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Abstract. This contribution is devoted to the problem of asymptotic
behaviour of solutions of scalar linear differential equation with variable
bounded delay of the form

ẋ(t) = −c(t)x(t− τ (t)) (∗)

with positive function c(t). Results concerning the structure of its solutions
are obtained with the aid of properties of solutions of auxiliary homoge-
neous equation

ẏ(t) = β(t)[y(t) − y(t − τ (t))]

where the function β(t) is positive. A result concerning the behaviour of
solutions of Eq. (*) in critical case is given and, moreover, an analogy with
behaviour of solutions of the second order ordinary differential equation

x
′′(t) + a(t)x(t) = 0

for positive function a(t) in critical case is considered.
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1 Introduction

This contribution is devoted to the problem of asymptotic behaviour of solutions
of scalar linear differential equation with variable bounded delay of the form

ẋ(t) = −c(t)x(t− τ(t)) (1)

with positive function c(t). Results concerning the structure of its solutions are
obtained with the aid of properties of solutions of auxiliary homogeneous equation

ẏ(t) = β(t)[y(t) − y(t− τ(t))] (2)

where the function β(t) is positive. It is known that, supposing existence of a pos-
itive solution x = ω(t) of Eq. (1), the substitution y(t) = x(t)/ω(t) gives an
equation of the type (2) where β(t) ≡ c(t)ω(t − τ(t))/ω(t). On the other hand
equation of the type (1) can be obtained from Eq. (2) by means of transforma-

tion y(t) = x(t) exp
(∫ t

t0
β(s) ds

)

. This means that both equations (1) and (2) are

equivalent in this sense. Eq. (2) has very suitable form for investigations since an
obvious property (see Lemma 1 below), that any monotone initial function gener-
ates monotone solution, implies many further properties concerning behaviour of
all solutions.

A result concerning the behaviour of solutions of Eq. (1) in critical case (when
τ(t) ≡ τ = const and limt→∞ c(t) = 1/τe) is given and, moreover, an analogy with
behaviour of solutions of the second order ordinary differential equation

x′′(t) + a(t)x(t) = 0 (3)

when positive continuous function a(t) satisfies the condition limt→∞ t2a(t) = 1/4
is showed. Comparisons with known results are given.

2 Convergence of solutions of Eq. (2)

Let us consider Eq. (2)

ẏ(t) = β(t)[y(t) − y(t− τ(t))]

where τ ∈ C(I−1,R
+), I−1 = [t−1,∞), t−1 ∈ R, R

+ = (0,∞), t − τ(t) is an
increasing function on I−1, τ(t) ≤ r, t ∈ I−1, 0 < r = const and β ∈ C(I−1,R

+).
Let us denote I = [t0,∞), I1 = [t1,∞) where t0 = t−1 + τ(t0) and t1 = t0 + τ(t1).
The symbol “ ˙ ” represents the right-hand derivative.

A function y is called a solution of Eq. (2) corresponding to initial point t∗ ∈ I
if y is defined and is continuous on [t∗ − τ(t∗),∞), differentiable on [t∗,∞) and
satisfies (2) for t ≥ t∗. By a solution of (2) we mean a solution corresponding to
some initial point t∗ ∈ I. We denote y(t∗, ϕ)(t) a solution of Eq. (2) corresponding
to initial point t∗ ∈ I which is generated by continuous initial function ϕ : [t∗ −
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τ(t∗), t∗] 7→ R. In the case of linear Eq. (2) solution y(t∗, ϕ)(t) is unique on its
maximal existence interval Dt∗,ϕ = [t∗,∞) ([20]).

By analogy we define these notions for Eq. (1) or for other classes of differential
equations with delay. If in the text of the paper an initial point is not indicated,
we suppose it equals t0.

We say that a solution of Eq. (2) corresponding to initial point t∗ is convergent

or asymptotically convergent if it has a finite limit at +∞.
Let us start with the following trivial lemma:

Lemma 1. (J. Dibĺık [8]) Let the initial function ϕ(t) be defined and continuous

on [t−1, t0] and

ϕ(t) < ϕ(t0) (4)

or

ϕ(t) > ϕ(t0) , (5)

where t ∈ [t−1, t0). Then the corresponding solution y(t, ϕ) of Eq. (2) is on I
increasing in the case of inequality (4) or decreasing in the case of inequality (5).

