Archivum Mathematicum

Pavel Novotný
On packing of squares into a rectangle

Archivum Mathematicum, Vol. 32 (1996), No. 2, 75--83

Persistent URL: http://dml.cz/dmlcz/107563

Terms of use:

© Masaryk University, 1996

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ON PACKING OF SQUARES INTO A RECTANGLE

PAVEL NOVOTNÝ

Abstract

It is proved in this paper that any system of squares with total area 1 may be packed into a rectangle whose area is less then 1.53.

The following problem is formulated in [7]: Determine the smallest number S such that any system of squares with total area 1 may be (parallelly) packed into a rectangle of area S.

This problem was posed by L. Moser [4]. $S \geq \sqrt{ } \dot{=} 1.207$ follows from considering two squares of sides x and y, where $x>y, x+y=1$ and $x(x+y)$ is maximal. Novotny [8] proved that any system of three squares with total area 1 may be packed into a rectangle of area 1.227759 (this area is necessary for packing of three squares with sides $0.7297177,0.5588698$ and 0.3939246). The four squares with sides $x=\sqrt{-}, x=x=x=\sqrt{-}$ show that $S \geq \underline{\sqrt{V}}>1.244$.

Moon and Moser [3] found first results for the upper bound. They proved that (1) it is possible to pack any system of squares with sides $x \geq x \geq x \geq \ldots$
and with total area 1 into a square of side $a=x+\sqrt{1-x}$.
A consequence of this is that any system of squares with total area 1 may be packed into a square of area 2.

Meir and Moser [2] extended the result (1) and they proved that
(2) any system of squares with total area V can be packed into a rectangle of size $a \times a$ if $a>x, a>x$ and $x+(a-x)(a-x) \geq V$.

Some further results for the upper bound were published by Kleitman and Krieger [1]: Any system of squares with total area 1 can be packed into a rectangle of size $\sqrt{2} \times \sqrt{-}$; its area is $\sqrt{-} \dot{=} 1.633$. It follows from this result that
(3) any system of squares with total area V can be packed into a rectangle with sides $\sqrt{2 V}$ and $\sqrt{\underline{V}}$.

[^0]The following theorem improves the upper estimate for S.

Theorem. Any system of squares with total area 1 may be packed into a rectangle whose area is less than 1.53.

Proof. We denote the squares Q, Q, Q, \ldots and their sides $x \geq x \geq x \geq \cdots$. We shall pack the squares in the dependence upon x, x as it follows:
I. Let $x \geq \sqrt{-}$. By (3) we can pack the squares Q, Q, \ldots into a rectangle P with sides $\sqrt{2(1-x)}, \sqrt{-x_{1}^{2}}$ and the whole system can be packed into a rectangle R with sides x and $x+\sqrt{2(1-x)}$ (Fig.1). The area of R is less than 1.53 .

Fig. 1

Fig. 2
II. Let $0.645 \leq x \leq \sqrt{-}$. We pack the squares Q, Q, \ldots as in I and all squares can be packed into a rectangle R with sides $\sqrt{\frac{-x_{1}^{2}}{}}$ and $x+\sqrt{2(1-x)}$ (Fig.2). The area of R is less than 1.53 for every $x \in\langle 0.645, \sqrt{4 / 7}\rangle$.
III. Let $x \leq 0.27$. By (1) the squares can be packed into a square R of side $x+\sqrt{1-x}$; its area $1+2 x \sqrt{1-x}<1.53$ for every $x \leq 0.27$.

It remains to investigate the domain

$$
M=\{[x, x] ; 0.27 \leq x \leq 0.645,0<x \leq x\}
$$

IV. By (3) we can pack the squares Q, Q, \ldots into a rectangle P with sides $\sqrt{2(1-x-x)}$ and $\sqrt{\frac{-x_{1}^{2}-x_{2}^{2}}{} \text {. All squares can be packed into a rectangle } R}$ by Fig. 3 if $x+x \geq \sqrt{2(1-x-x)}$, i.e. $3 x+2 x x+3 x \geq 2$, or by Fig. 4 if $x+x \leq \sqrt{2(1-x-x)}$.

