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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 215 { 220ON GENERALIZATION OF INJECTIVITYR. Yue Chi MingDedicated to Professor Carl Faith on his 65th birthdayAbstract. Characterizations of quasi-continuousmodules and continuousmodulesare given. A non-trivial generalization of injectivity (distinct from p-injectivity) isconsidered. IntroductionVarious generalizations of injective modules are extensively studied since severalyears. Y. Utumi introduced continuous rings as a generalization of self-injectiverings. The concepts of continuity and quasi-continuity was extended to modulesby L. Jeremy, S. Mohamed and T. Bouhy, V. Goel and S. K. Jain. Accordingto [6], the notion of quasi-continuous modules, which e�ectively extends that ofcontinuous modules, appers now to be more fundamental. We here give new char-acteristic properties of continuous and quasi-continuous modules. A generalizationof injectivity, distinct from p-injectivity, is also studied.Throughout, A denotes an associative ring with identity and A-modules areunital. J; Z will stand respectively for the Jacobson radical and the left singularideal of A. Recall that (1) AM is injective i� for any left ideal I of A, everyleft A-homomorphism of I into M extends to A; (2) AM is de�ned as quasi-injective if for any left submodule N of M , every left A-homomorphism of Nonto M extends to an endomorphism of AM ; (3) AM is continuous i� (a) everycomplement left submodule of M is a direct summand of AM and (b) every leftsubmodule of M isomorphic to a direct summand of AM is a direct summandof AM ; (4) AM is quasi-continuous if every complement left submodule of Mis a direct summand of AM and for any direct summands P;N of AM such thatP \N = o, P�N is also a direct summand of AM . It is well-known that injectivity) quasi-injectivity)continuity) quasi-continuity (cf. for example [6]).In [6, Theorem 2.8], three characteristic properties of quasi-continuous mod-ules are listed. We here give another characterization of quasi-continuous modulesmotivated by the de�nition of quasi-injective modules.1991 Mathematics Subject Classi�cation : 16D50, 16L60.Key words and phrases: continuous modules, quasi-continuous modules, injective modules,quasi-Frobeniusean rings, m-injective rings.Received October 14, 1991. 215



216 R. YUE CHI MINGTheorem 1. The following conditions are equivalent for a left A-module M :(1) AM is quasi-continuous;(2) For any complement left submodule K of M , any relative complement Cof K inM , any submodule N ofM containingK�C, every left A-homomorphismof N into M extends to an endomorphism of AM .Proof. Assume (1). Let K be a complement left submodule of M , C a relativecomplement of K in M . Then K �C is essential in AM . Let N be a submodule ofM containing K � C. Since AM is quasi-continuous, K � C is a direct summandof AM . Therefore K � C = N = M (1) implies (2).Assume (2). Let K be a non-zero complement left submodule of M . If C isa relative complement of K in AM (C exists by Zorn's Lemma), let E = K �C; p : E ! K the natural projection. The set of submodules S of M containingE such that p extends to a left A-homomorphism of S into K has, by Zorn'sLemma, a maximal member L. Let q : L ! K be the extension of p to L. Ifj : K !M is the inclusion map, then jq : L!M and by hypothesis, jq extendsto an endomorphism h of AM . Suppose that h(M ) * K. Since K is a relativecomplement of AC in AM , then (h(M ) +K)\C 6= o. If o 6= c 2 (h(M ) +K) \C,c = h(m)+k, m 2M , k 2 K, we see that F = fu 2Mnh(u) 2 Eg is a submoduleof AM which strictly contains L (because m 2 F , m =2 L). If s : F ! E is de�nedby s(u) = h(u) for all u 2 F , then ps : F ! K extends p to F , which contradictsthe maximality of L. Thus h(M ) � K which implies that h(M ) = K. Now K\ker h = o and if b 2M , b = h(b) + (b � h(b)) 2 K+ ker h which yields M = K�ker h. Since C is a relative complement of K in AM , h(C) = o and then C = kerh. Thus M = K � C, proving that any complement submodule of M is a directsummand. Now let D be a direct summand of AM such that K \ D = o. Theset of submodules of AM containing D and having zero intersection with K hasa maximal member V which is a relative complement of K in AM . We have, asabove,M = K�V . Since D � V , D is a direct summand of AM , then V = D�Uwhich yields M = K �D � U . This proves that (2) implies (1). �Theorem 2. The following conditions are equivalent for a left A-module M :(1) AM is continuous;(2) For any isomorphic image K of a complement left submodule of M , anyrelative complement C of K in M , any submodule N of M containing C � K,every left A-homomorphism of N into M extends to an endomorphism of AM ;(3) AM is quasi-continuous such that for any left submodule N of M whichis isomorphic to a direct summand of AM , every left A-homomorphism of N intoM extends to an endomorphism of AM .Proof. Assume (1). Let K be a non-zero isomorphic image of a complement leftsubmodule of M , C a relative complement of K in M , N a submodule of Mcontaining C�K. Since AM is continuous, K and C are direct summands of AMand since K \ C = o, then K � C is a direct summand of AM . But K � C isessential in AM which implies that K � C = M and hence N = M . Thus (1)implies (2).