This lemma establishes an obvious fact concerning monotony of solutions of
Eq. (2). Immediately there arise the questions concerning the conditions for con-
vergence and divergence of such solutions. In this section and in the next one we
shall try some of these questions answered.

Theorem 2. (Convergence Criterion) (J. Dibĺık [6]) For the convergence of

all solutions of Eq. (2), corresponding to initial point t0, a necessary and suffi-

cient condition is that there exists function k ∈ C(I−1,R
+) satisfying the integral

inequality

1 + k(t) ≥ exp

[
∫ t

t−τ(t)

β(s)k(s) ds

]

(6)

on interval I.

The following corollary gives known sufficient condition for convergence of
solutions of Eq. (2) which can be obtained as a consequence of Theorem 2 if
k(t) ≡ k = const where k is a sufficiently small positive number.

Corollary 3. All solutions of Eq. (2) are convergent if

lim sup
t→∞

∫ t

t−τ(t)

β(s) ds < 1.

As further consequences we can obtain more accurate sufficient conditions for
convergence if τ(t) ≡ τ and k(t) ≡ (t lnε t)−1 where ε > 1 or k(t) ≡ εt−1(1/τ −
L/t)−1 where ε is a small positive constant. These sufficient conditions were at
first obtained by F.V. Atkinson and J. R. Haddock [2].
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Corollary 4. All solutions of Eq. (2) are convergent if

∫ t+τ

t

β(s) ds ≤ 1 − τ

t
− L

t ln t

for some L > τ and all sufficiently large t or if

β(t) ≤ 1

τ
− L

t

where L > 1/2 and t is sufficiently large.

3 Divergence of solutions of Eq. (2)

It is easy to see that the nonexistence of the function k ∈ C(I,R+) in Theorem 2
implies existence of divergent solutions of Eq. (2) and vice versa.

Theorem 5. (Divergence Criterion) (J. Dibĺık [6]) Sufficient and necessa-

ry condition for existence of solution of Eq. (2), corresponding to initial point t0,
with property y(∞) = ∞ is nonexistence of function k ∈ C(I−1,R

+) satisfying the

integral inequality (6) on interval I.

A consequence of this criterion (if an additional property of k(t) in (6) is taken
into account (see [6]) ) is:

Corollary 6. (J. Dibĺık [6]) For existence of solution of Eq. (2), corresponding

to initial point t0, with property y(∞) = ∞ it is sufficient that

∫ t

t−τ(t)

β(s) ds ≥ 1, t ∈ I. (7)

Consider Eq. (2) where τ(t) ≡ 1. Such type of equation was considered in
the paper by S.N. Zhang [41] with connection of investigation of structure and
asymptotic behaviour of solutions in divergent case (see an unpublished manuscript
by F.V. Atkinson and S.N. Zhang of the identical title too). His main condi-
tions (except condition β(t) > 0) are:

∫ t+1

t

β(s) ds ≥ 1,

∫ t+1

t

β(s) ds 6≡ 1, t > t0. (8)

As we can see, these conditions are a special case of (7).

A more detailed sufficient condition for divergence which is sometimes suitable
in the case when limt→∞ β(t)τ(t) = 1 is given in the next theorem. (This case can
be called critical in view of Corollary 3 and Corollary 6.)
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Theorem 7. (J. Dibĺık [8]) Eq. (2) has on I−1 a solution y = y(t) with property

y(∞) = ∞ if

1

τ(t)β(t)
− 1 ≤

∫ t

t−τ(t)

[
1

τ(s)
− β(s)

]

ds, t ∈ I

and, moreover,
∫ +∞

[
1

τ(s)
− β(s)

]

ds = +∞.

4 Structure of solutions of Eq. (2) in convergent case

In the convergent case each solution has a finite limit. In this case we can give the
estimate of the rate of convergence to this limit.