The area of R from Fig. 3 is

$$
f(x, x)=(x+x)\left(x+\frac{2}{\sqrt{3}} \sqrt{1-x-x}\right) .
$$

We have
$\frac{\partial f}{\partial x}=\frac{1}{\sqrt{3(1-x-x)}}(2-4 x-2 x-2 x x+(2 x+x) \sqrt{3(1-x-x)})$.
If we denote $u(x, x)=2-4 x-2 x-2 x x+(2 x+x) \sqrt{3(1-x-x)}$, then evidently $\frac{\partial u}{\partial x_{1}}<0, \frac{\partial u}{\partial x_{2}}<0$ in M (Fig. 11). Hence
$u(x, x) \geq u(0.645,0.645)>0, \frac{\partial f_{1}}{\partial x_{1}}>0$, thus $f(x, x) \leq f(0.645, x)$ for $[x, x] \in M$. We verify easily that $f(0.645, x)<1.53$ for every $x \leq 0.645$.

Q_{2}	
	\boldsymbol{P}
\boldsymbol{Q}_{1}	

Fig. 3

Fig. 4

The area of R from Fig. 4 is

$$
\begin{gathered}
f(x, x)=\left(x+\frac{2}{\sqrt{3}} \sqrt{1-x-x}\right) \sqrt{2(1-x-x)} \\
\frac{\partial f}{\partial x}=\frac{\sqrt{2}}{\sqrt{1-x-x}}\left(1-2 x-x-\frac{4 x}{\sqrt{3}} \sqrt{1-x-x}\right)<0
\end{gathered}
$$

for $[x, x] \in M$ (Fig.11). Evidently $\frac{\partial f_{2}}{\partial x_{2}}<0$, too, and since $f\left(Z_{i}\right)<1.53$ for $i \in\{1,2,3,4,5\}$, we have $f(x, x)<1.53$ for every $[x, x] \in M$.
V. We pack the squares Q, Q, \ldots as in IV. All squares can be packed into a rectangle R by Fig. 5 if

$$
x+x \geq \sqrt{\frac{4(1-x-x)}{3}}, \text { i.e. } 7 x+6 x x+7 x \geq 4
$$

or by Fig. 6 if

$$
x+x \leq \sqrt{\frac{4(1-x-x)}{3}}
$$

The area of R from Fig. 5 is

$$
f(x, x)=(x+x)(x+\sqrt{2(1-x-x)})
$$

Since $\frac{\partial f_{3}}{\partial x_{1}}>0, \frac{\partial f_{3}}{\partial x_{2}}>0$ in M (Fig. 11) and $f\left(Z_{i}\right)<1.53$ for $i \in\{6,7,8,9\}$, $f(x, x)<1.53$ is fulfilled for every $[x, x] \in M$.

Fig. 5

Fig. 6

The area of R from Fig. 6 is

$$
f(x, x)=(x+\sqrt{2(1-x-x)}) \frac{2}{\sqrt{3}} \sqrt{1-x-x} .
$$

Since $\frac{\partial f_{4}}{\partial x_{1}}<0, \frac{\partial f_{4}}{\partial x_{2}}<0$ in M (Fig. 11) and $f\left(Z_{i}\right)<1.53$ for $i \in\{10,11, \ldots, 14\}$, we have $f(x, x)<1.53$ for every $[x, x] \in M$.
VI. Let $2 x \leq x$. By (2) we can pack the squares Q, Q, \ldots into a rectangle P with sides a and $x+x$ if $x+(a-x)(x+x-x)=1-x-x-x$ $(\geq 1-x-x-x)$. It is valid for

$$
a=\frac{1-x-x-3 x+x x+x x}{x+x-x} .
$$

All squares can be packed into a rectangle R by Fig. 7. Its area is

$$
f(x, x, x)=(x+x)(x+a)=\frac{(x+x)(1-x-3 x+x x+x x)}{x+x-x} .
$$

We have

$$
\frac{\partial f}{\partial x}=\frac{(x+x)(1+2 x x+3 x-6 x x-6 x x)}{(x+x-x)} .
$$