ON GENERALIZATION OF INJECTIVITY 217Assume (2). By Theorem 1, AM is quasi-continuous. Now let N be a submoduleof AM isomorphic to a direct summand of AM . Let AQ be a relative complementof AN in AM . If f : N ! M is a left A-homomorphism, g : Q � N ! N thenatural projection, then fg : Q � N ! M and by hypothesis, fg extends to anendomorphism h of AM . Clearly, h is an extension of f and hence (2) implies (3).Assume (3). Let N be a submodule of AM which is isomorphic to Q, whereM = Q � D. If j : N ! M is the inclusion map, g : N ! Q an isomorphism,i : Q!M the natural injection, p :M ! Q the natural projection, then ig : N !M extends to an endomorphism h :M !M . For every n 2 N , hj(n) = ig(n) andg�1phj(n) = g�1pig(n) = g�1g(n) = n. This shows that k = g�1ph : M ! Nsuch that kj = identity map on N . This proves that N is a direct summand of AM .Since AM is quasi-continuous, then AM is continuous and therefore (3) implies(1). �Since a left continuous left natural Noetherian ring is left Artinian, applying [10,Theorem 7.10] to Theorem 2, we get a new characteristic property of commutativequasi-Frobeniusean rings.Corollary 3. The following conditions are equivalent for a commutative ring A:(1) A is quasi-Frobeniusean;(2) A is a Noetherian ring such that for any ideal I containing a non-zeroisomorphic image of a complement ideal of A, every A-homomorphism of I into Aextends to an endomorphism of A.Recall that A is a left V -ring i� every simple left A-module is injective. V -rings,von Neumann regular rings and their generalizations have drawn the attention ofmany authors (cf. [2],[3], [5], [7], [9], [11]-[14]). We note that if A is semi-prime,then any simple left A-module N has the following property (�): for any left idealI of A, any left A-monomorphism of I into N extends to a left A-homomorphismof A into N . We call a left A-module M m-injective (mono-injective) if M hasproperty (�). A is called left m-injective if AA is m-injective.It is clear that m-injectivity does not imply injectivity (otherwise, any semi-prime ring would be a left (and right) V -ring !). Note that continuous modulesneed not be m-injective.Recall that a left A-moduleM is p-injective if, for any principal left ideal P of A,any left A-homomorphism of P into M extends to A. A is called left p-injective ifAA is p-injective. Without the terminology, a theorem of M. Ikeda { T. Nakayamaasserts that A is left p-injective if, and only if, every principal right ideal of A isa right annihilator. P -injective modules have been studied in connection with vonNeumann regular rings, continuous and self-injective regular rings (cf. for example,[3], [7], [12] { [19]).Note that m-injectivity does not imply p-injectivity (otherwise, any commuta-tive semi-prime ring would always be regular !). Since any m-injective left idealof A is a direct summand of AA, then p-injectivity does not imply m-injectivityeither (otherwise, any von Neumann regular ring would always be Artinian !).Remark 1. If A is left m-injective , then Z = J and A=J is von Neumann regular



218 R. YUE CHI MING(cf. [2, Corollary 19.28]).Remark 2. A left m-injective left Noetherian ring is left Artinian. Following [5],AM is called semi-simple if the intersection of all maximal left submodules of Mis zero.Remark 3. A is semi-simple Artinian i� every semi-simple left A-module is atand m-injective.Remark 4. A commutative ring A is semi-simple Artinian i� A is a semi-primering whose m-injective modules coincide with p-injectivity modules.We now consider a particular case when m-injectivity implies injectivity.Proposition 4. Let A be a left m-injective ring containing an injective maximalleft ideal K. Then A is