Theorem 8. (J. Dibĺık [6]) Let there be a function k ∈ C(I−1,R
+) which sat-

isfies the integral inequality (6) on I. Then for each solution y(t) of Eq. (2), cor-

responding to initial point t0, representation

y(t) = K + ζ(t) (9)

holds on I−1, where K = y(∞), and ζ(t) is a vanishing function. Moreover,

|ζ(t)| < ψ(t), t ∈ I1,

where ψ(∞) = 0,

ψ(t) ≡ δe
−

t∫

t0−r

β(s)k(s) ds

− δe
−

∞∫

t0−r

β(s)k(s) ds

and δ is a fixed positive number such that

δ > M

{

min
[t0,t0+r]

[

β(t)k(t)e
−

∫
t

t0−r
β(s)k(s) ds

]}−1

,

where

M = max
[t0,t0+r]

|ẏ(t)|.

On the other hand, to each K ∈ R there corresponds a solution y(t) of Eq. (2) and

a function of the type ζ(t) such that representation (9) holds and for K = 0 there

is an indicated representation with positive function ζ(t).
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5 Structure of solutions of Eq. (2) in divergent case

Existence of a solution, tending to ∞, plays the main role in the characterization
of the family of solutions of Eq. (2) in nonconvergent case. Let us state the
following result concerning the structure formula for the solutions of Eq. (2).
The unique assumption of it is the existence of a solution y(t) = Y (t) of Eq. (2)
with property Y (∞) = ∞. This result generalizes the result by S.N. Zhang [41]
(which is contained in the above mentioned manuscript of F.V. Atkinson and
S.N. Zhang too) where the main assumptions are: β(t) > 0 and (8).

Theorem 9. (J. Dibĺık [8]) Let Y (t) be a solution of Eq. (2) on I−1 with prop-

erty Y (∞) = ∞. Then for each solution y(t) of Eq. (2), corresponding to initial

point t0, representation

y(t) = K · Y (t) + δ(t) (10)

holds on I−1, where K ∈ R is a constant, dependent on y(t), and δ(t) is a bounded

solution of (2) on I−1 dependent on y(t). This representation is unique (with respect

to K and δ(t)). On the other hand, to each K ∈ R there corresponds a solution

y(t) of Eq. (2) and a function of the type δ(t) such that representation (10) holds

and for any real K,L, M the expression K · Y (t) + L+Mδ(t) gives a solution of

Eq. (2).

Remark 10. In the paper by J. Dibĺık [8] it is proved that (under certain condi-
tions) bounded nonconstant and nonmonotone solutions of Eq. (2) exist.

6 Concluding remarks concerning the solutions of Eq. (2)

As an analysis of properties of solutions of Eq. (2) shows, the affirmations of the
following theorems are equivalent. The indicated conjectures are included as some
open problems.

Theorem 11. (Convergent case) The following assertions are equivalent:

1) All solutions of Eq. (2) are convergent.

2) There is a function k ∈ C(I−1,R
+) which satisfies the integral inequality (6)

on I.
3) There is a convergent nonconstant and monotone solution of Eq. (2).
4) Solution of Eq. (2) with infinite limit does not exist.

5) (Conjecture) There is a convergent nonconstant and nonmonotone solution of

Eq. (2).
6) (Conjecture) Divergent bounded solution of Eq. (2) does not exist.

Theorem 12. (Divergent case) The following assertions are equivalent:

1) There is a solution of Eq. (2) with an infinite limit.

2) A function k ∈ C(I−1,R
+), which satisfies the integral inequality (6) on inter-

val I, does not exist.
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3) Each nonconstant monotone solution of Eq. (2) has infinite limit.

4) (Conjecture) A convergent nonconstant solution of Eq. (2) does not exist.

5) (Conjecture) There is divergent bounded solution of Eq. (2).

7 Properties of solutions of Eq. (1)

Let us suppose that c ∈ C(I−1,R
+). All assumptions with respect to the delay

τ(t) remain the same as above.
As usual, a solution of Eq. (1) is called oscillatory if it has arbitrary large zeros.

Otherwise it is called non-oscillatory (positive or negative).
At first we prove theorem concerning existence of positive solutions of Eq. (1)

ẋ(t) = −c(t)x(t− τ(t))

with nonzero limit. In this theorem we shall suppose
∫
∞

c(s) ds <∞ and the point
t0 so large that

∫
∞

t0−r
c(s) ds < 1.

