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ARCHIVUM MATHEMATICUM (BRNO)Tomus 29 (1993), 221 { 226ATOMS IN LATTICE OF RADICALCLASSES OF LATTICE{ORDERED GROUPSDao-Rong TonAbstract. There are several special kinds of radical classes. For example, a prod-uct radical class is closed under forming product, a closed-kernel radical class isclosed under taking order closures, a K-radical class is closed under taking K-isomorphic images, a polar kernel radical class is closed under taking double polars,etc. The set of all radical classes of the same kind is a complete lattice. In this paperwe discuss atoms in these lattices. We prove that every nontrivial element in theselattices has a cover.For the de�nitions and the standard results concerning `-groups, the reader isreferred to [1, 3, 6]. Let G be an `-group. C (G), L (G) and K(G) will be denotedthe complete lattices of all convex `-subgroups, all `-ideals and closed convex `-subgroups of G, respectively. Let C � G. By CG C??G we denote the order closureof C in G and the double polar of C in G, respectively. Two `-groups G and G0are said to be K-isomorphic, if K(G) and K(G0) are isomorphic as lattices. Joinin a lattice L is denoted by _(L).Let G be the set of all `-groups. For X � G we denote byJK(X) | the class of all `-groups G having a system fG�j� 2 ^g � X \K(G)such that G = _�2^(K(G))G�;L(X) | the class of all `-groups G such that K(G) is isomorphic to K(G1) forsome G1 2 X.We can make new `-groups from some original `-groups. These constructionsinclude:1. taking convex `-subgroups,2. forming joins of convex `-subgroups,3. forming completely subdirect products,30. forming direct products,4. taking `-homomorphic images,40. taking complete `-homomorphic images,1991 Mathematics Subject Classi�cation : Primary 06F15.Key words and phrases: lattice-ordered group, radical class, closure operator, atom.Received September 2, 1992.



222 DAO{RONG TON5. forming extensions, that is, G is an extension of A by using Bif A is an `-ideal of G and B = G=A6. taking order closures, that is, G is an order closure of A if A is a convex`-subgroup of an `-group H and G = AH .7. taking double polars, that is, G is a double polar of A if A is a convex`-subgroup of an `-group H and G = A??H .8. taking K-isomorphic images.A familyU of `-groups is called a class, if it is closed under some constructions.If a class U is closed under the constructions i1; : : : ; ik, we call U a i1 : : : ik-class,where i1; : : : ; ik 2 f1; 2; 3; 30; 4; 40; 5; 6; 7; 8g and 1 � k � 8. All our classes arealways assumed to contain along with a given `-group all its `-isomorphic copies.Thus, a radical class [7] is a 12-class, a quasi-torsion class [9] is a 1240-class, atorsion class [10] is a 124-class, a closed-kernel radical class [5] is a 126-class, apolar kernel radical class [5] is a 127-class, a K-radical class [8] is a 128-class. Wecall a 1230 (123-class) a product radical class (a subproduct radical class). We calla 125-class a complete (idempotent) radical class.In this paper we call 12i3 : : : ik-classes radical classes. Let T12i3:::ik be the setof all 12i3 : : : ik-classes. For any family fR�j� 2 ^g of 12i3 : : : ik-classes, \�2^R� 2T12i3:::ik . So we can de�ne ^�2^R� = \�2^R� ;_�2^R� = \fU 2 T12i3:::ik jU � R� for each � 2 ^g ;and T12i3:::ik becomes a complete lattice.Let R12i3:::ik be a 12i3 : : : ik-class and G be an `-group. Then there exists alargest convex `-subgroup ofG belonging toR12i3:::ik . We denote it byR12i3:::ik(G)and call it a R12i3:::ik-radical. It is invariant under all the `-automorphisms of G.It is clear that an `-group G belongs to R12i3:::ik if and only if G = R12i3:::ik(G). IfR1, R2 2 T12i3:::ik , then R1 � R2 if and only if R1 (G) � R2 (G) for each `-group(G).Lemma 1. Every closed-kernel radical class is a subproduct radical class.Proof. Suppose that R is a closed-kernel radical class and G is a completelysubdirect product of fG�j� 2 ^g where fG�j� 2 ^g � R. That is,X�2^G� � G � Y�2^ G� :For each � 2 ^ put G� = fg 2 Q�2^G�j�0 6= � =) g�0 = 0g. Then R (G) \ G� =R (G�) = G� and so G � R (G) � G� for each � 2 ^. Let 0 < a = (: : : ; a�; : : : ) 2G. Then a = _�2^(G)a�



ATOMS IN LATTICE OF RADICAL CLASSES : : : 223where a� = (0; : : : ; 0; a�; 0; : : : ; 0) 2 G�(� 2 ^). Since R is closed-kernel, a 2R (G). Hence G = R (G) and G 2 R. �Suppose that R, T 2 T12. We de�ne the product R � T = fG 2 G jG=R (G) 2T g. Let T 2 T12 and � be an ordinal number. We de�ne an assending sequenceT, T 2, : : : , T �; : : : as follows:T �( T �T ��1 if � is not a limit ordinalfGjG = [�<�T �(G)g if � is a limit ordinal :It is easy to show that T � is a 12-class for each ordinal �. De�ne T � = [�T � .Similarly to the proof of Theorem 1.6 and Theorem 1.7 of [10] we can proveLemma 2. Let R be a 12-class. Then R � is the smallest complete 12-class con-taining R. R is complete if and only if R = R �. R � � R??.Proposition 3. For 12i3 : : : ik-classes of `-groups we have the following relations:T128 � T126 � T123 � T1230 � T12 � T1240 � T124[jT125[jT127 :Proof. T123 � T1230 � T12 � T1240 are clear. By Lemma 1 and Lemma 2 we getT126 � T123 and T127 � T125. It follows from Lemma 2.2 of [8] or Lemma 1.5 of [2]that T128 � T126. �Now suppose that R 2 T12. PutR i3:::ik = \fU 2 T12i3:::ik jU � R g :Then R i3:::ik 2 T12i3:::ik . It is called the 12i3 : : : ik-closure of R or 12i3 : : : ik-class generated by R and we have the closure operator R ! R i3:::ik on T12. ByProposition 3 we haveProposition 4. Let R be a radical class. ThenR 8 � R 6 � R 3 � R 30 � R � R 40 � R 4\jR 5\jR 7 :



224 DAO{RONG TONIn [5] M. Darnel determined some closure operators. Let G be an `-group. ThenR 4(G) = _(C (G))fC 2 C (G)j there exists H 2 R(1) and L 2 L (H) such that C �= H=Lg ;R 6(G) = R (G)G ;(2) R 7(G) = R (G)??G :(3)By Lemma 2 we have R 5 = R �. In the following we will determine the closureoperator R! R 8 on T12.Theorem 5. Suppose that R is a K-radical class. Then(I) if A 2 C (G), then R (A) = A \R (G);(II) if ' is a K-isomorphism between G and G0, then '(R (G)) = R (G0).Conversely, if we associate to each `-group G an `-ideal T (G) 2 K(G) subjectto (I) and (II) above, and let R = fGjT (G) = Gg, then R is a K-radical class,and for each `-group G, R (G) = T (G).Proof. The assertion (I) is known (cf. e.g. [5]). If K(G) is isomorphic to K(G0)with K-isomorphism ', ' (R (G)) = R (G0) by the property b) of [4, p. 187].Conversely, suppose that we associate to each `-group G an `-ideal T (G) 2K(G) subject to (I) and (II) above, and let R = fG 2 G jT (G) = Gg. It is easyto see that R is a radical class. Let T be the class of all lattice L such that thereexists G 2 R and L is isomorphic to K(G). Thus, (II) implies that R is a K-radical class. Let G be an `-group. T (G) 2 R implies R (G) � T (G). On theother hand, R (G) = T (R (G)) = R (G) \ T (G), so R (G) � T (G). ThereforeR (G) = T (G). �Any mapping f : G! R (G) on G satisfying the above properties (I) and (II) iscalled aK-radical mapping. Theorem 5 indicates that a K-radical class is uniquelydetermined by its K-radical mapping.Theorem 6. Let R be a radical class and G be an `-group. Then G! R 8(G) =_(K(G))fA 2 K(G)jA is K-isomorphic to some A0 2 R g is a K-radical mappingand R 8 = fGjR 8(G) = Gg is the K-radical class generated by R.This theorem is a corollary of Theorem 2.9 in [8], hence the proof is omitted.Corollary 7. Let R be a radical class. Then the K-radical class generated by Ris R 8 = JKL(R ).This corollary is also a result of Theorem 2.9 of [8].Suppose that R1 6= R2 2 T12i3:::ik . If the interval [R1;R2] = fR1;R2g, we saythat R2 covers R1 or that R2 is an atom over R1. The set of all atoms over R1will be denoted by A12i3:::ik(R1). Let R0 = ff0gg be the least element of T12i3:::ik .We put A12i3:::ik(R0) = A12i3:::ik . In [7] J. Jakubik proved that, if G 6= R 2 T12,then A12(R ) is a proper class. In particular A12 is a proper class. In this paperwe will prove that, if R 2 T125 (T126; T127 and T128) and R 6= G, then A125(R )(A126(R ), A127(R ) and A128(R )) is nonempty.



