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Abstract. The asymptotic behaviour of a Sturm-Liouville differential equ-
ation with coefficient λ2q(s), s ∈ [s0,∞) is investigated, where λ ∈ R and
q(s) is a nondecreasing step function tending to ∞ as s → ∞. Let S denote
the set of those λ’s for which the corresponding differential equation has
a solution not tending to 0. It is proved that S is an additive group. Four
examples are given with S = {0}, S = Z, S = D (i.e. the set of dyadic
numbers), and Q ⊂ S $ R.
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1 Introduction and new results

In [1] F. V. Atkinson investigated the differential equations of the form

y′′(s) +
(

λ2q(s) + λ
√

q(s)g(s)
)

y(s) = 0 λ ∈ R, s ∈ (s0,∞)

with a coefficient q(s) > 0, which is continuous, nondecreasing and lims→∞ q(s) =
∞, and

∫ ∞ |g(s)| ds < ∞. He defined the set S of those λ’s for which there
exist a g(s) and a solution y(s) of this differential equation such that the relation
lims→∞ y(s) = 0 does not hold. He found that S is an additive group and he gave
examples when S = {0}, S = Z.

⋆ Research is supported by Hungarian Foundation for Scientific Research Grant No.
T 016367



50 Á. Elbert

Here we consider the cases when q(s) is a step function, i.e.

q(s) = k2
i for si ≤ s < si+1, i = 0, 1, . . . , (1)

where 0 < k0 < k1 < . . . , limi→∞ ki = ∞ and we consider the differential equation

y′′(s) + λ2q(s) y(s) = 0 s ≥ s0, λ ∈ R. (2)

The function y(s) is a solution of this differential equation if y(s) is continuously
differentiable, y′(s) is piecewise continuously differentiable and it satisfies (2) on
that pieces of interval.

In [3] we have shown that (2) has at least one solution for which lims→∞ y(s) = 0
holds provided λ 6= 0. It is a question whether all solutions of (2) tend to zero or
there are some which do not do this. This property may depend heavily on the
actual value of λ. Here we extend the Atkinson’s result in the following way.

Theorem. Let S denote the set of those λ’s for which (2) has a solution yλ(s)
such that the limit lims→∞ yλ(s) = 0 does not hold. Then S is an additive group.

The set S is never empty because 0 ∈ S: for λ = 0 in (2) we have the solution
y0(s) ≡ 1 which does not tend to 0. On the other hand, if λ 6= 0 and λ ∈ S, then
−λ ∈ S because in (2) only the value λ2 counts.

In [3] we have investigated similar problems and we have seen that the stability
properties of differential equation (2) are equivalent to the stability of the difference
equation

[

ai+1

bi+1

]

= D(di)E(λωi)

[

ai

bi

]

, i = 0, 1, . . . , (3)

where

di =
ki

ki+1
, ωi = ki(si+1 − si), D(d) =

[

1 0
0 d

]

, E(ω) =

[

cosω sinω
− sinω cosω

]

. (4)

Clearly, the sequences {di}∞i=0, {ωi}∞i=0 are subject to the restrictions

0 < di < 1,

∞
∏

i=0

di = 0,

∞
∑

i=0

ωid0 . . . di−1 = ∞. (5)

It is evident that if the sequences {di}∞i=0, {ωi}∞i=0 are given, satisfying (5), and
knowing the initial data k0 and s0, we can reconstruct the function q(s) of the
form (1). Hence the correspondence between the differential equation (2) and the
difference equation (3) is one to one.

We shall give examples for different additive groups S.

Example 1. Let di < di+1 < 1 (i = 0, 1, . . . ) and limi→∞ ωi = 0 such that (5) is
satisfied and

∞
∑

i=0

(1 − di+1)ω
2
i = ∞.

Then S = {0}.
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Particularly, for di = i+1
i+2 , ωi = 1√

log(i+2)
all the requirements of Example 1 are

satisfied.

Example 2. Let ωi = π and di < di+1 < 1 with
∏∞

i=0 di = 0. Then S = Z.

Let D denote the set of dyadic numbers, i.e. the rational numbers of the form n/2m

for all n,m ∈ Z. Clearly, this set is an additive group.

Example 3. Let ωi = 2iπ and di = d ∈ [12 , 1) be fixed. Then S = D.

Example 4. Let ωi = i!π and di = d ∈ (0, 1). Then 1
2e /∈ S, where e = 2.718 . . . is

the Euler number and Q ⊂ S $ R.

