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ARCHIVUM MATHEMATICUM (BRNO)Tomus 30 (1994), 59 { 72ON ASYMPTOTIC PROPERTIES OF SOLUTIONSOF THIRD ORDER LINEAR DIFFERENTIAL EQUATIONSWITH DEVIATING ARGUMENTSIvan KiguradzeAbstract. The asymptotic properties of solutions of the equationu000(t) = p1(t)u(�1(t))+p2(t)u0(�2(t)), are investigatedwhere pi : [a;+1[! R (i =1;2) are locally summable functions, �i : [a;+1[! R (i = 1;2) measurable onesand �i(t) � t (i = 1;2). In particular, it is proved that if p1(t) � 0, p22(t) ��(t)jp1(t)j, Z +1a [�1(t)� t]2p1(t)dt < +1 and Z +1a �(t)dt < +1;then each solution with the �rst derivative vanishing at in�nity is of the Knesertype and a set of all such solutions forms a one-dimensional linear space.Let us consider the di�erential equation(1) u000(t) = p1(t)u(�1(t)) + p2(t)u0(�2(t)) ;where the functions pi : [a;+1[! R (i = 1; 2) are locally integrable and thefunctions �i : [a;+1[!R (i = 1; 2) are measurable and(2) �i(t) � t for t � a (i = 1; 2) :The solution u of the equation (1) will be called of the Kneser type if itsatis�es the inequalitiesu0(t)u(t) � 0; u00(t)u(t) � 0 for t � a0;for some a0 2 [a;+1[, and will be called vanishing at in�nity iflimt!+1u(t) = 0 :1991 Mathematics Subject Classi�cation : 34K15.Key words and phrases: di�erential equation with deviating arguments, Kneser type solu-tions, vanishing at in�niting solution.Received September 2, 1993.



60 IVAN KIGURADZELet K be a set of all Kneser type solutions of (1), W be a set of all solutions of(1) satisfying the condition Z +1a u02(t)dt < +1 ;and Z be a set of all solutions of the same equation satisfying the conditionlimt!+1u0(t) = 0 :The results of [1,2] imply that if either of the two conditions(i) �1(t) � t; p2(t) � 0; p1(t) � 0 ;(ii) ( p1(t) � 0; R+1a s2jp1(s)jds < +1 ;p2(t) � 0; R+1a s2�2(s)p2(s)ds < +1 ;is ful�lled, then W � K; Z � K and K is a one-dimensional linear space.Questions as to the dimension of K, W and Z and the interconnection of thesespaces have virtually remained univestigated in the case when the conditions (i)and (ii) are violated. This paper is devoted exactly to the investigation of thesequestions.Theorem 1. Let �i(t) � t (i = 1; 2); p1(t) � 0 for t � a,(3) Z +1a ��1(t) � t�2��p1(t)��dt < +1and(4) p22(t) � �(t)��p1(t)�� for t � a;where � : [a;+1[! [0;+1[ is a summable function. Then(5) K = Z; dimZ = 1and for each solution u 2 Z to vanish at in�nity it is necessary and su�cient that(6) Z +1a t2��p1(t)��dt = +1 :Before proceeding to the proof of the theorem we shall give two auxiliary state-ments, using the notation � (x) = ess supa�t�x � max1�i�2�i(t)�:



