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AN OSCILLATORY HALF-LINEAR DIFFERENTIAL EQUATION

ArPAD ELBERT, KUSANO TAKASI AND TOMOYUKI TANIGAWA

ABSTRACT. A second-order half-linear ordinary differential equation of the
type
(1) (W17 ') + ag()ly|* "ty =0

is considered on an unbounded interval. A simple oscillation condition for (1)
is given in such a way that an explicit asymptotic formula for the distribution
of zeros of its solutions can also be established.

We consider the second-order half-linear differential equation

(1) (' 1* ") + ag(t)|ly|* 'y =0, t>a,

where a > 0 is a constant and ¢ : [a,00) — (0,00) is a continuously differentiable
function. Our attention is directed to the case where all solutions of (1) are
oscillatory. In this case the equation (1) is said to be oscillatory.

Prototypes of oscillatory equations of the type (1) are the generalized harmonic
oscillator

(2) (Iy'1*"y") +alyl*~'y =0
and the generalized Euler equation
(3) (|yl|a71y1)l + /\atfa71|y|a71y =0

with A > a®/(a + 1)2*1
From among various oscillation criteria for (1) we choose the one due to Elbert
[2; Theorem 7]:
/00 t**q(t) — #
t

(4)

which gives rise to a simpler condition

dt = o0,

aDt

e 3 a+1
(5) htrgg)lft q(t) > at )
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guaranteeing the oscillation of (1). See also Li and Yeh [4].
The purpose of this paper is to give an oscillation criterion for (1) under which
one can derive an asymptotic formula for the distribution of zeros of its solutions.

Theorem 1. The equation (1) is oscillatory if

(6) Jim ¢ (Hlg()] "= = 0.
Proof. Set -
Q) = q' (D] T+
and define
(7) Q"(t) =sup{|Q(s)|: s>t} t>a.

Then Q*(t) is nonincreasing on [a, 00) and satisfies tli)m Q" (t) = 0 by (6). We have
o0

t+h

1 1 1 |hl
14a — I4a | = <
at+ W) — 0] | = | [ Qeds| < 107,
which implies that
1 1
limsup(t + h) 'q(t + h)]" ™= < Q* (), t>a

h—00 1+«

It follows that

or equivalently

. a+1 _
(8) tlirglot q(t) = 0.
Thus (5) holds, and so (1) is oscillatory. This completes the proof.
In order to study the distribution of zeros of the solutions of (1) we need the
generalized sine function S(y) introduced by Elbert [1]. Let S(¢) denote the
solution of the generalized harmonic oscillator (2) now written as

(1S1*7'8) + alS|*7'S =0

satisfying the initial condition: S(0) = 0, S(0) = 1, where a dot means differenti-
ation with respect to . It can be shown ([1]) that

9) S(p +2ma) = S(p)
and
(10) 1S(@)|*H +1S(@)|*t =1

for all ¢ € R, where the constant 7, is given by

2 s
11 o= in| ——) .
(11) i a+1/sm<a+1>
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The main result of this paper will be stated and proved after the following
simple lemma.

Lemma. If (6) holds, then

(12) [ i = .

Proof of the Lemma. This follows immediately from relation (5).

Theorem 2. Suppose that (6) holds. Let Ny;T| denote the number of zeros of
a solution y(t) of (1) in the interval [a,T]. Then, we have

(13) Nly;T] = Ply; T] + Rly; T},

where Ply;T) is the principal term given by
I .
(14) Pt = [ la)ds

and R[y; T] is the remainder which is of smaller order than P[y;T] as T — oo and
satisfies

| LTl
(15) Ry T) < e [ 2 8las+ o)

Proof. Since by the Sturmian comparison theorem due to Elbert [1] N{y;;T] and
Nlyz; T] differ by one unit at most for any solutions y;(¢) and y»(t) of (1), we
may restrict our attention to the solution yo(t) of (1) determined by the initial
condition: yo(a) =0, yy(a) = 1; yo(t) is oscillatory by Theorem 1.

We introduce the polar coordinates p(t), ¢(t) for yo(t) by setting

A =yo(t) = p(1)S(p(t)),

Yo(t) = p()S(p(1)).

It can be shown without difficulty that p(t) and p(t) are continuously differentiable
on [a,00) and satisfy the differential equations

(16)

p 1+aqg(t)

LA B OIFTSTIES
17)

We use the notation
9(p) = S@)IS(P)|*'S(w),
in terms of which the second equation in (17) is written as

L ()

(18) ¢ = O/ + o

g()-
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From the first equation in (16) we see that yo(t) = 0 if and only if () =
JTa, j € Z. We may suppose that ¢(a) = 0. In view of (6) there is no loss of
generality in assuming that

Q") <(1+4+a) fort>a,
where Q*(t) is defined by (7). Since
(19) l9(p)] < 1 for all o,

we have

1
1+«

1 ¢
1+ aqt)

a1 + go(®) > [q] 7= (1 - Q*(t)) >0,

which implies that ¢'(t) > 0, so that ¢(t) is increasing for ¢ > a.
We now integrate (18) over [a,T] , obtaining

T (s
(20) / ]1+ads+1ja | atetenas
a(T).

From (19) it is clear that

L [T 1d0)
21 G(T)| < ———ds.
(1) G < s [ s
Noting that the number of zeros of yo(t) in [a,T] is given by
p(T)

[e%

N[yo;T]Z[ ]4‘1;

where [u] denotes the greatest integer not exceeding u, we see from (20) and (21)
that the conclusion of the theorem holds with the choice

T

T
PlooiT) = —F(T) = —— [ la(o)) ™= s

That the term R[yo;T] = Nlyo;T] — Plyo; T] is of smaller order than Plyo;T]
follows from the observation that

T IS T .
/Mds:/ 1Q(s)[q(s)] ™ dis

a(s)
/ Q" ]1+ads—o</aT[q(s)]1J+ads> o

This completes the proof.