Theorem 13. Eq. (1) has a positive solution with nonzero limit if and only if

∫
∞

c(t) dt <∞. (11)

Proof. Without loss of generality we shall suppose that
∫
∞

t0−r c(t) dt = m < 1. Let

us define ω(t), where t ∈ I, as the set of functions λ ∈ C([t− r, t],R) such that

ϕ1(t+ θ) < λ(t+ θ) < ϕ2(t+ θ)

for all θ ∈ [−r, 0) where

ϕ1(t) ≡ 1 + δ1

∫
∞

t

c(s) ds, ϕ2(t) ≡ 1 + δ2

∫
∞

t

c(s) ds, t ∈ I−1,

δ1, δ2 = const, 0 < δ1 < 1; 1/(1 −m) < δ2 and either λ(t) = ϕ1(t) or λ(t) = ϕ2(t).
Let us define function

W (t, x) ≡ (x − ϕ1(t)) · (x− ϕ2(t)), t ∈ I−1

and find the sign of derivative of this function along the solutions of Eq. (1) on
the set ω(t) for each t ∈ I. We obtain

dW (t, x)

dt
=

−(c(t)x(t − τ(t)) + ϕ′

1(t)) · (x− ϕ2(t)) − (x− ϕ1(t)) · (c(t)x(t − τ(t)) + ϕ′

2(t)).

For each λ ∈ ω, such that λ(t) = ϕ1(t), t ∈ I, we have

dW (t, x)

dt

∣
∣
∣
∣
x=λ

= −(c(t)λ(t − τ(t)) + ϕ′

1(t))(ϕ1(t) − ϕ2(t)) >
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> (δ2 − δ1)c(t)

(

1 − δ1 + δ1

∫
∞

t−τ(t)

c(s) ds

)
∫

∞

t

c(s) ds > 0

and for each λ ∈ ω, such that λ(t) = ϕ2(t), t ∈ I, we get

dW (t, x)

dt

∣
∣
∣
∣
x=λ

= −(ϕ2(t) − ϕ1(t))(c(t)λ(t − τ(t)) + ϕ′

2(t)) >

> (δ2 − δ1)c(t)

(

δ2 − 1 − δ2

∫
∞

t−τ(t)

c(s) ds

)
∫

∞

t

c(s) ds > 0.

Therefore in both cases, for t ∈ I, the following is true:

dW (t, x)

dt

∣
∣
∣
∣
x=λ

> 0.

Now, by the topological method of T. Ważewski (see, for instance, [38]) in
the adaptation which is suitable for the retarded functional differential equations
(given by K.P. Rybakowski [36]), there is a solution of Eq. (1) x = x̃(t), t ∈ I
such that x̃(t) ∈ ω(t) for each t ∈ I. From the form of the set ω(t) it fol-
lows that ϕ1(t) < x̃(t) < ϕ2(t) on I−1 and, moreover, limt→∞ x̃(t) = 1 since
limt→∞ ϕ1(t) = limt→∞ ϕ2(t) = 1. The details of the application of the topologi-
cal principle are omitted because they can be found e.g. in [8,9,10], [36].

Now, let us suppose that
∫
∞

c(t) dt = ∞. If there is a positive solution x =
x̃(t), t ∈ I−1, of Eq. (1) with nonzero limit x̃(∞) = L > 0, then integration of this
equation with limits t0 and ∞ gives

L− x̃(t0) = −
∫

∞

t0

c(s)x̃(s− τ(t)) ds. (12)

We obtain a contradiction since the left hand side of (12) is equal to a negative
number although the right hand side is equal to −∞. The theorem is proved.

Corollary 14. As it follows from the proof of Theorem 13 if (11) holds then there

is a solution x = x(t) of Eq. (1) on I−1 such that

1 + δ1

∫
∞

t

c(s) ds < x(t) < 1 + δ2

∫
∞

t

c(s) ds,

where t ∈ I−1, δ1, δ2 = const , δ1 ∈ (0, 1), δ2 ∈ (1/(1−m),∞) and m =
∫
∞

t0−r
c(s) ds.

