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WEIGHTED ESTIMATES FOR THE
HANKEL-, K- AND Y-TRANSFORMATIONS

SavLaH A. A. EMARA

ABSTRACT. We give conditions on pairs of non-negative functions v and v which
are sufficient that, for 0 < g < p,p > 1

[ o] <o [~ wonera]”

where T is the Hankel-, K-, or the Y-transformations.

1. INTRODUCTION

The weighted Lebesgue spaces LE,(RT) consist of those functions f for which

1

WAllee, (rey = |f(z)w(z)fde < co.
Rt

A continuous non-decreasing function w : RT — RY belongs to the class Bx [12]
if
min(1, 1/8)d(t)t ™ dt < oo,
0

. w(s)
where @(s) zli%w(y)
Clearly, if 0 < 6 < 1 then w(t) = t* € B . Also Gustavsson [6] has shown, the
function ¥ /log(1+t*) € Bk if 0 < a < B < 1.
Let w € Bg, then the weighted Lorentz spaces L’ 0 < p < 0o consist of all
measurable functions f on Rt such that

and w(s) < oo for s > 0.

lap = [ @ d T 0<p<oo
ess sup tf*(¢)/w(t), p=o.
t>0
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Here f* is the equimeasurable decreasing rearrangement of f (with respect to
Lebesgue measure).

Note that if w(t) = tl_(%), 0 < g < oo these spaces reduce to Lorentz spaces
L(p, q).
The weight class By consists of all non-negative continuously differentiable func-
tions w on R such that
sup tw'(t)/w(t) =<1 and inf tw'(t)/wi)=a>0.
>0 >0
It is not difficult to see that By C Bxk.
Again w(t) =%, 0 < 0 < lisin By and also w(t) = t*(log(1+1"))*, 0 < & < 1,
@ real and v is a sufficiently small neighbourhood of zero (Gustavsson [6]).
Let [X,Y] denote the collections of bounded operators from the Banach space
X to the Banach space Y. An operator T is bounded from Lf(R™) to LL(R™),
written Te[LE(RY), L4 (R*)], provided there exists a constant C' such that

WTfllzrey < CNlfllLerey, forall f>0.

Throughout, constants are denoted by C' and may be different at different ap-
perances but are always independent of the function f in question. The indices p',
¢’ and r are defined by 1 —|—p 1q—|—q—_1andq p—l

The purpose of this paper is to establish a norm inequality for the Hankel

transformation
(o)

(Ha )= @OFL0fWd, x>0, o>~
0
where J, is the Bessel function of order «, which for 0 < ¢ < p, p > 1 is new. If
1 < p, ¢ < 0o, the result was proved in [2], in fact, for 1 < p < ¢ < oo the result
was similar to a weighted estimate of Heywood and Rooney [10], but with different
weight conditions. We also prove a corresponding weighted norm inequalities for
the K- and Y-transformations to the case 0 < ¢ < p, p > 1. Our weight conditions
of these transformations are described in the following definitions:

Definition 1. Let u and v be non-negative functions defined on RT and let u* and
(1/v)" be the equimeasurable rearrangements of v and 1/v. We write (u,v) € Fy ,
O<g<p, p>1,if

r

=
@ [
hll

1
7

Ooo 0 w*(t)? di Ox(l/v)*(t)pldt Ty de < oo,
ow jﬁ‘w)wdt Ty e

hll

hold, where % = % —
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2. WEIGHTED INEQUALITIES
We require the following lemmas:

Lemma 2 ([11]). If f is a non-negative non-increasing function defined on R*
then for a real and 0 < p < ¢ < 0