left self-injective.Proof. A = K � U , where K = Ae; e = e2 2 A, U = Au, u = 1 � e. ThenuA = r(K). We show that uA is a minimal right ideal of A. Let o 6= v 2 uA.Then vA � uA and l(u) � l(v). If f : Au! Av is the map de�ned by f(au) = avfor each a 2 A, then f is an isomorphism (since Au is a minimal left ideal), andif j : Au ! A is the inclusion map, we have a monomorphism jf�1 : Av ! A.Since AA is m-injective , there exists y 2 A such that jf�1(v) = vy. Thereforeu = vy 2 vA which yields uA � vA, whence uA = vA, proving that uA is aminimal right ideal of A. In the paper presented to the AMS meeting at OHIO (cf.Abstract American Mathematical Society, August 1990, Vol. 11 no 4 and NoticesAMS 37(1990), no 6 (p. 707)), we proved that if A contains an injective maximalleft ideal K such that r(K) is a minimal right ideal, then A must be left self-injective. �Applying [2, Theorem 24.20], [4, Theorem] to Proposition 4, we getCorollary 5. If A contains an injective maximal left ideal, the following condi-tions are equivalent:(a) A is quasi{Frobeniusean;(b) A is leftm-injective satisfying the maximumcondition on left annihilators;(c) A is left m-injective satisfying the maximum condition on right annihila-tors;(d) A is left m-injective satisfying the ascending chain condition on essentialleft ideals;(e) A is left m-injective satisfying the ascending chain condition on essentialright ideals.Corollary 6. If A contains an injective maximal left ideal, then A is left pseudo-Frobeniusean if, and only if, A is a left m-injective left Kasch ring.Corollary 7. A is left self-injective regular with non-zero socle i� A is a leftm-injective ring containing a non-singular injective maximal left ideal.Question. Is A semi-simple Artinian if A contains an injective maximal left idealand every maximal left ideal of A is projective ?We now give a nice result on annihilators.



ON GENERALIZATION OF INJECTIVITY 219Proposition 8. Let A be a left and right m-injective ring. Then any minimal left(or right) ideal of A is an annihilator.Proof. Let U = Au; u 2 A, be a minimal left ideal of A. The proof of Proposition4 shows that uA is a minimal right ideal of A. Let o 6= d 2 l(r(Au)). Thenr(u) = r(Au) = r(l(r(Au))) � r(d) and if f : uA! dA is de�ned by f(ua) = da forall a 2 A, then f is an isomorphism (because uA is minimal). If j : dA! A is theinclusion map, then jf : uA! A is a monomorphism and since AA is m-injective,there exists z 2 A such that d = jf(u) = zu 2 Au. Since Au � l(r(Au)) , we haveAu = l(r(Au)). Similarly, any minimal right ideal of A is a right annihilator. �Theorem 9. The following conditions are equivalent:(1) A is quasi{Frobeniusean;(2) A is a left Noetherian, left p-injective, right m-injective ring;(3) A is a left Noetherian, left m-injective, right p-injective ring;(4) A is a left Noetherian, left and right m-injective ring;(5) A is a left Noetherian, left m-injective ring whose minimal left ideals areleft annihilators;(6) A satis�es the maximum condition on left annihilators and for every left(right) ideal I of A containing a non-zero isomorphic image of a complement left(right) ideal of A, every left (right) A-homomorphism of I into A extends to anendomorphism of AA(AA);(7) A is a left and right p-injective ring whose left and right socles coincideand A satis�es the maximum condition on left annihilators and complement rightideals.Proof. It is obvious that (1) implies (2), (4) and (6). �Assume (2). Let U = Au; u 2 A, be a minimal left ideal ofA. ThenM = l(u) is amaximal left ideal. Let o 6= v 2 uA. Since vA � uA,M = l(v). Now uA = r(l(uA)),vA = r(l(vA)) which yield uA = r(M ) = r(l(vA)) = vA, showing that uA isa minimal right ideal. The proof of Proposition 8 then shows that Au is a leftannihilator. Since A satis�es the descending chain condition on right annihilatorsand A is left p-injective, then A is left perfect, whence A is left Artinian (in so faras A is left Noetherian). By [8, Proposition 1], (2) implies (3).