Remark 15. As it follows from Theorem 13, each positive solution of Eq. (1) tends
to zero if

∫
∞

c(t) dt = ∞.
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8 Structure formulas for solutions of Eq. (1)

Theorem 16. Let us suppose the existence of a positive solution x = x̃(t) of

Eq. (1) on I−1. Then every solution x = x(t) of Eq. (1) is by a unique way

represented either by the formula

x(t) = x̃(t)(K + ζ(t)), (13)

where K ∈ R is a constant, dependent on x(t), and ζ(t), ζ(∞) = 0 is a continuous

function defined on I−1 dependent on x(t), or by the formula

x(t) = x̃(t)(KY (t) + δ(t)) (14)

where Y (t) is a continuous increasing function which is the same for each x(t),
Y (∞) = ∞, K ∈ R is a constant, dependent on x(t), and δ(t) is a bounded

continuous function defined on I−1 dependent on x(t). On the other hand, to each

K ∈ R there corresponds a solution of x(t) Eq. (1) and a function of the type ζ(t)
(if in (13) K = 0, then there is a representation of a solution x(t) with positive

function ζ(t)) or of the type δ(t) such that either formula (13) holds or formula

(14) is valid. Moreover, in this case the representation (14) gives a solution of

Eq. (1) if δ(t) is shifted by any constant or is equal to any constant.

Proof. Let us introduce a new variable y(t) by means of formula

y(t) = x(t)/x̃(t)

where x(t) is any solution of Eq. (1). Then y(t) satisfies the equation of the type
of Eq. (2), i.e. the equation

ẏ(t) =
c(t)x̃(t− τ(t))

x̃(t)
[y(t) − y(t− τ(t))]. (15)

We can conclude that either there is a positive function k(t) on I−1 which satisfies
the integral inequality (6) on I if

β(t) ≡ c(t)x̃(t− τ(t))

x̃(t)

or such function does not exist. This means: either the convergence criterion (The-
orem 2) holds or the divergence criterion (Theorem 5) is valid. If the first case
occurs, then formula (13) immediately follows from Theorem 8 (formula (9)). If
we deal with the second possibility, then Theorem 9 is true and the representation
(14) follows immediately from formula (10). The theorem is proved.

Remark 17. Let us suppose that Theorem 16 holds. Then there are two linearly
independent positive solutions of Eq. (1) x1(t), x2(t) on I−1, defined in the case
(13) as

x1(t) = x̃(t), x2(t) = x̃(t)ζ(t)
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(the existence of a positive function ζ(t) follows from Lemma 1) and in the case
(14) as

x1(t) = x̃(t)Y (t), x2(t) = x̃(t).

Obviously limt→∞ x2(t)/x1(t) = 0. Then formula (14) turns into x(t) = Kx1(t) +
O(x2(t)). In the next theorem it is shown that this formula covers both represen-
tations (13), (14).

Theorem 18. Let there be a positive solution x = x̃(t), t ∈ I−1, of Eq. (1).
Then there are two positive solutions x1(t), x2(t), t ∈ I−1, of Eq. (1) such that

limt→∞ x2(t)/x1(t) = 0. Moreover, every solution x = x(t), t ∈ I−1, of Eq. (1) is

represented by the formula

x(t) = Kx1(t) +O(x2(t)), t ∈ I−1, (16)

where K ∈ R depends on x(t).

Proof. In view of Theorems 9, 16, Lemma 1 and Remark 17 it is sufficient to prove
formula (16) if representation (13) holds. Let us introduce a new variable y(t) by
means of formula

y(t) = x(t)/(x̃(t)ζ(t))

where x(t) is any solution of Eq. (1) and ζ(t) > 0. Proceeding as above, we conclude
that for corresponding equation of the type (15) the structure formula (10) holds.
This means

y = K̃ Ỹ (t) + δ̃(t)

where the sense of K̃, Ỹ (t) and δ̃(t) is the same as the sense of K,Y (t) and δ(t) in
formula (10). The representation (13) can be written in the form

x(t) = x̃(t)ζ(t)(K̃ Ỹ (t) + δ̃(t)).

This representation is simultaneously the representation of the type (14) for which
the affirmation was proved in Remark 17. The theorem is proved.

