
Archivum Mathematicum

Árpád Elbert; Takasi Kusano; Manabu Naito
Singular eigenvalue problems for second order linear ordinary differential equations

Archivum Mathematicum, Vol. 34 (1998), No. 1, 59--72

Persistent URL: http://dml.cz/dmlcz/107633

Terms of use:
© Masaryk University, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107633
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
Tomus 34 (1998), 59–72

Singular Eigenvalue Problems for Second Order

Linear Ordinary Differential Equations
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Abstract. We consider linear differential equations of the form

(p(t)x′)′ + λq(t)x = 0 (p(t) > 0, q(t) > 0) (A)

on an infinite interval [a,∞) and study the problem of finding those values
of λ for which (A) has principal solutions x0(t; λ) vanishing at t = a. This
problem may well be called a singular eigenvalue problem, since requiring
x0(t;λ) to be a principal solution can be considered as a boundary condition
at t = ∞. Similarly to the regular eigenvalue problems for (A) on compact
intervals, we can prove a theorem asserting that there exists a sequence
{λn} of eigenvalues such that 0 < λ0 < λ1 < · · · < λn < · · · , lim

n→∞

λn = ∞,

and the eigenfunction x0(t; λn) corresponding to λ = λn has exactly n zeros
in (a,∞), n = 0, 1, 2, . . . . We also show that a similar situation holds for
nonprincipal solutions of (A) under stronger assumptions on p(t) and q(t).
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1 Introduction

We consider the second order linear differential equation

(p(t)x′)′ + λq(t)x = 0, t ≥ a, (A)

where p(t) and q(t) are positive continuous functions on [a,∞), a ≥ 0, and λ is
a real parameter. We assume that (A) is nonoscillatory at t = ∞ for all λ > 0
(and hence for all λ ∈ R). It is known [1, Theorem 6.4, p. 355] that there exists a
solution x0(t; λ) of (A) which is uniquely determined up to a constant factor by
the condition

∫ ∞ dt

p(t)(x0(t; λ))2
= ∞, (1)

and that any solution x1(t; λ) of (A) linearly independent of x0(t; λ) has the prop-
erty that

∫ ∞ dt

p(t)(x1(t; λ))2
< ∞. (2)

A solution x0(t; λ) satisfying (1) is called a principal solution of (A) (at t = ∞),
and a solution x1(t; λ) satisfying (2) is called a nonprincipal solution of (A) (at
t = ∞).

We are concerned with the problem of finding principal solutions x0(t; λ) of
(A) which satisfy the boundary condition

x0(a; λ) = 0. (3)

This problem falls within the category of general eigenvalue problems formulated
by Hartman [2]. A solution x0(t; λ) of this problem will be said to be a principal

eigenfunction and the corresponding value of λ a principal eigenvalue. Our task is
to establish the existence of principal eigenvalues and count the number of zeros
of the corresponding principal eigenfunctions.

We begin by introducing the notation needed in stating the main results. With
regard to the function p(t) the following two cases are possible:
either

∫ ∞

a

dt

p(t)
= ∞ (4)

or
∫ ∞

a

dt

p(t)
< ∞. (5)

We define the functions P (t) and π(t) as follows:

P (t) =

∫ t

a

ds

p(s)
, t ≥ a, in case (4) holds; (6)

π(t) =

∫ ∞

t

ds

p(s)
, t ≥ a, in case (5) holds. (7)
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It is clear that P (t) → ∞ and π(t) → 0 as t → ∞. Our fundamental hypotheses
on (A) are:

∫ ∞

a

P (t)q(t)dt < ∞ in case (4) holds; (8)

∫ ∞

a

π(t)q(t)dt < ∞ in case (5) holds. (9)

It is well known that (8) [resp. (9)] implies the existence of solutions x0(t; λ) of
(A) satisfying the following boundary condition (10) [resp. (11)] at t = ∞:

lim
t→∞

x0(t; λ) = 1, lim
t→∞

P (t)p(t)x′
0(t; λ) = 0 in case (4) holds; (10)

lim
t→∞

x0(t; λ)

π(t)
= 1, lim

t→∞
p(t)x′

0(t; λ) = −1 in case (5) holds. (11)

Since this solution x0(t; λ) satisfies (1), we easily find that, under the condition
(8) or (9), the requirement that x0(t; λ) be a principal solution of (A) is equivalent
to the requirement that x0(t; λ) be a solution of (A) satisfying (10) or (11).