Open problem. For the case S = R we have no other example than the trivial one
(see also in [1]) when q(s) tends to a positive constant or q(s) ≡ const > 0. We
guess that there is no example for S = R and lims→∞ q(s) = ∞.

In the next section we prepare the tools for the proof of the above theorem and
examples and the proof itself will be carried out in Section 3.

2 Preliminaries

In [1] the proof goes on the Prüfer transformation technique. Also here we shall
follow this way. First we consider the difference equation

[

ai+1

bi+1

]

= D(di)E(ωi)

[

ai

bi

]

, i = 0, 1, . . . , (6)

with parameters di, ωi as in (5). According to the results in [2], we know that the
limit limi→∞(a2

i +b2i ) exists for all solutions {[a0

b0
], [a1

b1
], . . . }. We say that the differ-

ence equation (6) is asymptotically stable if for all solutions limi→∞(a2
i + b2i ) = 0,

otherwise we say that (6) is not asymptotically stable. Clearly, λ ∈ S if and only
if (3) is not asymptotically stable. Therefore we look for criteria to decide when a
difference equation is asymptotically stable or not asymptotically stable.

Let ri, ϕi be defined by

ai = ri cosϕi, bi = −ri sinϕi, (ri > 0). (7)

Then {ri}∞i=0 is defined uniquely by ri =
√

a2
i + b2i . Also ϕ0 is unique if we make

the restriction 0 ≤ ϕ0 < 2π. The desirable uniqueness of the values ϕ1, ϕ2, . . . will
be guaranteed by a continuity consideration given later. By (6) we have

ai+1 = ri+1 cosϕi+1 = ri cos(ωi + ϕi),

bi+1 = −ri+1 sinϕi+1 = −di ri sin(ωi + ϕi),
i = 0, 1, . . . . (8)

Hence
r2i+1 = r2i [1 − (1 − d2

i ) sin2(ωi + ϕi)], i =, 0, 1, . . . ,
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consequently

r2i+1 = r20

i
∏

j=0

[1 − (1 − d2
j ) sin2(ωj + ϕj)].

Clearly, (6) is not asymptotically stable if and only if there exists an initial value
ϕ0 (and r0 = 1), such that the sequences {ϕi}∞i=0 and {di}∞i=0 satisfy (8) and

∞
∏

i=0

[1 − (1 − d2
i ) sin2(ωi + ϕi)] > 0,

or equivalently,

∞
∑

i=0

(1 − d2
i ) sin2(ωi + ϕi) <∞. (9)

In this criterion only the knowledge of the sequence ϕ0, ϕ1, . . . is important
and we do not have to calculate the sequence {r1, r2, . . . } to decide the asymptotic
stability of the difference equation (6).

Let us introduce the continuous function Φ(d, α) : (0,∞) × R → R by the
relations:

Φ(1, α) = α,

Φ(d, k
π

2
) = k

π

2
, d > 0, k ∈ Z,

tanΦ(d, α) = d tanα, d > 0, α 6= (2k + 1)
π

2
, k ∈ Z.

(10)

Clearly, Φ(d, α) is strictly increasing function of α when d is fixed. Hence there
exists its inverse Φ−1(d, α), too. Making use of the function Φ(d, α), we have by (8)

ϕi+1 = Φ(di, ωi + ϕi), i = 0, 1, . . . , (11)

which defines uniquely the values of ϕ1, ϕ2, . . . .
Let the function σ(d, α, β) be defined on (0,∞) × R2 by one of the following

(equivalent) relations:

σ(d, α, β) = Φ−1(d, Φ(d, α) + Φ(d, β)) − α− β,

Φ(d, α + β + σ(d, α, β)) = Φ(d, α) + Φ(d, β).
(12)

Clearly, we have σ(1, α, β) ≡ 0. The most important property of this function is
formulated as follows.

Lemma. Let 0 < d < 1, then

|σ(d, α, β)| ≤ π

2
(1 − d2) | sinα| | sinβ|,

where the equality holds if and only if either sinα = 0 or else sinβ = 0.

The proof of this lemma will be given in the next section.
On asymptotic stability or non stability we can find sufficient conditions in [2]

or in [3]. We recall them as follows.
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Theorem A. The difference equation (6) is asymptotically stable if

∞
∑

i=0

min{1 − di, 1 − di+1} sin2 ωi = ∞.