ON ASYMPTOTIC PROPERTIES OF SOLUTIONS . . . 61Lemma 1. Let the conditions of Theorem 1 be ful�lled and a0 2 [a;+1[ be solarge that(7) Z +1a0 ��1(t)� t�2��p1(t)��dt < 14 ; Z +1a0 �(t)dt < 18 :Then an arbitrary solution u of the equation (1) satis�es the condition(8) 2u02(t) + Z xt ��p1(s)��u2(s)ds �� 4u(t)u00(t) � 4u(x)u00(x) + 2u02(x) + �(t; x) for x > t � a0;where �(t; x) = supt�s<�(x)u02(s) :If however u 2 Z, then u 2 K,(9) u02(t) + Z +1t ��p1(s)��u2(s)ds � 4u(t)u00(t) for t � a0;and(10) Z +1t �10(s� t)u02(s) + (s � t)2��p1(s)��u2(s)�ds � 4u2(t) for t � a0:Proof. Let u be an arbitrary solution of the equation (1). Then in view of thenon-positivity of p1 and the inequality (4) we haveu000(t)u(t) + jp1(t)ju2(t)= p1(t)u(t) Z �1(t)t u0(�)d� + p2(t)u(t)u0(�2(t))� ��1(t)� t���p1(t)����u(t)����(t; t)�1=2 + ��(t)��p1(t)���(t; t)�1=2��u(t)��� 12��p1(t)��u2(t) + 12��1(t) � t�2��p1(t)���(t; t) + 14 ��p1(t)��u2(t) + �(t)�(t; t)= 34��p1(t)��u2(t) + �12��1(t)� t�2��p1(t)��+ �(t)��(t; t)for t � a0. Integrating this inequality from t to x and taking into account (7), we�nd u00(x)u(x)� u00(t)u(t) + 12�u02(t) � u02(x)� + Z xt ��p1(s)��u2(s)ds� 34 Z xt ��p1(s)��u2(s)ds + 14�(t; x) for x � t � a0:



62 IVAN KIGURADZEThus the inequality (8) is valid.Let us assume now that u 2 Z. Thenlim infx!+1 ��u00(x)u(x)�� = 0:Therefore (8) implies(11) 2u02(t) + Z +1t ��p1(s)��u2(s)ds � 4u00(t)u(t) + �0(t)for t � a0, where �0(t) = maxt�s<+1u02(s) :We shall show that(12) u00(t)u0(t) � 0 for t � a0:Let us assume the opposite: we haveu00(t0)u0(t0) > 0 :for some t0 2 [a0;+1[. Then, since u0 vanishes at in�nity, there is t1 2]t0;+1[such that u00(t1) = 0; u02(t1) = �0(t1) > 0 :Therefore from (11) we �nd 2�0(t1) < �0(t1) :The obtained contradiction proves the validity of the inequality (12), while from(11) and (12) it follows that u satis�es the inequality (9) and u 2 K.Integrating twice the inequality (9) we obtain the inequality (10). �Lemma 2. Let the conditions of Lemma 1 be ful�lled and there exist a numberb 2]a0;+1[ such that(13) pi(t) = 0 for t � b (i = 1; 2) :Then for any c 2 R there exists one and only one solution of the equation (1)satisfying the conditions(14) u(a0) = c; u0(t) = 0 for t � b:Proof. Due to (2) and (13), for any  2 R the equation (1) has the unique solutionv(�; ) satisfying the condition v(t; ) = 



ON ASYMPTOTIC PROPERTIES OF SOLUTIONS . . . 63for b � t < +1, and v(t; ) = v(t; 1) :Since v(�; 1) 2 Z, by virtue of Lemma 1 we havev(a0; 1) � 1 :From the above reasoning it is clear thatu(t) = cv(t; 1) ;where c = c=v(a0; 1) ;is the unique solution of the problem (1), (14). �Proof of Theorem 1. Let a0 be so large that the inequalities (7) are ful�lled.First of all we shall show that for any c 2 R the equation (1) has at least onesolution satisfying the conditions(15) u(a0) = c; limt!+1 u0(t) = 0 :Let k be an arbitrary natural number and(16) pik(t) = � pi(t) for a0 � t � a0 + k0 for t > a0 + k (i = 1; 2) :On account of Lemma 2 the equation(17) u000(t) = p1k(t)u(�1(t)) + p2k(t)u0(�2(t))has the unique solution uk satisfying the conditions(18) uk(a0) = c; u0k(t) = 0 for t � a+ k:On the other hand, by Lemma 1 uk 2 K, i.e.,(19) uk(t)u0k(t) � 0; uk(t)u00k(t) � 0for t � a0. If alongside with this we take into account the conditions (2) and(16), then we can easily ascertain that the sequences �u(i)k �+1k=1 (i = 0; 1; 2)are uniformly bounded and equicontinuous on each segment contained in [a;+1[.Therefore, according to the Arzela-Ascoli lemma, from �uk�+1k=1 we can obtain thesubsequence �ukm�+1m=1 converging uniformly together with �u(i)km�+1m=1 (i = 1; 2) oneach segment contained in [a;+1[. By virtue of (16), (18) and (19) the functionu(t) = limm ! + 1ukm(t)