One of the main results of this paper now follows.

Theorem I. Suppose that (8) or (9) holds. Then, there exists a sequence of prin-

cipal eigenvalues {λn}:

0 < λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn = ∞

such that the corresponding principal eigenfunction x0(t; λn) satisfying (10) or

(11) has exactly n zeros in (a,∞), n = 0, 1, 2, . . . .

The proof of this theorem will be given in Section 1. It will be shown that
Theorem I follows from the corresponding result for the particular equation x′′ +
λq(t)x = 0.

Let us now turn to the consideration of nonprincipal solutions of the nonoscil-
latory equation (A). A nonprincipal solution of (A) is by no means unique. It may
happen, however, that certain additional restrictions on the functions p(t), q(t)
and/or the asymptotic behavior of the solution determine a unique nonprincipal
solution x1(t; λ) of (A) for each fixed λ. If this is the case one could speak of a
nonprincipal eigenvalue problem for (A) which consists in finding its nonprincipal
solutions x1(t; λ) satisfying the boundary condition (3); such a solution x1(t; λ) is
termed a nonprincipal eigenfunction and the corresponding value of λ a nonprin-

cipal eigenvalue. This kind of problem has not been studied in the literature.
For example, if we assume (8) or (9), then (A) has a nonprincipal solution,

non-unique, x1(t; λ) such that

lim
t→∞

x1(t; λ)

P (t)
= 1, lim

t→∞
p(t)x′

1(t; λ) = 1 in case (4) holds; (12)

lim
t→∞

x1(t; λ) = 1, lim
t→∞

π(t)p(t)x′
1(t; λ) = 0 in case (5) holds. (13)
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However, if we require that p(t) and q(t) satisfy the more stringent condition
∫ ∞

a

(P (t))2q(t)dt < ∞ in case (4) holds (14)

or

∫ ∞

a

q(t)dt < ∞ in case (5) holds, (15)

then there exists, for each λ, a unique nonprincipal solution x1(t; λ) of (A) such
that

lim
t→∞

[x1(t; λ) − P (t)] = 0, lim
t→∞

P (t)[p(t)x′
1(t; λ) − 1] = 0 in case (4) holds

(16)

or

lim
t→∞

x1(t; λ) − 1

π(t)
= 0, lim

t→∞
p(t)x′

1(t; λ) = 0 in case (5) holds. (17)

From these solutions x1(t; λ) one can extract a sequence of nonprincipal eigenfunc-
tions having the prescribed numbers of zeros as is shown by the following theorem
which is another main result of this paper.

Theorem II. Suppose that (14) or (15) holds. Then, there exists a sequence of

nonprincipal eigenvalues {λn}:

0 ≤ λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn = ∞

such that the corresponding nonprincipal eigenfunction x1(t; λn) satisfying (16) or

(17) has exactly n zeros in (a,∞), n = 0, 1, 2, . . . .

We will prove this theorem in Section 2 by reducing the problem under study
to the corresponding problem for the simpler equation x′′+λq(t)x = 0. We remark
that since (14) and (15) are stronger than (8) and (9), respectively, the hypotheses
of Theorem II guarantee the existence of both principal and nonprincipal eigenval-
ues for the equation (A). Section 3 will be devoted to a discussion of applicability
of Theorems I and II to the qualitative study of a certain class of linear elliptic
partial differential equations in exterior domains.