Remark 1. Theorems 1 and 2 generalize a result for the linear equation y” +
q(t)y = 0 found in Hille’s book [3; Theorem 9.5.1].



AN OSCILLATORY HALF-LINEAR DIFFERENTIAL EQUATION 359

Example 1. Consider the equation
(22) (Iy'1°"'y") +at’ly|*~ty =0, t > 1,

where 3 is a constant with 1 + a + 3 > 0. The function q(t) = t% satisfies

T 1 1+« 1+ats
Hads = —— (7T -1
/1 la()] 5 1+O¢+ﬂ( )’
T 1
[ e
1als)
and so we conclude from Theorem 2 that the quantity P[y;T] can be taken to be
1+« Ita+s
P ;T = Tfa
by T (1+a+f)m
and (13) holds with this Ply;T| and R[y; T satisfying
Rly;T) = __18 logT + O(1).
(1+ a)m,

Remark 2. Theorems 1 and 2 cannot be applied to the generalized Euler equation
(3), since the function ¢(t) = Aat=*~! does not satisfy (6). A calculation of P[y; T
and R[y;T] for (3) shows that both of them are of the same logarithmic order as
T — oo.

Remark 3. In [5], M. Piros has investigated a similar problem under a more
stringent restriction on ¢(t), namely he supposed that ¢”(t) is a concave function
of ¢t for some v > 0, fixed. Then he proved that the error term R[y;T] in (13) is
O(1). Exactly, the differential equation (22) with 8 = 1/v plays the exceptional
role in determining the precise value of R[y; T].

We conclude this paper with a remark that Theorems 1 and 2 for (1) can be
generalized to the equation

(23) (p®)|y'1*'y") + agq(t)|y|* 'y =0, t > aq,

where a and ¢(t) are as in (1) and p : [a,00) — (0,00) is a continuously differen-
tiable function such that

0 dt
(24) / oy >

Put P(t) = fat W and perform the change of variables (¢,y) — (7,n)

defined by 7 = P(t), n(7) = y(t). The equation (23) then reduces to
(25) (191*=)" + aQ(m)n|*~'n =0, 7 >0,

where Q(7) = (p(t))= ¢(t) and - = d/dr. Since (25) is of the form (1), we can apply
Theorems 1 and 2 to (25). Translating the results thus obtained in the original
variables, we have the corresponding theorems for (23).
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Theorem 3. The equation (23) is oscillatory if

(26) lim (p(t))

t—00

R~

2+4a
T

((p(1) = ()" ((p(1)) = q(t)) " TF= = 0.

Theorem 4. Suppose that (26) holds. Let N]y;T] be the number of zeros of a
solution y(t) of (23) in [a,T]. Then,

(27) N[y;T] = Ply; T] + Rly; T},
where Ply;T) is the principal term given by
LT q(S)) T
28 Ply;T) = —/ <— ds
(28) wr=— [ (45
and R[y;T] is of smaller order than Ply;T]| as T — oo and satisfies
1 T 1((e(s))*a(s))']
29 Rly;T|| < / ds +O(1).
> IS G J w7 @O

The above theorems are illustrated by the following examples.

Example 2. Consider the equation

(30) @1y + at®ly|* Ty =0, £ > 1,
where 3 and 7 are constants such that

(31) v<a andy<l4+a+p.

The functions p(t) = t7 and q(t) = t% satisfy (24) and

ltat+f—ry
@ -

W) ()2 a0) (GeEan) - (2 +p) ¢

Hence (30) is oscillatory by Theorem 3. Theorem 4 applied to (30) shows that
(27) holds with P[y; T] and R[y;T] satisfying

1+« l+atf—r
Ply;T] = T~ T+
lv; 7] I4+a+8—v)7m
and
|Rly; T]| < wlogT +0(1)as T — o0
T (14 a)m, ’
respectively.

Example 3. Consider the partial differential equation
(32) div(|Du|™ 2Du) + (m — 1)|z|"|u|™ ?u =0, z € E,

where m > 1 and n are constants, Du = (Qu/0z1,--- ,0u/0zy), |z| is the Eu-
clidean length of z € RN, N > 2, and E is an exterior domain in RV. We assume
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that E is the complement of the unit ball. Our attention will be restricted to
radial solutions of (32), that is, those solutions of (32) which depend only on |z|.
It is easy to see that a radial function v = y(|z|) is a solution of (32) if and only
if y(t) satisfies the ordinary differential equation

(33) E Ty ™2y + (m = DT Py =0, £ > 1,

which is a special case of (30) witha =m -1, =N+n—-1and y=N — 1.
The condition (31) for (33) reads:

(34) N <m and m+n >0.

Applying the results of Example 2 to (33) and noting that a zero to of y(t) corre-
sponds to a spherical node |z| = to of u = y(]z|), we have the following statements:

(i) If (34) holds, then all radial solutions of (32) are oscillatory.

(ii) Suppose that (34) holds. Let u(z) be a radial solution of (32) defined in
E and let Nu;T] denote the number of spherical nodes of u(z) contained in the
annular domain {1 < |z| < T}. Then, N[u;T] is the sum of the principal part
Plu; T] and the remainder R[u;T] satisfying, respectively,

m m+n

and
m(N —1)+n(m—1)

m(m — 1),

|Ru; T]| < logT +0(1) as T — oo.
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