Remark 19. For previous results in this direction we refer to the papers by E. Ko-
zakiewicz [28,29,30] and the book of A.D. Myshkis [32]. Note, except this, that
(if Theorem 18 holds) any oscillating solution x = x(t) of (1) satisfies relation
x(t) = O(x2(t)) and, consequently, tends to zero if t→ ∞.

Example 20. Let us consider the equation of the type Eq. (1)

ẋ(t) = −(1/t)x(t− 1). (17)

In the papers by J. Dibĺık [9], [10] it was shown that asymptotic behavior of two
linearly independent positive solutions x1(t), x2(t) of Eq. (17) is given by relations

|x1(t) − (t− 1)−1| < (t− 1)−2
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and

exp[−3(t+ 1/4) ln(t+ 1/4)] < x2(t) < exp[−(t/2 + 1/8) ln(t− 1/4)].

Then, by Theorem 18, the representation (16) holds.

Example 21. For the equation of the type Eq. (1)

ẋ(t) = −(1/eτ)x(t − τ) (18)

where τ = const it is known that there are two asymptotically different positive
solutions, namely x1(t) = t exp(−t/τ), x2(t) = exp(−t/τ). In accordance with
Theorem 18 the representation (16) holds and each solution is representable in the
form

x(t) = te−t/τ (K +O (1/t)) .

9 Existence of positive solution of Eq. (1)

In D. Zhou [42], L.H. Erbe, Q. Kong, B.G. Zhang [16] or J. Dibĺık [7], [11]
some criterions for existence of positive solution of Eq. (1) are given. Let us give
one of them which will be used in the sequel.

Theorem 22. (L. H. Erbe, Q. Kong, B. G. Zhang [16], p. 29) Eq. (1) has a positi-

ve solution with respect to t0 if and only if there exists a continuous function λ(t)
on I−1 such that λ(t) > 0 on I and

λ(t) ≥ c(t)e
∫

t

t−τ(t)
λ(s) ds, t ∈ I. (19)

A very well known sufficient condition, given (under various slightly different as-
sumption for (1) or for modified classes of this equation) by many authors (see, e.g.,
L.H. Erbe, Q. Kong, B.G. Zhang [16], K. Gopalsamy [17], I. Györi, G.
Ladas [18], I. Györi, M. Pituk [19], R. G. Koplatadze, T.A. Chanturija
[25], M. Pituk [35]) is a consequence of this criterion:

Corollary 23. (L. H. Erbe, Q. Kong, B.G. Zhang [16], p. 29) If

∫ t

t−τ(t)

c(s) ds ≤ 1/e, t ∈ I (20)

then Eq. (1) has a positive solution with respect to t0.

This consequence gives that, in the case τ(t) ≡ const for existence of a positive
solution with respect to t0 of Eq. (1), the inequality

c(t) ≤ 1/eτ, t ∈ I−1 (21)

is sufficient. In the next section the case

lim
t→∞

c(t) =
1

τe

is considered.
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10 Behaviour of solutions of Eq. (1) in critical case

Y. Domshlak [13], [14] was the first who noticed that among the equations of the
form (1) with limt→∞ c(t) = 1/τe there exist equations such that all their solutions
are oscillatory in spite of the fact that the corresponding limiting equation (18)
admits a non-oscillatory solution (see Example 21). This situation is called critical.

Let us give an improvement of the last sufficient condition (21) together with
the sufficient condition for oscillation of all solutions of Eq. (1).
Let us denote

lnp t = ln ln . . . ln
︸ ︷︷ ︸

p

t, p ≥ 1,

if t > expp−2 1, where

expp t ≡ ( exp(exp(. . . exp
︸ ︷︷ ︸

p

t ))), p ≥ 1,

exp0 t ≡ t and exp
−1 t ≡ 0. Moreover, let us define ln0 t ≡ t. Instead of expressions

ln0 t, ln1 t, we will write only t and ln t in the sequel. The following holds:

Theorem 24. (J. Dibĺık [11])
A) Let us assume that τ(t) ≡ τ = const,

c(t) ≤ cp(t) (22)

for t→ ∞ and an integer p ≥ 0, where

cp(t) ≡
1

eτ
+

τ

8et2
+

τ

8e(t ln t)2
+

τ

8e(t ln t ln2 t)2
+ · · · + τ

8e(t ln t ln2 t . . . lnp t)2
.