Q=
=

ef)etat <C [t F())t " dt
0 0
holds.
Lemma 3 ([13]), ([14]). Suppose 0 < ¢ < p, p>1 and % = % — zl?’ then
(a) lu(z)  fly)dy|*de < C |f(z)v(2)]" de
0 0 0
holds for all f, if and only if
u(y)? dy ’ v(y)_pl dy ’ v(x)_pl dr < oo.
0 T 0
For the dual operator
(b) lu(z)  fy)dyl"de <C |f(z)v(2)]" de
0 T 0
holds for all f, if and only if
u(y)? dy ’ v(y)_pl dy ’ v(x)_pl dr < oo.
0 0 T

Lemma 4 ([6]). If w € Bg then
(i) ( Yw(l/s) =1, where w( )= mE uzv(sf)
() 0 < wlsult) < wst) < a(s)ull).
(i) @ and w are non-decreasing and (1) = ( )=
(iv)  For any p> 0, { J°[min(1, 1/t)a(t)|Pt 1dt}% < oo
with the usual modification if p = oo .
(v)  There exist constants A, B > 0 such that for
A< s hw(s){ J[t/wt)Ptdt}yy < B, p>0.
In fact, A= p~7 and B = { @) /are? dt}% ifp<oo.

(vi)  There are positive constants C, D such that

2
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C <w(s){ PIjw@)Pttdt}r <D, p>0.
Here,

C={ P[Ja@Ft="dtyr and D= { ; @t)Pt="dt}7 if p < co.
Remark 5 ([3]). If w; € By, ¢ = 0,1 and 7(¢) = wi(t)/wo(t) satisfying
tr'(t)/7(t) > o« > 0 for all ¢ > 0, then 7 has an inverse and th_I%T(t) = 0,
tlir& (1) = oc.

Holmstedt’s K-functional estimate in the context takes the form:

Lemma 6. Suppose w; € By, i = 0,1 with 7(t) = w1 (¢)/wo(t) and n(t) = 771(¢)
such that

(1) tr'(t)/r(t) > a >0,
holds. Then for 1 < qq,q; < 0.

(2) A/’(t’f . L(]mwo’ L417w1) S

n(t) oo
C [f(s)/wa(s)]ds+t  [f"(s)/wi(s)]ds

0 n(t)
Proof. In [8] Heinig showed that

n(1) 0
(3) K(t, f; Liowe LivWi) ~ [sf*(s)/wo(s)]?°s ds
0

+1 Oo[sf*(s)/wl(s)]‘hs_lds )
n(t)

We complete the proof by showing that both summands in (3) are bounded by
the right side of (2). Since f*(s)/wo(s) is non-increasing it follows directly from
Lemma 2 that

13 90 13

(4) [s£*(s)/wo(s)]*s™ ds < C [f*(s)/wo(s)]ds,

0 0
1<qo< o0

Now we define ¢ by

oQ 91

9(s) =f7(1) [Lwi(y)]Ty~dy , if 0<s<t

t

oQ 91

F*(s) [1/w1(y)]‘hy_1dy , if s>t
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where ¢ > 0 is fixed. Then g is non-increasing and from (vi) of Lemma 4 and
Lemma 2, we obtain for fixed ¢t > 0, 1 < ¢; < 0,

oQ 91

[s7° (s)/ w1 ()]s~ ds

t

<C st fr(s)n [1/w1(y)]‘11y_1dy s~ lds
1 s
1 [e%e)
<C s () [1/w1(y)]‘11y_1dy s~ lds
0 t
+ s f(s)" [L/wi(y)]™y™ ' dy s~ ds
1 s
=C [sg(s)]% s~ ds <C g(s)ds
0 0
1 [e%e) 1
< @) [1/w1(y)]‘11y_1dy (s
0 t
+ () [1/wi(y)]"y ™ dy " ds
1 s
1 [e%e) 1
< F*(s) [1/w1(y)]‘11y_1dy (s
0 t
+ () [1/wi(y)]7y~ dy 1ds
1 s

Here the second inequality is obtained by adding the first integral term. On apply-
ing (vi) of Lemma 4, then the right side of the previous inequality is dominated
by

Cou®” FEds ]
<C /0] U@ elds ()]
Therefore
6@ mers s
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From (3), (4), and (5) one gets the desired result, which proves the lemma.
We now prove the following interpolation theorem:

Theorem 7. Suppose w;, w; € By, i = 0,1 with 7 = w1 /wy, T = w1 /10y and
n =71 n=7""1satisfy tr'(t)/7(t) > « > 0 and [t7/(t)/7(¢)] > & > 0. Let
oc=mnor and T : L9V — LT ] < ¢; q; < oo, i=0,1 be quasilinear operator.