ATOMS IN LATTICE OF RADICAL CLASSES : : : 225Lemma 8. Suppose thatR 2 T12i3:::ik andR1 2 A12(R ). If for anyR 0 2 T12i3:::ikwith R < R 0 � R i3:::ik1 , R0 \R1 6= R. Then R i3:::ik1 2 A12i3:::ik(R ).Proof. LetR 0 2 T12i3:::ik such thatR < R 0 � R i3:::ik1 . ThenR < R 0\R1 � R1.Since R1 2 A12(R ), R 0 \ R1 = R1. That is, R 0 � R1. But R 0 2 T12i3:::ik , soR 0 � R i3:::ik1 . Therefore R 0 = R i3:::ik1 and R i3:::ik1 2 A12i3:::ik(R ). �Lemma 9. (Proposition 3.3 of [7]) Let G 6= R 2 T12. Then A12(R ) is a properclass.Theorem 10. Let G 6= R 2 T126. Then A126(R ) is nonempty.Proof. . Since R 6= G, A12(R) is a proper class by Lemma 9. For any R12 2A12(R ), let R 0 2 T126 such that R < R 0 � R 612. By the formula (2) we haveR 612 = fG 2 G jG = R12 (G)g. So the element G of R 0 has the form G = R12 (G).If R12(G) 2 R for all elements G of R 0, then since R 2 T126, R 0 = R. Thiscontradicts toR < R 0. Hence there exists G1 = R (G1) 2 R 0 such thatR12 (G1) 2R12 nR. But R12 (G1) 2 C (G1), so R12 (G1) 2 R 0 \R12. This means R 0 \R12 6=R. The Lemma 8 implies R 612 2 A126(R ). �Theorem 11. Let G 6= R 2 T128. Then A128(R ) is nonempty.Proof. A12(R ) is a proper class. Let R12 2 A12(R ) and R 0 2 T128 such thatR < R 0 � R 812. By Proposition 3 R 0 2 T126 and R 812 2 T126. From the proof ofTheorem 10 we see that R 0 \R12 6= R. So Lemma 8 implies R 812 2 A128(R ). �Theorem 12. Let G 6= R 2 T125. Then A125(R ) is nonempty.Proof. Let R12 2 A12(R ) and R 0 2 T125 such that R < R 0 � R 512 = R �12. Itfollows from the de�nition of R �12 that R 0 \R12 6= R. So by Lemma 8 we haveR 512 2 A125(R ). �Theorem 13. Let G 6= R 2 T127. Then A127(R ) is nonempty.The proof of this theorem is similar to that for Theorem 11.



226 DAO{RONG TONReferences[1] Anderson, M., Feil, T., Lattice-Ordered Groups (An Introduction), D. Reidel PublishingCompany, 1988.[2] Bleier, R. D., Conrad, P., a�-closures of lattice-ordered groups, Trans. Math. Soc. 209 (1975),367-387.[3] Conrad, P., Lattice-Ordered Groups, Tulane Lecture Notes (1970), Tulane University.[4] Conrad, P., K-radical classes of lattice ordered groups, Algebra, Proc. Conf. Carbondale(1980), Lecture Notes Math., 848, 186-207.[5] Darnel, M., Closure operators on radical classes of lattice-ordered groups, Czech. Math. J.37(112) (1987), 51-64.[6] Glass, A. M. W., Holland,W. C., Lattice-Ordered Groups (Advances and Techniques), KluwerAcademic Publisher, 1989.[7] Jakubik, J., Radical mappings and radical classes of lattice ordered groups, Symposia Math.21 (1977), 451-477, Academic Press.[8] Jakubik, J., On K-radical classes of lattice ordered groups, Czech. Math. J. 33(108) (1983),149-163.[9] Kenny, G. O., Lattice-Ordered Groups, Ph.D. dissertation, University of Kansas (1975).[10] Martinez, J., Torsion theory for lattice ordered groups, Czech. Math. J. 25(100) (1975),284-299.[11] Ton, Dao-Rong,Product radical classes of `-groups, Czech. Math. J. 42(117) (1992), 129-142.Dao-Rong TonDepartment of Mathematics and PhysicsHohai UniversityNanjing, 210024THE PEOPLE'S REPUPLIC OF CHINA


		webmaster@dml.cz
	2012-05-10T10:52:53+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