Then there is a positive solution x = x(t) of Eq. (1). Moreover,

x(t) < e−t/τ
√

t ln t ln2 t . . . lnp t

as t→ ∞.
B) Let us assume that τ(t) ≡ τ = const,

c(t) ≥ cp−1(t) +
θτ

8e(t ln t ln2 t . . . lnp t)2
(23)

for t → ∞, an integer p ≥ 1 and a constant θ > 1. Then all solutions of Eq. (1)
oscillate.

The proof of the part A) of this theorem can be made with the aid of Theo-
rem 22. Indeed, it is easy to see that the inequality (19), where c(t) ≡ cp(t), has
(for sufficiently large t) a solution

λ(t) =
1

τ
− 1

2t
− 1

2t ln t
− 1

2t ln t ln2 t
− · · · − 1

2t ln t ln2 t . . . lnp t
.
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In process of verification it is necessary to find an asymptotic representation of the
right hand side of inequality (19). After this, as usual, we compare the coefficients
of identical functional terms on left hand side and on right hand side. The following
equalities for determination of coefficients of the functional terms indicated below
are valid:

1 : 1/τ = 1/τ,

1/(t ln t . . . lnj t), 0 ≤ j ≤ p : −1/2 = −1/2,

1/(t ln t . . . lnj t)
2, 0 ≤ j ≤ p : 0 = τ/8 − τ/8,

1/[(t ln t . . . lns t)
2(lns+1 t . . . lnj t)], 0 < s < j < p : 0 = τ/8 − τ/8 .

For the next asymptotic smaller terms we have

0 ≥ − τ2

16t3
− τ2

16t3
+ o

(
1

t3

)

= − τ2

8t3
+ o

(
1

t3

)

.

This inequality holds for t→ ∞. The verification is ended.
In the paper by J. Dibĺık [11] this part is proved by another equivalent way.
The proof of the part B) is made in cited paper by using the method of

Y. Domshlak. In this part, Theorem 24 generalizes Theorem 3 of the recent
paper by Y. Domshlak and I. P. Stavroulakis [14]).

Remark 25. The behaviour of solutions in the critical case was investigated by
many authors. For example, the papers (except the above mentioned ones) by Li
Bingtuan [3], [4], by Á. Elbert and I. P. Stavroulakis [15], by J. Jaroš and
I. P. Stavroulakis [23], by E. Kozakiewicz [26], [27] and by J. Werbowski
[39] are devoted to this case. We refer to these papers for further bibliography
(and history) concerning this question.

Problem 26. An analogy of Theorem 24 is not yet given if inequalities (22), (23)
are substituted by inequalities (or by a slightly modified inequalities) obtained
from (22), (23) by integrating with limits t− τ and t, i.e. an analogy is not given

if corresponding inequalities are given in terms of the integral average
∫ t

t−τ c(s) ds
of the function c(t) instead in terms of values of the function c(t) itself. The first
step in this direction is inequality (20). This can serve as a motivation for further
investigations in this direction. (As far as this question in the oscillation case is
concerned, we refer to the paper [14].) See this situation with an analogous one in
Corollary 4.

Remark 27. Let us observe that if inequality (23) holds, then integral inequality
(19) has not a positive solution, satisfying conditions indicated in Theorem 22.
Note, moreover, that in the papers by F. Neuman (e.g. [33], [34]) a theoretical
possibility is given for transformation of an equation with variable delays to an
equation of the same class with constant delays. This perhaps can serve as a pos-
sibility of generalization of Theorem 24 if the delay is not constant.
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11 Comparison with behaviour of solutions of Eq. (3) in
critical case

Let us define functions

µp(t) ≡ t ln t ln2 t . . . lnp t,

ap(t) ≡
1

4

(
1

t2
+

1

(t ln t)2
+ · · · + 1

(t ln t . . . lnp−1 t)2
+

1 +A

(t ln t . . . lnp t)2

)

,

where p ≥ 0, A ∈ R and t is sufficiently large.