If t7/(1)/7(t) >a>0,0< g<p p>1, L= % — L; uw and w are non-negative

weight functions satisfying

1.
1_7’

(6) [ [w@wo(t)/]rdt @

0 o(s)

hll

1

x Os[l/u/v)*(t)wo(t)]-p’dt TTTL/L0) (shwa(s)]) ™ ds < oo

and

[ o(s)

(7) S W @m Z

S

00
1
7

< ey e )] AT (L) ()wi(s)] P ds < oo

then for all simple functions f
(8) T € [LE(RT), LL(RT)].

If —t7'(1)/7(t) > & > 0, (8) still holds provided the ranges of the fisrt inner
integrals in (6) and (7) are interchanged.

Proof. For the case t7/(t)/7(t) > & > 0 we apply Lemma 4 (v) with s, w and p
replaced by 7, wy and §o, respectively and use (3) to obtain

7(t) - L
(T H" (@)nt)/wo(n(t)) < C(Tf)"(1(1)) ) [s/wo(s)) s ds ™

() _ 0
¢ [S(TF)"(s)/wo(s))Ts™" ds

< CK(t, Tf; LT [11:01)

Now, by hypothesis

(T ((0)n(t)/wo(n(t)) < CK(EMy/Mo, f; L1, L)
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and since K (%, f) is increasing whereas t 7' K (¢, f) is decreasing we may take with-
out loss of generality My /My = 1. Therefore,

(TF)"(n(t)) < Clawo(n(t)) /()] K (¢, f; Lo, L)
Hence, it follows from (2) of Lemma 6 that

n(1) o
(1) (n(t)) < Clao(n(t))/n(t)] ) [f7(s)/wo(s)] ds +1 (t)[f*(s)/wl(s)] ds
Now, let 7(¢) = y, then ¢ = T(y) and

7(y) o
(T1)"(y) < Clwo(y)/y] [/ (s)wo(s)] ds + 7(y) ( )[f*(s)/wl(S)] ds
0 a(y
where &(y) = n(7(y)). Utilizing properties of rearrangenent of functions and
Minkowski’s inequality one obtains from this estimate

lu(e)(Tf)(@)|"de < [ (T (y)]* dy

0 0

oo a(y)

<C u(y) woly)y ™! [£7(s)/wo(s)] ds

Q=

oo a(y) .
<O LW a ) e d’
ORI :o>[f*<s>/w1<s>] ds)" dy)’

(9)= C{Z1 + 7>}, respectively. Here we used in the second inequality the as-
sumption that 7(¢)wo(y) = w1(y). We complete the proof by showing that both
summands Z; and Z3 in (9) are bounded by C{ [ [v(x) f(x)[F dm}%

Now, let ¢(y) = ¢, then by definition of &, n(7(y)) = t or y = 7= 1(n~1(¢)). But
since (t) = 771(t) and 7(¢) = n~1(¢) one obtains y = p(n~L(t)) = p(r (1)) = o(t),
and similarly 7(y) = 7(¢). Also by Remark 5, 7(¢), 7(¢) tend to zero and infinity
as t — 0, respectively ¢ — oco. Also ¢7/(¢)/7(t) > @ > 0 implies 7/(¢) > 0 and
7(t) = 7(o(t)) we obtain 7/(t) = 7/(o(t))o’ (¢), which implies ¢’(¢) > 0. Therefore,
the first summand yields

