK = sup fjf(t)j : t 2 K g where K � R1 runs over all compactsubsets of R1. In view of Theorem 2 we shall look for a solution of (2k) in a locallycompact set of functions. Namely, let us consider the set cL = ff 2 C(R1) :jf(t) � f(�t)j 5 Ljt � �tj for every t; �t 2 R1g, where the Lipschitz constant L doesnot depend on K. It easy to verify that CL is closed convex and every point hasa neighbourhood with a compact closure by Arzela-Ascoli theorem. We shall �nda solution of (2k in the set C0L = ff 2 CL : jf(t)j 5 r0(t)g where r0(t) : R1 !! R1+; r0(t) is continuous positive function on R1.



A CONTINUOUS DEPENDENCE OF FIXED POINTS 161We shall make the following assumption (cf. [1]):�i(t); � (t) : R1+ ! R1 (R1+ = [0;1)) are continuous�i(0) 5 0 ; �l(0) 5 0 and j�i(t) ��i(�t)j � Pijt� �tj ;(C1) j�l(t)� �l(�t)j 5 Qljt� �tj:The map j : A ! A is de�ned as in [1], where the index set A consists allcompact subsets of R1:(C2) For every k = 0; 1; 2; : : : the functions Fk(t; u1; : : : ; um; v1; : : : ; vn) :R1+ � Rmn ! R1 are continuous and satisfy the conditions:jFk(t; u1; : : : ; um; v1; : : : ; vn)j 5 !(t) " 1 + m
Xi=1juij+ n

X l=1 jvlj#jFk(t; u1; : : : ; um; v1; : : : ; vn) � Fk(t; �u1; : : : ; �um; �v1; : : : ; �vn)j 55 
[ju1 � �u1j+ � � �+ jum � �umj+ jv1 � �v1j+ � � �+ jvn � �vnj]where 
 is a positive constant:jFk(t; u1; : : : ; um; v1; : : : ; vn) � Fk(�t; u1; : : : ; um; v1; : : : ; vn) 5 L0jt� �tjwhere L0 is a positive constant andL0 +
 " r0(t) m
Xi=1 Pi + L n

X l=1 Ql # 5 L ;!(t) " 1 + m
Xi=1 j�i(t)jr0(t) + nr0(t)# 5 r0(t); 
(m ��K + n) < 1for every compact K � R1 where ��K = sup fj�(t)j : t 2 Kg .Conditions (C3) and (C4) are the same as in [1], assuming that the initialfunctions have Lipschitz constants.Theorem 4. Let the assumptions (C1) { (C4) be ful�lled. If the sequence offunctions fFKg1K=1 tends pointwise to F0, then the sequence of solutions of (2k)tends to the solution of (20).Proof. We form by the right hand side of (2k) the sequence of operators fTKg1K=1.It is easy to see that TK maps the set C0L = � f 2 CL(R1) : jf(t)j 5 r0(t); t = 0	into itself. We shall verify only that (TKf)(t) has a Lipschitz constant equals toL, because another details of the proof are as in [1]. For t; �t > 0 we havej(TKf)(t � (TKf))(�t)j 5 L0jt� �tj+ 
 " r0(t) m

Xi=1 j�i(t) ��i(�t)j++ n
X l=1 Lj�l(t)� �l(�t)j# 5 L0jt� �tj++ 
 " r0(t) m

Xi=1 Pi + L n
X l=1 Ql # jt� �tj 5 Ljt� �tj:



162 VASIL G. ANGELOVNow we can apple Theorem 2 in order to conclude that the solution of (2k) tendsto the solution of (20) . This is possible because TK is an equicontinuous familyof operators and then pointwise convergence on compact sets implies a uniformconvergence. �References[1] Angelov, V.G., Fixed point theorems in uniform spaces and applications, CzechoslovacMath.J. 37 (1987), 19-33.[2] Nadler, S.B. Jr., Sequence of contractions and �xed points, Pasi�c J.Math. 27No 3 (1968),579-585.[3] Fraser, R.B. Jr., Nadler, S.B. Jr., Sequence of contractive mapps and �xed points, Pasi�c J.Math. 31 No 3 (1969), 659-667.[4] Angelov, V.G., A converse to a contraction mapping theorem in uniform spaces, J. NonlinearAnalysis, TMA, 8 No 10 (1988), 989-996.[5] Weil, A., Sur les espaces a structure uniforme et sur la topologie generale, Hermann & C-ieEditeurs, Paris, 1937.[6] Kelley, J., General Topology, D. Van Nostrand Company, New York, 1959.Vasil G. AngelovHigher Mining and Geological Institute1184 Sofia, Bulgaria


		webmaster@dml.cz
	2012-05-10T10:36:32+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