Theorem B. If the sum
∑∞

i=0 | sinωi| < ∞, then the difference equation (6) is

not asymptotically stable.

Let M be a 2 × 2 (real) matrix and let x = [ab ] with the norm |x| =
√
a2 + b2.

Define the spectral norm ‖M‖ of the matrix M by

‖M‖ = max
|x|=1

|Mx|.

Consider the difference equation
[

âi+1

b̂i+1

]

= Mi

[

âi

b̂i

]

i = 0, 1, . . . , (13)

where Mi is nonsingular 2 × 2 matrix for i = 0, 1, . . . . We say that (13) is an
ℓ1-perturbation of (6) if

∞
∑

i=0

‖Mi −D(di)E(ωi)‖ <∞ (14)

holds. Here we recall another result from [2, Theorem 6 and Remark 1, Proposi-
tion 3]:

Theorem C. Suppose (13) is an ℓ1-perturbation of (6). Then these difference

equations are either both asymptotically stable or both not asymptotically stable.

3 Proofs

We start with the proof of Lemma because we have to apply it to the proof of
Theorem.

Proof of the Lemma. Suppose that tanα and tanβ are defined (i.e. α 6≡ π
2 (mod π)

and β 6≡ π
2 (mod π)). Let α1 = Φ(d, α), β1 = Φ(d, β). Again we suppose that

α1 + β1 6≡ π
2 (mod π). Then by (10), (12) we have

tan(α1 + β1) = d tan(α+ β + σ) = d
tan(α + β) + tanσ

1 − tan(α+ β) tanσ
=

=
tanα1 + tanβ1

1 − tanα1 tanβ1
= d

tanα+ tanβ

1 − d2 tanα tanβ
,

therefore

tanσ = tanσ(d, α, β) = −(1 − d2)
sinα sinβ sin(α+ β)

1 + (1 − d2) sinα sinβ cos(α+ β)
. (15)
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Also by this formula it is clear that σ(1, α, β) ≡ 0 and σ(d, α, β) is defined for all
(α, β) ∈ R2 if d ∈ (0, 1], i.e. |σ(d, α, β)| < π

2 .
By (15) it follows that

σ(d, α, β) = σ(d, β, α), σ(d, α+ π, β) = σ(d, α, β), σ(d,−α,−β) = −σ(d, α, β).

Thus it is sufficient to prove our Lemma for 0 ≤ |β| ≤ α ≤ π
2 . If β = 0, the

statement is trivial. Let 0 < β ≤ α ≤ π
2 . First we show that |σ(s, α,−β)| ≤

|σ(d, α, β)| or

(1 − d
2)

sin α sin β sin(α − β)

1 − (1 − d2) sin α sin β cos(α − β)
≤ (1 − d

2)
sin α sin β sin(α + β)

1 + (1 − d2) sin α sin β cos(α + β)

or simplifying by (1 − d2) sinα sinβ:

(1 − d2) sinα sinβ sin 2α ≤ 2 cosα sinβ

whence the equality holds if α = π
2 , and the sharp inequality (1 − d2) sin2 α < 1

in other cases.
Introducing the quantity x = π

2 (1 − d2) sinα sinβ, we have to show by (15)
that

| tanσ| =
2
π
x sin(α+ β)

1 + 2
π
x cos(α+ β)

< tanx =
sinx

cosx
, 0 < x <

π

2

or equivalently

sin(α+ β − x) <
π

2

sinx

x
.

The function on the right hand side is strictly decreasing and only at x = π
2 would

attain the value 1, and this fact proves our Lemma. ⊓⊔
Proof of the Theorem. We have to show that if λ, µ ∈ S (and λ + µ 6= 0), then
λ + µ ∈ S. According to (3) and (9) there exist ϕ0 and ψ0 such that for the
sequences {ϕi}∞i=0, {ψi}∞i=0 defined by (11):

ϕi+1 = Φ(di, λωi + ϕi), ψi+1 = Φ(di, µωi + ψi)

satisfy the relations

∞
∑

i=0

(1 − d2
i ) sin2(λωi + ϕi) <∞,

∞
∑

i=0

(1 − d2
i ) sin2(λµi + ψi) <∞.