1
00 13 g

H=0C (W (e(t)wo(e(D))a(t)™  [f*(s)/wo(s)] ds)?o"(t) dt

0 0

=

oQ

<cC [1/(1/0) () f ()P ds
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where the above inequality holds by Lemma 3 (a) provided (6) holds.
The bound of the second summand of (9) follows from condition (7) in exactly
the same way. We omit the details. Therefore,

Q=
=

lu(@)(Tf)(@)| de < C [1/(1/0)"(2)f"(2)] do
0
<C [v(z)f(2)]P de |
0
where the second inequality follows the integral analogue of [7, Theorem 368]
obtained by approximating v by appropriate simple function and using Lebesgue’s
theorem of monotone convergence.

The rest of the proof is similar to the case t7/(¢)/7(t) > & > 0 and therefore

omitted. This completes the proof of the theorem. a
The following corollary is a consequence of Theorem 7 with w;(#) = =G0 and

w;(t) =1~ /P) i =0, 1.

Corollary 8. Let 0 < p;, p; <00, 1 < ¢4, s < 00,4 =0,1and T : L(p;,qi) —

L(pi, ;) be a quasi-linear operator and

1 1

A=———>0, A=1/po—1/p1 #0.
Po P1
IFA>0,0<qg<p p>1, %:%—%;u,vsatisfying
[ [wr@p= )i (11 eyt )
0 sA/X 0
(10) < [1/(1/v)*(s)s7 "5 s7lds < oo
and
(o) SA/X (o)
O 3 K T G A W SVt () e e e T
0] 0] s
(11) x [1/(1)v)*(s)s7 7] P57 ds < oo,

then (8) holds.

If A < 0, (8) still holds provided the ranges of the first inner integrals in (10)
and (11) are interchanged.

Our next corollary extends and complets these results obtained in [1, Theorem
1.1] and [9, Corollary 2.5 and Proposition 2.6] for the range 0 < ¢ < p, p > oo,
Whenpoz1,]30:00,]31:])1:2;/\:%,X:—%.
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Corollary 9. If T € [LY(RY), L=(RM)] N [L*(RT), L*(RY)] and (u,v) € Fy o
0<q<p,p>1,then (8) holds.

A consequence of this result is the following:

Corollary 10. Let T be as in Corollary 9 and B defined by
(Bf)(x) = w(x)(Tg)(x), where g(x) = w(x)f(z).

If (uw,v/w) € Fy ,

then B € [LE(R*), L (R™)].

Now, we state and prove the weighted inequality for the Hankel-transformation.

1
Theorem 11. Let o > 5 #+ 0, u and v be non-negative functions defined on

Rt and ug(x) = 2°t3u(e), vo(2) = 27 20(x). If (ta,va) € Fr,,0<q<p,
p>1, then Hy € [LE(RY), L4(R*)].

1 . . .
Proof. If « = +—, the result reduces to a weighted estimate for the Fourier sine-
and cosine transformations.
Let o > —5 and suppose f is simple. Since the Bessel function has an integral

representation ([5, 952 (4)]),

9l-—aa z

- 2a
—_ cos(x cos y) sin dy,
Mt o el

Ja(z) =

9l-a at+i o L z

(Haf)(2) = 17961 122 f(t)( cos(xt cos y) sin®® y dy) dt
T2l (a+35) o 0

gl-ogats 5 ( o0 (ot )ﬁ“f(t)dt)d
—_ sin”“ y cos(xt cosy 2 y
72T+ %) 0 0

= 25 (Tug)(2),

where g(t) = t“"'%f(t) and

w3

21—oz 00

(Tag)(®) = m . sin®® y( ) cos(zt cos y)g(t) dt) dy .

The interchange of order of integration is justified by Fubini’s theorem. It is not
hard to check that Ty, € [LY(RY), L=®(RT)|N[L*(RT), L?(R1)], [2, Theorem 3].