If we denote $v=1+2 x x+3 x-6 x x-6 x x$, then $\frac{\partial v}{\partial x_{4}}<0$, thus $v(x, x, x) \geq v(x, x, x)=1-4 x x-3 x>0$ for $[x, x] \in M$ (Fig. 11). Hence $\frac{\partial f_{5}}{\partial x_{4}}>\overline{0}$ and

$$
f(x, x, x) \leq f(x, x, x)=\frac{(x+x)(1-3 x+x x)}{x}=g(x, x) .
$$

Since

$$
\begin{gathered}
\frac{\partial g}{\partial x}=\frac{x(x+3 x-1)}{x}<0 \text { in } M, \\
g(x, x) \leq g(2 x, x)=\frac{3(1-x)}{2}<1.5,
\end{gathered}
$$

we have $f(x, x, x) \leq g(x, x)<1.5$ for every $[x, x] \in M, x \leq x$.

Fig. 7

Fig. 8
VII. Let $2 x \geq x$. We pack Q, Q, \ldots as in VI. All squares can be packed into a rectangle R by Fig. 8. The area of R is

$$
\begin{gathered}
f(x, x, x)=(x+x)(2 x+a)= \\
=\frac{(x+x)(1-x+x-3 x+x x+2 x x-x x)}{x+x-x} \\
\frac{\partial f}{\partial x}=\frac{(x+x)(1+2 x x+3 x-6 x x-6 x x)}{(x+x-x)} \geq \\
\geq \frac{(x+x)(1+2 x x+3 x-6 x x-6 x)}{(x+x-x)}>0
\end{gathered}
$$

for $[x, x] \in M$ (Fig. 11), $x \leq x$. Hence $f(x, x, x) \leq f(x, x, x)$. Denoting

$$
h(x, x)=f(x, x, x)=\frac{(x+x)(1-x-3 x+3 x x)}{x}
$$

we have

$$
\frac{\partial h}{\partial x}=2 x-2 x+\frac{x(3 x-1)}{x}<0, \frac{\partial h}{\partial x}=2 x+\frac{1-9 x}{x}>0
$$

in M. It follows from this that h is maximal in M at some from the points Z, Z. But $h(Z)<1.53, h(Z)<1.53$.
VIII. By (2) we can pack Q, Q, \ldots into a rectangle P with sides $x+x$ and a if $x+(a-x)(x+2 x-x)=1-x-x-x$, i.e.

$$
a=\frac{1-x-x-3 x+x x+2 x x}{x+2 x-x} .
$$

All squares can be packed into a rectangle R by Fig. 9. Its area is

$$
f(x, x, x)=\frac{(x+2 x)(1-x-3 x+2 x x+2 x x)}{x+2 x-x} .
$$

Since

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{(x+2 x)(1+4 x x+3 x+3 x-6 x x-12 x x)}{(x+2 x-x)} \geq \\
\geq \frac{(x+2 x)(1-2 x x-6 x)}{(x+2 x-x)}>0
\end{gathered}
$$

for $[x, x] \in M$ (Fig. 11), $x \leq x$, we have $f(x, x, x) \leq f(x, x, x)$. If we denote

$$
k(x, x)=f(x, x, x)=\frac{(x+2 x)(1-2 x+2 x x)}{x+x}
$$

then the system

$$
\frac{\partial k}{\partial x}=\frac{x(6 x+4 x x+2 x-1)}{(x+x)}=0
$$

$$
\frac{\partial k}{\partial x}=\frac{x+2 x+4 x x-10 x x-8 x}{(x+x)}=0
$$

has no solution in the interior of M. Therefore the function k has a maximum on the boundary of M. An easy calculation shows that this maximum is at the point $Z \quad$ (Fig. 11) and $k(Z \quad)<1.53$.