2 Principal eigenvalue problem

A) A reduced problem. Consider the particular equation

x′′ + λq(t)x = 0, t ≥ a, (B)

where q(t) is a positive continuous function on [a,∞) and λ is a real parameter.
Theorem I specialized to (B) reads as follows.
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Theorem 1. Suppose that

∫ ∞

a

tq(t)dt < ∞. (18)

Then, there exists a sequence of positive constants {λn}:

0 < λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn = ∞ (19)

such that, for each λ = λn, the equation (B) possesses a solution x0(t; λ) satisfying

the boundary conditions

x0(a; λn) = 0, lim
t→∞

x0(t; λn) = 1, lim
t→∞

tx′
0(t; λn) = 0 (20)

and having exactly n zeros in (a,∞), n = 0, 1, 2, . . . .

We will show that Theorem I follows from its specialized version: Theorem 1.
First consider the case where p(t) and q(t) satisfy (4) and (8). In this case the

change of variables (t, x) → (τ, ξ) defined by

τ = P (t), ξ(τ ; λ) = x(t; λ) (21)

transforms (A) into

ξ̈ + λQ(τ)ξ = 0, τ ≥ 0, (22)

where a dot denotes differentiation with respect to τ and Q(τ) = p(t)q(t). Since
(22) is of the type (B) and since

∫ ∞

0

τQ(τ)dτ =

∫ ∞

a

P (t)q(t)dt < ∞

by (8), it follows from Theorem 1 that there exist a sequence of positive constants
{λn}

∞
n=0 satisfying (19) and the corresponding sequence of solutions {ξ0(τ ; λn)}∞n=0

of (22) such that

ξ0(0; λn) = 0, lim
τ→∞

ξ0(τ ; λn) = 1, lim
τ→∞

τ ξ̇0(τ ; λn) = 0. (23)

Define x0(t; λn) = ξ0(P (t); λn). Then, x0(t; λn) is clearly a solution of (A) on
[a,∞), and in view of (21), (23) implies that it satisfies the boundary conditions
(3) and (10).

Next suppose that p(t) and q(t) satisfy (5) and (9). Perform the change of
variables (t, x) → (τ, η) given by

τ =
1

π(t)
, η(τ ; λ) = τx(t; λ). (24)
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The equation (A) then transforms into

η̈ + λR(τ)η = 0, τ ≥
1

π(a)
, (25)

where a dot denotes differentiation with respect to τ and R(τ) = p(t)q(t)/τ4. In
view of (9) we have

∫ ∞

1/π(a)

τR(τ)dτ =

∫ ∞

a

π(t)q(t)dt < ∞,

and so applying Theorem 1 to (25) we see that there exists a sequence of positive
constants {λn}

∞
n=0 satisfying (19) and the corresponding solutions {η0(τ ; λn)}∞n=0

of (25) such that

η0(
1

π(a)
; λn) = 0, lim

τ→∞
η0(τ ; λn) = 1, lim

τ→∞
τ η̇0(τ ; λn) = 0. (26)

Define x0(t; λn) = π(t)η0(1/π(t); λn). As it is easily seen, x0(t; λn) is a solution of
(A) on [a,∞) and satisfies the boundary conditions (3) and (11). Thus the proof
of Theorem I is reduced to that of Theorem 1.

B) Proof of Theorem 1. The condition (18) ensures the existence of a unique
principal solution x0(t; λ) of (B) such that

lim
t→∞

x0(t; λ) = 1, lim
t→∞

tx′
0(t; λ) = 0. (27)

This x0(t; λ) is characterized as the solution to the integral equation

x0(t; λ) = 1 − λ

∫ ∞

t

(s − t)q(s)x0(s; λ)ds, t ≥ a, (28)

and is subject to the estimate

|x0(t; λ)| ≤ exp

[

|λ|

∫ ∞

a

sq(s)ds

]

≡ K(λ), t ≥ a. (29)