Lemma 28. The equation of the type of (3)

x′′(t) + ap(t)x(t) = 0, p ≥ 0, (24)

has following linearly independent solutions:

A)

x1(t) =
√

µp(t) sin
(a

2
lnp+1 t

)

, x2(t) =
√

µp(t) cos
(a

2
lnp+1 t

)

,

if A = a2, a > 0, p ≥ 0;
B)

x1(t) =
√

µp(t) , x2(t) =
√

µp(t) lnp+1 t,

if A = 0, p ≥ 0;
C)

x1(t) =
√

µp−1(t) (lnp t)
λ1 , x2(t) =

√

µp−1(t) (lnp t)
λ2 for p ≥ 1,

and

x1(t) = tλ1 , x2(t) = tλ2 for p = 0

if A < 0 and λ1, λ2 are roots of the quadratic equation

λ2 − λ+ (1 +A)/4 = 0, i.e. λ1,2 =
1

2

(

1 ±
√
−A

)

.

Proof. It is easy to verify this affirmation by means of substitution of the expres-
sions x1(t), x2(t) into Eq. (24).

Let us formulate the known result concerning oscillatory and nonoscillatory
properties of all solutions of Eq. (3) which can be proved by standard arguments
with the aid of Lemma 28 and Sturmian Comparison Method (see e.g. [21]).

Theorem 29. Let a ∈ C(I,R+). All solutions of Eq. (3) oscillate on I if a(t) ≥
ap(t), t ∈ I for some integer p ≥ 0 and A > 0. If a(t) ≤ ap(t), t ∈ I for some

p ≥ 0 and for A = 0 then Eq. (3) is nonoscillatory on I.
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Remark 30. Theorem 24 is an analogy of Theorem 29 since there is a parallel be-
tween oscillatory and nonoscillatory properties of solutions of Eq. (1) and Eq. (3).
Previous analogues in the case of equations with delay (for p = 0 and for p = 1)
with classical Kneser’s theorem [24], [37] and with result due to Hille [22], [37] were
given in the cited paper by Y. Domshlak and I. P. Stavroulakis [14]. Note,
except this, that conditions concerning functions a(t) and c(t) are very similar.
Comparison functions ap(t) and cp(t) consist of the same functional terms and
differ only in their multipliers and in additive constant.

Remark 31. Some close problems for similar classes of equations and systems of
equations (with respect to Eq. (1) and Eq. (2)) are considered e.g. by O. Arino,
M. Pituk [1], by J. Čermák [5], by T. Krisztin [31] and for equations with
impulses by A. Domoshnitsky, M. Drakhlin [12] and by Yu Jiang, Yan
Jurang [40].
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9. J. Dibĺık, Existence of solutions with prescribed asymptotic for certain systems
retarded functional differential equations, Siberian Mathematical Journal, 32 (1991),
(No 2), 222–226.
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gleichung mit nacheilendem Argument, Math. Nachr., 32: 1/2 (1966), 107–113.

31. T. Krisztin, A note on the convergence of the solutions of a linear functional
differential equation, J. Math. Anal. Appl., 145 (1990), 17–25, (1990).

32. A.D. Myshkis, Linear Differential Equations with Retarded Arguments, (2nd Ed.),
Nauka, 1972. [In Russian]

33. F. Neuman, On equivalence of linear functional-differential equations, Results in
Mathematics, 26 (1994), 354–359.



Behaviour of Solutions 47

34. F. Neuman, On transformations of differential equations and systems with deviating
argument, Czechoslovak Mathematical Journal, 31 (106) (1981), 87–90.

35. M. Pituk, Asymptotic characterization of solutions of functional differential equa-
tions, Bolletino U.M. I., 7, 7-B, (1993), 653–683.
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intégrales des équations différentielles, Ann. Soc. Polon. Math., 20 (1947), 279–313.

39. J. Werbowski, Oscillations of first order linear differential equations with delay,
Proceedings of the Conference on Ordinary Differential Equations, Poprad (Slovak
Republic), 87–94, 1996.

40. Yu Jiang, Yan Jurang, Positive solutions and asymptotic behavior of delay differ-
ential equations with nonlinear impulses, J. Math. Anal. Appl., 207 (1997), 388–396.

41. S.N. Zhang, Asymptotic behaviour and structure of solutions for equation ẋ(t) =
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