Now if (ua,va) € Fy ,, then by Corollary 10 with (Bf)(z) = (Ho f)(), w(z) =
2°t3 and (Tg)(z) = (Twg)(x) we obtain H, € [LE(RT), LI(R™)], which proves
the theorem. d
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3. THE K AND Y-TRANSFORMATIONS
Since the K-transformation of f of order « is defined formally by
(o]

(1) @)= @R, r>0 0z -g.

where K is the modified Bessel function of the third kind ([4, Chapter X]).

1 .
Ifa= i§’ the transformation reduces to the Laplace transform

oQ

S5

(Een)(@)=(5)% ™ f()dy.

0

1
If a > —5 the kernel K, can be written as:

9-aT(L)pe ,
Ko(x)= —22" T2~ 1)°7 3 dt, >0, [5,p-958 (3
@ =TT, @D £ 0, [5,p. 958 (3)

or

Koe) 2°T(a+ $)z~  °° cosatdt
(o (z) = -
I'(3) o (1+¢2)Fz

x>0 [5,p.959 (5)].

It follows that (12) has the representations

270 ($)aots o > ,
13) (K, f)(z) = ——2——— vtz f(y e~ — 1) T2 dt dy,
) (N0 = T 2 v )

20T (o + Lyz=ots . © cosaytdt
14) (K, f)() = 2 ety S,

which are needed to prove the weighted norm inequality for K.

1
Theorem 12. Let o > —5 a # 0, u, v be non-negative functions defined on

RT and uy(z) = x%_|“|u(x),va(x) = x_%‘H“'v(l‘). If (ug, ve) € Fr
p>1, then K € [LE(RT), LL(R™)].

u

0<qg<p,

1
Proof. Consider first the case ) < a < 0, ([2, Theorem 4]), then by (13)

1

2—oz+1F 1y .ats 00 . 00 .
(K, f)(z) = — F(a(—i)f) 1 (12— 173 0 =iyt d p(y) dy] dt
2

=23 (Thg)(x),
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where g(y) = y“"'%f(y) and

Mo = 2 M T aypma T ety aan
& F(O[ —|— %) 1 0
Hence T7, € [L*(RT), L>(RT)]N[L*(RT), L?(R1)],[2, Theorem 4] and if (uq, va) €
1
Fy ,, then by Corollary 10 we obtain K, € [LL(RT), L{(R*1)], where —5<a< 0.
If @ > 0, we use the representation (14) so that
2°T (o + 5)x~ 2 @ ©0

l 1 1

% (1—1—152)_“_5[ cos xyty_a+5f(y) dy] dt
3) 0 0
(

(T g)(z) = % 000(1 + tz)_a_%[ 000 cos zytg(y) dy] dt .

Again T € [LY(RY), L=®(RT) N [L3(RT), L*(R1)], [2, Theorem 4].
By applying Corollary 10, we obtain K, € [LE(RY), LL(RY)], « > 0. This
proves the theorem. a

1
The final application involves the Y-transform defined for 0 < |a| < 3 by

oQ

(15) (Yo f)(z) = . yalzt)(@t)2 f(t)dt, = >0,

where y, is the Bessel function of second kind or Neumann’s function. If 0 < |a| <

1 .
1 the kernel y, can be written as

Yao(x) = % 05 sin( sin 0) cos”*  df
- ooo[e_w/(1 +y’)" V5 ]dy (5, p. 955 (5)])
Yal(z) = _ 2@/ Oo[cos ot /(t* — 1) 3] dt

‘= _%’ y_1(x) = (2/(rz))? sinz, (5, p. 967 (2))).
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It follows that (15) has the two integral representations