64 IVAN KIGURADZEis the solution of (1) satisfying the conditionsu(a0) = c; u(t)u0(t) � 0; u(t)u00(t) � 0for t � a0. But u 2 K ) limt!+1u0(t) = 0:Therefore u is the solution of the problem (1), (15). We have thereby proved thatdimZ � 1 :Due to Lemma 1 Z = K. Let us show that dimZ = 1. For this it is su�cientto establish that for an arbitrary c 2 R the problem (1), (15) has at most onesolution. Let u1 and u2 be arbitrary solutions of this problem andu0(t) = u2(t)� u1(t) :Since u0 2 Z and u0(a0) = 0, by Lemma 1 we haveZ +1a0 (s � a0)u002(s)ds � 0;i.e. u00(t) = 0 for t � a0. Hence it follows that u0(t) � 0, i.e., u1(t) � u2(t).Let us proceed to the proof of the second part of the theorem. Let u 2 Z. Thenby virtue of Lemma 1 u 2 K and the inequality (10) is ful�lled. Hence it is clearthat if the condition (6) is ful�lled, then u is a vanishing solution at in�nity.To complete the proof of the theorem it remains for us to establish that if(20) Z +1a s2��p1(s)��ds < +1 ;then each nontrivial solution u 2 Z tends to a limit di�ering from zero as t! +1.Let us assume the opposite: there exists a nontrivial solution u 2 Z vanishing atin�nity. Then by Lemma 1(21) ��u(t)��0 � 0; ��u0(t)��0 � 0; limt!+1u(t) = limt!+1 u0(t) = 0;lim inft!+1 ��u00(t)�� = 0and(22) v(t) � 2��u(t)��for t � a0, wherev(t) = �Z +1t �10(s� t)u02(s) + (s� t)2��p1(s)��u2(s)�ds�1=2 :



ON ASYMPTOTIC PROPERTIES OF SOLUTIONS . . . 65By the conditions (2), (4), (7) and (20)-(22) we have��u00(t)�� = ���� Z +1t �p1(s)u(�1(s)) + p2(s)u0(�2(s))�ds����� Z +1t ��p1(s)����u(s)��ds + � Z +1t ��(s)��p1(s)���1=2ds���u0(t)��� Z +1t ��p1(s)����u(s)��ds+�Z +1t �(s)ds�1=2�Z +1t ��p1(s)��ds�1=2��u0(t)��� Z +1t ��p1(s)����u(s)��ds+ �Z +1t ��p1(s)��ds�1=2��u0(t)��for t � a0, and ��u(t)�� = Z +1t (s � t)��u00(s)��ds� 12 Z +1t (s � t)2��p1(s)����u(s)��ds+ Z +1t (s � t)�Z +1s ��p1(�)��d��1=2��u0(s)��ds� 12�Z +1t (s� t)2��p1(s)��ds�1=2�Z +1t (s � t)2��p1(s)��u2(s)ds�1=2+� Z +1t (s � t)�Z +1s ��p1(�)��d��ds�1=2�Z +1t (s� t)u02(s)ds�1=2� �Z +1t (s � t)2��p1(s)��ds�1=2v(t) � 2�Z +1t (s � t)2��p1(s)��ds�1=2��u(t)��for t � a0. From the latter inequality it is clear that for some su�ciently large a1u(t) = 0for t � a1. Hence, in view of (2), we have u(t) = 0 for t � a. But this contradictsour assumption about the nontriviality of u. The obtained contradiction provesthe theorem. �Theorem 2. Let �i(t) � t (i = 1; 2), p1(t) � 0 for t � a, and the function �2 belocally absolutely continuous and nondecreasing. Let, besides,(23) Z +1a t��1(t) � t���p1(t)��dt < +1and(24) p22(t) � (6� ") � 02(t)t� a ��p1(t)�� for t > a;