(16)

Let σi = σ(di, λωi + ϕi, µωi + ψi) be defined by (12) and consider the difference
equation

[

ai+1

bi+1

]

=

[

1 0
0 di

] [

cos ω̄i sin ω̄i

− sin ω̄i cos ω̄i

] [

ai

bi

]

i = 0, 1, . . . , (17)
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where ω̄i = (λ+ µ)ωi + σi. Let ϕ̄i = ϕi +ψi. Then by definition of ω̄i and by (12)
we obtain

ϕ̄i+1 = ϕi+1 + ψi+1 = Φ(di, λωi + ϕi) + Φ(di, µωi + ψi) =

= Φ(di, λωi + ϕi + µωi + ψi + σi) = Φ(di, (λ + µ)ωi + σi + ϕ̄i) =

= Φ(di, ω̄i + ϕ̄i).

Now the difference equation (17) is not asymptotically stable because it has a
solution not tending to 0. To see this we apply relation (9). We find

∞
∑

i=0

(1 − d2
i ) sin2(ω̄i + ϕ̄i) =

∞
∑

i=0

(1 − d2
i ) sin2(λωi + ϕi + µωi + ψi + σi) ≤

≤ 3

∞
∑

i=0

(1 − d2
i )

[

sin2(λωi + ϕi) + sin2(µωi + ψi) + sin2 σi

]

=

= 3

∞
∑

i=0

(1 − d2
i ) sin2(λωi + ϕi) + 3

∞
∑

i=0

(1 − d2
i ) sin2(µωi + ψi) +

+ 3

∞
∑

i=0

(1 − d2
i ) sin2 σi.

The first two terms are convergent because of (16). By Lemma we have

sin2 σi ≤ σ2
i ≤ π2

4
(1 − d2

i )
2 sin2(λωi + ϕi) sin2(µωi + ψi),

hence also the third term is convergent. Thus we have got

∞
∑

i=0

(1 − d2
i ) sin2(ω̄i + ϕ̄i) <∞,

which implies the existence of a solution of (17) not tending to 0.
To complete the proof, we show that (17) is an ℓ1-perturbation of the difference

equation
[

ai+1

bi+1

]

= D(di)E((λ + µ)ωi)

[

ai

bi

]

i = 0, 1, . . . . (18)

By Theorem C we have to estimate the spectral norm of the difference of the
coefficient matrices:

‖D(di) [E(ω̄i) − E((λ + µ)ωi)]‖ ≤ ‖D(di)‖ ‖E((λ + µ)ωi)‖ ‖E(σi) − E(0)‖ ≤

≤ 1 · 1 ·
√

sin2 σi + (1 − cosσi)2 ≤ |σi|

because ω̄i = (λ+µ)ωi +σi and E(α+β) = E(α)E(β). By Lemma and by (16) we
conclude that

∞
∑

i

|σi| ≤
π

2

∞
∑

i=0

(1 − d2
i )

(

sin2(λωi + ϕ) + sin2(µωi + ψi)
)

<∞,
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i.e. the difference equation (18) is not asymptotically stable. Finally we observe
that this difference equation corresponds to the differential equation

y′′(s) + (λ + µ)2q(s)y(s) = 0,

hence λ+ µ ∈ S. ⊓⊔
Proof of Example 1. Let λ 6= 0, then we have limi→∞ λωi = 0. Let i0 be sufficiently
large integer such that |λωi| < π

2 for i ≥ i0. Applying the inequality sinx/x >

1/
√

2 for |x| < π
2 , we obtain

∞
∑

i=0

(1 − di+1) sin2 λωi ≥
λ2

2

∞
∑

i=i0

(1 − di+1)ω
2
i = ∞,

hence by Theorem A we conclude that λ 6∈ S, which proves that S = {0}. ⊓⊔
Proof of Example 2. Let λ = k ∈ Z, then

∞
∑

i=0

| sin kωi| =

∞
∑

i=0

| sinkπ| = 0,

and by Theorem B k ∈ S, i.e. Z ⊂ S.
If λ 6∈ Z, then sinλπ 6= 0 and

∞
∑

i=0

(1 − di+1) sin2 λπ = sin2 λπ

∞
∑

i=1

(1 − di) = ∞

because by (5) the restriction
∏∞

i=0 di = 0 is equivalent to
∑∞

i=0(1 − di) = ∞.
By Theorem A all solutions of (3) tend to 0 if λ 6∈ Z, consequently for these λ’s
we have λ 6∈ S, which proves this example. ⊓⊔
Proof of Example 3. The restriction d ∈ [ 12 , 1) is justified by the requirement in
(5):

∑∞
i=0 2iπdi = π

∑∞
i=0(2d)

i = ∞. Let λ = 1
2n , n ∈ N. Then

∞
∑

i=0

| sinλωi| =

∞
∑

i=0

| sin 2i

2n
π| =

n−1
∑

i=0

| sin 2i−nπ| <∞

and by Theorem B 1
2n ∈ S, consequently D ⊂ S.