(3) implies (5) by Ikeda-Nakayama's theorem.(4) implies (5) by [8, Proposition 1], Remark 1 and Proposition 8.Assume (5). By Remark 2, A is left Artinian. Let U = uA; u 2 A, be a minimalright ideal of A . Since A is left Artinian, Au contains a minimal left ideal V = Av,v 2 A. Since M = r(u) is a maximal right ideal of A , then M = r(v). NowAu � l(r(Au)) = l(M ) = l(r(Av)) = Av, which implies that Au = Av is a minimalleft ideal. The proof of Proposition 8 then shows that uA is a right annihilator.Thus (5) implies (1) by [8, Proposition 1].(6) implies (7) by [1, Theorem 1] and Theorem 2.Assume (7). Since A satis�es the minimum condition on right annihilators andevery principal right ideal is a right annihilator, then A is left perfect. Since Asatis�es the maximum condition on left annihilators, then Z is nilpotent. Since A



220 R. YUE CHI MINGis left p-injective , Z = J which implies that A is semi-primary. By [1, Lemma 6],A is right Artinian. Then (7) implies (1 by [8, Proposition 1].Corollary 10. If A is commutative, the following are equivalent:(a) A is quasi{Frobeniusean;(b) A is a p-injective Goldie ring;(c) A is a m-injective Noetherian ring.We conclude with a connection between m-injective and continuity.Remark 5. If A is a left m-injective left uniform ring, then A is a local leftcontinuous ring. References[1] Camillo, V., Yousif, M. F., Continuous rings with ACC on annihilators.[2] Faith, C., Algebra II:Ring Theory, Grundlehren 191 (1976), Springer Verlag.[3] Hirano, Y., Tominaga,H., Regular rings , V -rings and their generalizations, HiroshimaMathJ. 9 (1979), 137-149.[4] Jain, S. K., Loper-Permouth and Rizvi, T., Continuous rings with ACC on essential areArtinian, Proc. Amer. Math. Soc.[5] Michler, G. O., Villamaryor, O. E., On rings whose simple modules are injective, J. Algebra25 (1973), 185-201.[6] Mohamed, S. H., Muller, B. J., Continuous and discrete modules, LondonMath. Soc. Lecturenote Series 147 (Cambridge University Press) (1990).[7] Ohori, M., Chain conditions and quotient rings of pp. rings, Math. J. Okayama Univ. 30(1988), 71-78.[8] Storrer, H. H., A note on quasi{Frobenius rings and ring epimorphisms, Canad. Math. Bull.12 (1969), 287-292.[9] Takehana, Y., V -rings relative to hereditary torsion theories, Tsukuba J. Math. 6 (1982),293-298.[10] Utumi, Y.,On continuous rings and self-injective rings, Trans. Amer. Math. Soc. 118 (1965),158-173.[11] Varadarajan, K., Generalised V -rings and torsion theories, Comm. Algebra 14 (1986),455-467.[12] Varadarajan, K., Wehrhan K., P -injectivity of simple pretorsion modules, Glasgow Math. J.28 (1986), 223-225.[13] Xue, Weimin, On p.p.rings, Kobe Math. 7 (1990), 77-80.[14] Yousif, M. F., SI-modules, Math. J. Okayama Univ. 28 (1986), 133-146.[15] Yue Chi Ming, R., On V -rings and prime rings, J. Algebra 62 (1980), 13-20.[16] Yue Chi Ming, R., On von Neumann regular rings, XIII. Ann. Univ. Ferrara Sez. VII, Sc.Mat. 31 (1985), 49-61.[17] Yue Chi Ming, R., On injectivity and p-injectivity, J. Math. Kyoto Univ. 27 (1987), 439-452.[18] Yue Chi Ming, R., On von Neumann regular rings, XV. Acta Math. Vietnamica 13 (1988),71-79.[19] Yue Chi Ming, R., A note on regular rings, Bull. Soc. Math. Belgique Ser. B 41 (1989),129-138.R. Yue Chi MingUniversit�e Paris VIIUFR de Maths - URA 212 CNRS2, Place Jussieu75251 Paris Cedex 05, France
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