Further

$$
\begin{gathered}
\frac{\partial f}{\partial x}=\frac{2 x x+8 x x-4 x x x+8 x-3 x x-2 x x-x+3 x}{(x+2 x-x)} \geq \\
\geq \frac{9 x-x}{(x+2 x-x)}>0
\end{gathered}
$$

for $[x, x] \in M$ (Fig. 11), $x \leq x$. It means that $f(x, x, x) \leq f(0.42, x, x)$. If we denote $\varphi(x, x)=f(0.42, x, x)$, then

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x}=\frac{(0.42+2 x)(1+1.68 x+3 x+3 x-2.52 x-12 x x)}{(0.42+2 x-x)} \tag{4}
\end{equation*}
$$

For $w(x, x)=1+1.68 x+3 x+3 x-2.52 x-12 x x$ and for $x \geq 0.35$ we have $w(x, x) \leq w(x, 0.35)=3 x-2.52 x+0.4855<0$ for all $x \in\langle 0.34,0.39\rangle$. Similarly, if $x \leq 0.34$, then $w(x, x) \geq w(x, 0.34)=3 x-2.4 x+0.49>0$ for $x \in\langle 0.34,0.39\rangle$. In consequence of this the function φ has a maximum for $x \in\langle 0.34,0.35\rangle$. We shall estimate $\max _{T} \varphi(x, x)$ for $T=\langle 0.34,0.39\rangle \times$ $\times\langle 0.34,0,35\rangle$. It follows from $\frac{\partial w}{\partial x_{2}}<0, \frac{\partial w}{\partial x_{4}}<0$ that $-0.041=w(0.39,0.35) \leq$ $\leq w(x, x) \leq w(0.34,0.34)=0.0208$. Since

$$
\frac{0.42+2 x}{(0.42+2 x-x)} \leq \frac{0.42+0.78}{(0.42+0.33)}<2.2
$$

we have in regard of (4) $\left|\frac{\partial \varphi}{\partial x_{4}}\right|<0.1$ in T. Further

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x}=(0.148176+1.0584 x+0.84 x x-0.84 x-8 x+ \\
& \quad+14 x x-8 x x+6 x-2 x) /(0.42+2 x-x) .
\end{aligned}
$$

Since the function
$t(x, x)=0.148176+1.0584 x+0.84 x x-0.84 x-8 x+14 x x-8 x x+6 x-2 x$ satisfies $\frac{\partial t}{\partial x_{2}}>0, \frac{\partial t}{\partial x_{4}}<0$, we have $-0.01885=t(0.34,0.35) \leq t(x, x) \leq$ $\leq t(0.39,0.34)=0.019828$ and because of $1 /(0.42+2 x-x)<1.8$ we get $\left|\frac{\partial \varphi}{\partial x_{2}}\right|<0.04$ in T.

If $U \subset T$ is a square with side of length 0.01 , then for $Y, Y \in U$ the inequality

$$
\begin{equation*}
|\varphi(Y)-\varphi(Y)|<0.0014 \tag{5}
\end{equation*}
$$

is satisfied. Since the function φ gets values less than 1.527 at the points $[x, 0.34]$ for $x \in\{0.34,0.35,0.36,0.37,0.38\},(5)$ yields $\varphi(x, x)<1.53$ in T.

Fig. 9

Fig. 10
IX. Let $[x, x] \in M=\langle 0.42,0.50\rangle \times\langle 0.29,0.37\rangle, x+x \geq x$. By (2) we can pack Q, Q, \ldots into a rectangle P with sides a and $x+x+x$ if

$$
x+(a-x)(x+x+x-x)=1-x-x-x-x-x,
$$

i.e

$$
a=\frac{1-x-x-x-x-3 x+x(x+x+x)}{x+x+x-x}
$$

All squares can be packed into a rectangle R (Fig. 10) with sides $x+x+x$, $x+x+a$. Its area is $f(x, x, x, x, x)=(x+x+x)[(x+x)(x+x+$ $+x-x)+1-x-x-x-x-3 x+x(x+x+x)] /(x+x+x-x)$. Evidently $\frac{\partial f_{8}}{\partial x_{4}}>0$, hence

$$
\begin{gathered}
f(x, x, x, x, x) \leq f(x, x, x, x, x)=m(x, x, x, x)= \\
=\frac{(x+x+x)(x x+2 x x+x x+1-x-x-3 x+x x)}{x+x+x-x} .
\end{gathered}
$$