Since 1 ∈ S and S is an additive group, it is sufficient to show that if λ 6∈ D,
λ ∈ (0, 1), then λ 6∈ S. A real number λ in (0, 1) can be represented in the form

λ =

∞
∑

n=1

en

2n
, where en ∈ {0, 1}.

Then the condition λ 6∈ D is equivalent to the restriction that in the sequence e1,
e2, e3, . . . there are infinitely many 0’s and 1’s. We claim that

∞
∑

i=0

sin2 2iλπ = ∞. (19)
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We prove this in indirect way. If this sum is convergent, then limi→∞ sin2 2iλπ = 0
and there exists index k ≥ 1 such that sin2 2iλπ < 1

4 or | sin 2iλπ| < 1
2 for i =

k, k + 1, . . . . Since

sin 2iλπ = sin

( ∞
∑

n=1

en

2n
2iπ

)

= ± sin

( ∞
∑

n=i+1

en

2n−i

)

π. (20)

Taking into account the bound | sin 2iλπ| < 1
2 = sin π

6 for i ≥ k, we have two
possibilites: (1): ek+1 = 0, (2): ek+1 = 1.

(1) We claim that ek+1 = 0 implies ek+2 = 0. Suppose the contrary, i.e.
ek+2 = 1, then 1

4 ≤ ∑∞
n=k+1

en

2n−k < 1
2 and by (20) sin π

4 ≤ | sin 2kλπ| < sin π
2

which contradicts the restriction | sin 2iλπ| < 1
2 for i = k, k+1, . . . . Repeating this

argumentation, we find that ei = 0 for i = k + 1, k + 2, . . . , hence λ ∈ D, which
was excluded.

(2) Similarly, we claim that ek+1 = 1 implies ek+2 = 1. Again, we suppose
the contrary, i.e. let ek+2 = 0. Then 1

2 ≤ ∑∞
n=k+1

en

2n−k < 1
2 +

∑∞
n=k+3

1
2n−k = 5

4

and by (20) we find | sin 2kλπ| > sin 5π
4 > 1

2 contradicting our assumption on k.
Consequently, we must have ei = 1 for all i ≥ k + 1, which again contradicts the
assumption λ 6∈ D.

Thus we have proved that the sum in (19) is indeed, divergent. Then Theorem A
implies the asymptotic stability of (3), hence λ 6∈ D implies λ 6∈ S, which completes
the proof of the relation S = D. ⊓⊔
Proof of Example 4. Let n ∈ N, n 6= 0. Let λ = 1

n
. Since

∞
∑

i=0

∣

∣

∣
sin

i!π

n

∣

∣

∣
=

n−1
∑

i=0

∣

∣

∣
sin

i!π

n

∣

∣

∣
<∞

by Theorem B we conclude 1
n
∈ S, hence Q ⊂ S because Q is the smallest additive

group which contains all the reciprocals 1
n
, n = 1, 2, . . . .

We are going to show that 1
2e 6∈ S. Consider the sum

∑∞
i=0 sin2(i! eπ

2 ) ! We
have for e = 1 + 1

1! + 1
2! + · · · + 1

i! + 1
(i+1)! + 1

(i+2)! + . . .

i! e = i!

(

1 +
1

1!
+

1

2!
+ · · · + 1

(i− 2)!

)

+ i+ 1 +
1

i+ 1
+

1

(i+ 1)(i+ 2)
+ · · · =

= 2ki + i+ 1 +
1

i+ θi

, 0 < θi < 1, ki ∈ N, i ≥ 2,

therefore

∞
∑

i=0

sin2
(

i! e
π

2

)

=
∞
∑

i=0

sin2

(

i+ 1

2
π +

π

2(i+ θi)

)

≥

≥
∞
∑

i=0

sin2

(

2i+ 1

2
π +

π

2(2i+ θ2i)

)

=

∞
∑

i=0

cos2
π

2(2i+ θ2i)
= ∞,

hence by Theorem A e
2 6∈ S, and S 6= R, i.e. S is a proper subset of R. However,

it is still an open problem whether the relation Q = S holds. ⊓⊔
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