66 IVAN KIGURADZEwhere " is a arbitrary small positive number. ThendimW = 1and for each solution u 2W to vanish at in�nity it is necessary and su�cient that(25) Z +1a t2��p1(t)��dt = +1 :To prove the theorem we shall needLemma 3. Let the conditions of Theorem 1 be ful�lled and a0 2 [a;+1[ be solarge that(26) Z +1a0 (s � a0)[�1(s) � s]��p1(s)��ds � 4�2 ;where � = "20 . Then an arbitrary solution u 2W satis�es the conditions(27) � Z +1t �u02(s) + (s � t)��p1(s)��u2(s)�ds � �u0(t)u(t)for t � a0, and(28) 2� Z +1t �(s � t)u02(s) + (s � t)2��p1(s)��u2(s)�ds � u2(t)for t � a0.Proof. Let u be an arbitrary solution of the equation (1). Then in view of thenonpositiveness of p1 (s � t)u000(s)u(s) + (s � t)��p1(s)��u2(s)= (s � t)p1(s)u(s) Z �1(s)s u0(�)d� + (s � t)p2(s)u(s)u0(�2(s)) :The integration of this identity from t to x gives(29) u0(t)u(t) + (x� t)u00(x)u(x)� (x� t)u02(x)2 � u0(x)u(x)+ Z xt �32u02(s) + (s� t)��p1(s)��u2(s)�ds= Z xt �(s� t)p1(s)u(s) Z �1 (s)s u0(�)d� + (s� t)p2(s)u(s)u0(�2(s))�ds :



ON ASYMPTOTIC PROPERTIES OF SOLUTIONS . . . 67But according to the Schwartz inequality and the conditions (24) and (26)Z xt �(s � t)p1(s)u(s) Z �1 (s)s u0(�)d��ds� � Z xt (s� t)��p1(s)��u2(s)ds + 14� Z xt (s � t)��p1(s)��� Z �1 (s)s u0(�)d��2ds� � Z xt (s � t)��p1(s)��u2(s)ds + 14� Z xt (s � t)��1(s) � s���p1(s)��� Z �1 (s)s u02(�)d��ds� � Z xt (s � t)��p1(s)��u2(s)ds + � Z �(x)t u02(s)dsfor x � t � a0, and Z xt (s� t)p2(s)u(s)u0(�2(s))ds� �6� "�1=2 Z xt h(s � t)� 02(s)��p1(s)��i1=2��u(s)����u0(�2(s))��ds� (1� 2�) Z xt (s � t)��p1(s)��u2(s)ds + 6� "4(1� 2�) Z xt � 02(s)u02(�2(s))ds� (1� 2�) Z xt (s � t)��p1(s)��u2(s)ds + �32 � 2��Z �(x)t u02(s)dsfor x � t � a0, where � (x) = ess supa�t�x h max1�i�2�i(x)i :Therefore (29) implies(30) � Z xt hu02(s) + (s � t)p1(s)u2(s)ids � �u0(t)u(t) + (x� t)u02(x)2+u0(x)u(x)� (x� t)u00(x)u(x) + �32 � �� Z �(x)x u02(s)dsfor x � t � a0.From the condition u 2W it immediately follows thatlimx!+1 1x Z xa (s � a)u02(s)ds = 0and(31) limx!+1 u2(x)x = 0 :