(16) Vahe) = AT Tiert g
16 Yol @) = —————————— 147z f(t

F(% + OZ)F(%) 0

X ’ sin(at sin 0) cos* 0 d — [e="% /(1 + yz)_“'l'%] dy dit
0 0

and
(7 Vale) =~ e
17 Yo 2) = —————— 127 f(t

I(5—=a)I(3) o

X [cos xty/(y* — 1)“"'%] dy dit
0

which are needed to prove the weighted inequality for Y. a

1
Theorem 13. Let 0 < |a] < =

5 U Y be non-negative functions defined on RT

and uo(z) = 227 1%u(2) and v (2) = e~ 2 Nw(2). If (uq,va) € Py, 0<gq<np,
p> 1, then YV, € [LE(R*), LL(RY)).
1
Proof. First consider the case ) < o < 0 then by (16)
Fal)@) = 2T ol T sinGatsin)
) = ———— cos sin(zt sin
L(+a)l(3) o 0
) tTI ) dt]do — (14273 e Wt () di] dy
0 0
= xa'i'%(FC/Yg)(x), where g(t) = ta+%f(t)
and
! 21_a 3 2 ~
")) = ——— cos“* 6 sin(at sin @
P = ey, 0, )
xg(tyd)do—  (1+y)*73[ e ™g(t)dt]dy
0 0

So that the above integchange of order of integrations is justified by Fubini’s
theorem since f vanishes outside (0, a) for some a > 0, Holder’s inequality shows
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that

oQ

et sy, O F ) va ()™ ’ | sin(xtsind) cos*® 0| d6
0 0
+ [e—xty/(l + yZ)—a+%] dy dt
0

us

<Wleecrey (1w (0F'] " sinatsin ) cos™ o] o

i

=

oQ

+ [T () ]y dE < oo
0

Since the sum of the two inner integral is dominated by

11 e 1 11 1
B = = 1—y)* 2dy=B =, =)+ B(~a,2)/2
(atg.5)+  (=y)idy=Blat s, o)+ Bl-a 5)/2<
where B denotes the beta function, it follows that

9l-a 00 z

I( c/vg)(l’ﬂﬁm . lg(2)] . sin(xt sin f)

oQ

xcos?0dol+ [T /(14 5] dy dt < Cllgllpre
0

which shows that F’, € [LY(R*), L>°(RT)]. Also, by Minkowski’s integral inequal-
ity

o 1 21_()‘ z
| Fclvg z |2 de}? < ———— cos?® @
0 (Fag)(@) A +ao)l(3) o
x| | sin(xtsin 0)g(?) dt|? dx]% do
0 0
+ ()T | e Wg(y)dyl de) dt
0 0 0

If we let sinf = z, 0 € (0, 7/2) in the first inner integral and z¢ = z in the second
integral, then the above integrals are dominated by

C " cos? Bsin= % 6 df| | sin(t2)g(t) dt|* dz]%
0 0 0
+ () TERTE | eVig(y)dyl? d2]F dt
0 0 0

S5

11 11
< O{B(a+ 2 5) + B(—a + 7 Z)/Q} gllz=(r+)
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where the last inequality follows from Plancherel’s theorem for the Fourier sine-
transform and the fact that the Laplace transform maps L?( Rt) to L?(RT). Hence
Fy € [LY(RY), Lo (RY)] 0 [L*(RY), L*(RY)].

fo<a< 5 We use the integral representation (17) so that

v B gltap—aty o 2 _1)-e-t
(af)(l‘)——m ) (-1
X Oo(:os(ar:yt)y_a'l'%f(y)dy dt
0

=z (FY)(x), where g(y) =yt Ef(y)

and

(Fé’g)(l‘)z—m ) (t* =173 ) cos(zyt)g(y) dy} dt .

Again it is seen that F” € [LY(RY), L°(RT)|N[L3(RT), L*(R1)].
Now, if (ua, va) € Fy ,, then by Corollary 10 we obtain Y, € [LP(R™), LL(RT)],
which proves the theorem. a
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