Because of $\frac{\partial m}{\partial x_{1}}=[x(2 x+x+2 x+x x+x x-1+3 x-2 x x-x x-$ $-x x)+(x+x-2 x)(x+x+x)(x+x+x-x)] /(x+x+x-x) \leq$

$$
\begin{gathered}
\leq \frac{x(2 \cdot 0.5+3 \cdot 0.37+0.37-1+3 x-1.74 x)-0.1 \cdot 0.71}{(x+x+x-x)}= \\
=\frac{3 x-1.74 x+0.2807 x-0.05041}{(x+x+x-x)}<0
\end{gathered}
$$

for $x \leq 0.37, m$ has a maximum in M for $x=0.42$. Similarly, $\frac{\partial m}{\partial x_{2}}=[(x+x+x)(x+2 x)(x+x+x-x)-x(x x+2 x x+x x+1-x-$ $-x-3 x+x x)] /(x+x+x-x) \geq[(0.71+x)(0.42+2 x) \cdot 0.71-$ $-x(0.50 \cdot 0.37+0.74 x+0.50 x+1-0.42-x+0.50 x)] /(x+x+x-x)=$

$$
=\frac{0.211722+0.2978 x-0.32 x+x}{(x+x+x-x)}>0
$$

and hence m has a maximum for $x=0.37$.
Further, on the assumptions $x=0.42, x=0.37$, using $x \geq x$,
$\frac{\partial m}{\partial x} \geq \frac{0.723956-0.3318 x-1.58 x-0.979 x-1.16 x x+x x+3 x-0.42 x}{(x+x+x-x)}$.
Since the function $s(x, x)=0.723956-0.3318 x-1.58 x-0.979 x-$ $-1.16 x x+x x+3 x-0.42 x$ satisfies $\frac{\partial s}{\partial x_{3}}<0, \frac{\partial s}{\partial x_{6}}<0$, we have $s(x, x) \geq$ $\geq s(0.37,0.37)>0$, i.e. $\frac{\partial m}{\partial x_{3}}>0$ and hence m has a maximum for $x=0.37$. We find easily that m is maximal if $x=-\sqrt{\square}$ and that the maximal value of f in M is

$$
f\left(0.42,0.37,0.37,0.37, \frac{3.48-\sqrt{6.8349}}{3}\right)<1.53 .
$$

$$
\begin{array}{ll}
Z=[0.47,0.47] & Z=[0.51,0.42] \\
Z=[0.55,0.35] & Z=[0.59,0.31] \\
Z=[0.62,0.28] & Z=[0.51,0.47] \\
Z=[0.55,0.42] & Z=[0.59,0.35] \\
Z=[0.62,0.31] & Z=[0.39,0.39] \\
Z=[0.42,0.37] & Z=[0.50,0.32] \\
Z=[0.54,0.31] & Z=[0.56,0.28] \\
Z=[0.42,0.34] & Z=[0.46,0.29]
\end{array}
$$

Fig. 11
X. Let $[x, x] \in M, x+x \leq x$. As in VIII, the squares can be packed into a rectangle R with area

$$
f(x, x, x)=\frac{(x+2 x)(1-x-3 x+2 x x+2 x x)}{x+2 x-x} .
$$

Since

$$
\frac{\partial f}{\partial x} \geq \frac{2 x x+4 x x+3 x-x}{(x+2 x-x)}>0
$$

$$
\begin{gathered}
\frac{\partial f}{\partial x} \geq(x+2 x)[1+4 x x+3 x+3(x-x)-6 x(x-x)- \\
-12 x(x-x)] /(x+2 x-x)=\frac{(x+2 x)(1-3 x+18 x-8 x x)}{(x+2 x-x)}>0
\end{gathered}
$$

for $[x, x] \in M, f$ is maximal for $x=0.5, x=0.5-x$. It is easy to show that $f(0.5, x, 0.5-x) \leq f(0.5,0.29,0.21)<1.5$ for $x \in\langle 0.29,0.37\rangle$.

Since the domains M, \ldots, M cover M, the proof is completed.

References

[1] Kleitman, D., Krieger, M., An optimal bound for two dimensional bin packing,

[^0]: 1991 Mathematics Subject Classification: 52C15.
 Key words and phrases: packing of squares.
 Received February 22, 1995.