68 IVAN KIGURADZEWe shall show that for any t 2 [a;+1[(32) lim infx!+1 ���(x � t)u02(x)2 + u0(x)u(x)� (x� t)u00(x)u(x)��� = 0 :Let us assume the opposite. Then there are numbers � 2 f�1; 1g, t0 2 [a;+1[,t1 2]t0;+1[ and � > 0 such that(33) �h(x� t0)u02(x)2 + u0(x)u(x)� (x� t0)u00(x)u(x)i > �for x � t1 ,(34) Z xa (s� a)u02(s)ds � �6(x� t0) ; u2(x) < �4(x� t0):for x � t1. Integrating the inequality (33) from t1 to x, we �nd��32 Z xt1 (s � t0)u02(s)ds + u2(x)� (x� t0)u0(x)u(x)� � �(x� t1)� c1for x � t1, where c1 = u2(t1)� (t1 � t0)u0(t1)u(t1) :Hence due to (34) we obtain��(x� t0)u0(x)u(x) � �2(x� t1) � �2(t1 � t0) � c1for x > t1, and ��u0(x)u(x) � �4for x � t2, where t2 is some su�eciently large number. Therefore�hu2(t2)� u2(x)i � �4(x� t2)for x � t0, which contradicts the condition (31). The obtained contradictionproves the validity of the equality (32).By virtue of (32) the inequality (30) implies the inequality (27), while by inte-grating (27) from t to +1, we obtain the inequality (28). �The proof of the next lemma repeats that of Lemma 2.



ON ASYMPTOTIC PROPERTIES OF SOLUTIONS . . . 69Lemma 4. Let the conditions of Lemma 3 and the identities (13), whereb 2]a0;+1[, be full�lled. Then for any c 2 R the problem (1), (14) has oneand only one solution.Proof of Theorem 2. Let a0 be so large that the inequality (26) is ful�lled, andc 2 R be an arbitrarily �xed number.According to Lemma 4 for any natural k the di�erential equation (17), wherepik (i = 1; 2) are the functions given by the equality (16), has the unique solutionuk satisfying the conditions (18).By virtue of Lemma 3� Z +1t hu02k(s) + (s � t)��p1(s)��u2k(s)ids � �u0k(t)uk(t)for t � a0, and2� Z +1t h(s � t)u02k(s) + (s � t)2��p1(s)��u2k(s)ids � u2k(t)for t � a0.Hence, on account of the Arzela-Ascoli lemma, we readily conclude that the se-quence �uk�+1k=1 contains the subsequence �ukm�+1m=1 converging uniformly togetherwith �u(i)km�+1m=1 (i = 1; 2) on each �nite segment from [a;+1[ andu(t) = limm!+1 ukm(t)is the solution of the equation (1) satisfying the conditionsu(a0) = c; Z +1a0 u02(s)ds < +1 :We have thereby proved that dimW � 1. Thus to prove the equality dimW = 1it is su�cient to establish that given the conditions(35) u(a0) = 0; Z +1a0 u02(s)ds < +1the equation (1) has only the trivial solution. Indeed, let u be an arbitrary solutionof the problem (1), (35). Then by virtues of Lemma 3� Z +1a0 hu02(s) + (s� a0)��p1(s)��u2(s)ids � 0 :Therefore u(t) = 0 for t � a0:



70 IVAN KIGURADZEIn view of (2) it follows from the last equality that u(t) = 0 for t � a.Let us prove the second part of the theorem. Let u 2 W be an arbitrarysolution. By virtue of Lemma 3 the function ��u(�)�� does not decrease on [a0;+1[and Z +1a0 (s� a0)2��p1(s)��u2(s)ds < +1 :Hence it is clear that if the condition (25) is ful�lled, then u vanishes at in�nity.To complete the proof of the theorem it remains for us to establish that ifthe condition (20) is ful�lled, then each nontrivial solution u 2 W tends to alimit di�ering from zero as t ! +1. Let us assume the opposite: there exists anontrivial solution u 2W vanishing at in�nity. Then by Lemma 3(36) u(t)u0(t) � 0; v(t) � ���u(t)��for t � a0, where � = �2���1=2 andv(t) = �Z +1t h(s � t)u02(s) + (s � t)2��p1(s)��u2(s)ids�1=2 :On the other hand, due to (24) and (20) we have��u(t)�� = 12 ���� Z +1t (s � t)2�p1(s)u(�1(s)) + p2(s)u0(�2(s))ids����� � Z +1t (s � t)2��p1(s)��ds�1=2�Z +1t (s � t)2��p1(s)��u2(�1(s))ds�1=2+2 Z +1t (s � t)2h��p1(s)��� 02(s)s� a �1=2��u0(�2(s))��ds� � Z +1t (s � t)2��p1(s)��ds�1=2�Z +1t (s � t)2��p1(s)��u2(�1(s))ds�1=2+2� Z +1t (s � t)2��p1(s)��ds�1=2� Z +1t (s � t)2s � a � 02(s)u02(�2(s))ds�1=2for t � a0. Hence, taking into account (2) and (36), we �nd��u(t)�� � � Z +1t (s � t)2��p1(s)��ds�1=2� Z +1t (s � t)2��p1(s)��u2(s)ds�1=2+2� Z +1t (s � t)2��p1(s)��ds�1=2�Z +1t (s� t)u02(s)ds�1=2� 3�Z +1t (s � t)2��p1(s)��ds�1=2v(t)� 3��Z +1t (s� t)2��p1(s)��ds�1=2��u(t)��



ON ASYMPTOTIC PROPERTIES OF SOLUTIONS . . . 71for t � a0, and therefore u(t) = 0for t � a1, where a1 is some su�ciently large number. In view of (2) the lastidentity implies that u(t) = 0 for t � a. But this contradicts our assumptionabout the nontriviality of u. �Corollary. Let the conditions of Theorem 2 be ful�lled andp2(t) � 0for t � a. Then(37) K = W; dimK = 1 :Proof. Let u 2W be an arbitrary solution. Then by virtue of Lemma 3u0(t)u(t) � 0for t � a0. If, alongside with this we take into account the nonpositivity of p1 andthe nonnegativity of p2 from (1), we �ndu000(t)u(t) � 0; u00(t)u(t) � 0for t � a0. Therefore u 2 K. We have thereby proved that W � K. But,according to Theorem 2 and the de�nition of K and W , we have dimW = 1 andK � W . Therefore it is clear that the equalities (37) are ful�lled. �As an example, on the interval [a;+1[ let us consider the equation(38) u000(t) = � 38t3u(t) + rt2u0(t) ;where a and r are positive numbers. This equation has a solutionur(t) = t�r ;where 12 � �r < 1for 38 < r � 32 , and 0 < �r < 12for r > 32 . Therefore Z 6= Kfor r > 38 , and W 6= K



72 IVAN KIGURADZEfor r > 32 . On the other hand, for the equation (38) all conditions of Theorem 1except the summability of � (since �(t) = 8r23 t�1) are ful�lled in the case r > 38 ,and all conditions of Theorem 2 except (24) which is replaced by the inequalityp22(t) < (6 + ") � 02(t)t � a ��p1(t)��for t > a are ful�lled in the case r = 32�1 + "�1=2. This example shows that inTheorem 1 (in the corollary of Theorem 2) the condition of the summability of �(the condition (24)) is optimal in the de�nite sense and cannot be weakened.In conclusion we note that results similar to Theorem 3 for second order di�er-ential equations are contained in [3].References[1] C. Villari, Contributi allo studio asintotico dell' equazione x000(t)+p(t)x(t) = 0, Ann. Math.Pura ed Appl., 51(1960), 301-328.[2] I. T. Kiguradze and D. I. Chichua, On the Kneser problem for functional di�erential equa-tions, (Russian) Di�erentsial'nie Uravneniya 27 (1991), No 11, 1879-1892.[3] I .T. Kiguradze,On some properties of solutions of second order linear functional di�erentialequations, Proc. of the Georgian Acad. of Sciences, Mathematics 1 (1993), No 5, 545-553.Ivan KiguradzeA. Razmadze Mathematical InstituteGeorgian Academy of SciencesZ. Rukhadze St.1, Tbilisi 380093Republic of GeorgiaE-mail: kig@imath.kheta.georgia.su
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