For this fact, see e.g. Hille [3, Theorem 9.1.1 and its proof].
We need only to examine positive values of λ, since the boundary condition

x0(a; λ) = 0 is not satisfied for λ ≤ 0.
A simple consequence of (28) and (29) is that x0(t; λ) is positive on [a,∞) if

λ > 0 is so small that

λK(λ)

∫ ∞

a

sq(s)ds < 1

that is, x0(t; λ) has no zero in [a,∞) for such small values of λ.
It can be shown that x0(t; λ) has a zero in (a,∞) if λ > 0 is sufficiently large

and that the number of zeros of x0(t; λ) in [a,∞), denoted by N [x0(λ)], tends to
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∞ as λ → ∞. In fact, let k ∈ N be given. Put q∗ = min{q(t) : a ≤ t ≤ a + π}
and define λk = k2/q∗. Then, λ > λk implies λq(t) > k2 on [a, a + π]. We now
compare (B) with the harmonic oscillator y′′ + k2y = 0. Noting that a solution
y(t) = sin k(t − a) of the latter equation has k + 1 zeros in [a, a + π], we conclude
from Sturm’s comparison theorem that every solution of (B), and hence x0(t; λ),
has at least k zeros in (a, a + π) provided λ > λk. Since k is arbitrary, it follows
that N [x0(λ)] → ∞ as λ → ∞.

We now make use of the Prüfer transformation:

x0(t; λ) = ρ(t; λ) sin ϕ(t; λ), x′
0(t; λ) = ρ(t; λ) cos ϕ(t; λ), (30)

or equivalently,

ρ(t; λ) =
[

(x0(t; λ))2 + (x′
0(t; λ))2

]
1

2 > 0,

ϕ(t; λ) = arctan
x0(t; λ)

x′
0(t; λ)

.
(31)

As it is well-known, ρ(t; λ) and ϕ(t; λ) are continuously differentiable functions of t
on [a,∞), and ϕ(t; λ) satisfies the differential equation

ϕ′(t; λ) = cos2 ϕ(t; λ) + λq(t) sin2 ϕ(t; λ), t ≥ a. (32)

Note that the boundary condition (27) imposed on x0(t; λ) at t = ∞ corresponds
via (31) to the “terminal” condition for ϕ(t; λ):

lim
t→∞

ϕ(t; λ) ≡
π

2
(mod π).

There is no loss of generality in requiring at the outset that

lim
t→∞

ϕ(t; λ) =
π

2
. (33)

We will prove that, for each fixed t ≥ a, ϕ(t; λ) is a continuous decreasing
function of λ > 0. From the equation

x0(t; λ) − x0(t; µ) = −λ

∫ ∞

t

(s − t)q(s)[x0(s; λ) − x0(s; µ)]ds

−(λ − µ)

∫ ∞

t

(s − t)q(s)x0(s; µ)ds ,

which follows from (28), we see with the use of (29) that u(t) = |x0(t; λ)−x0(t; µ)|
satisfies

u(t) ≤ |λ − µ|K(µ)

∫ ∞

a

sq(s)ds + λ

∫ ∞

t

sq(s)u(s)ds, t ≥ a.

Using the Gronwall inequality and an easy calculation one may conclude that

u(t) ≤ |λ − µ|K(λ)K(µ)

∫ ∞

a

sq(s)ds, t ≥ a,
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which shows that x0(t; λ) is continuous with respect to λ. The continuity of x′
0(t; λ)

with respect to λ follows from the relation

x′
0(t; λ) = λ

∫ ∞

t

q(s)x0(s; λ)ds, t ≥ a.

Then (31) implies that ϕ(t; λ) is continuous with respect to λ.
The decreasing property of ϕ(t; λ) with respect to λ is verified by contradiction.

Suppose that

ϕ(b; λ) ≥ ϕ(b; µ) (34)

for some b ∈ [a,∞) and λ and µ with λ > µ > 0. Since the right-hand side of (32)
written as cos2 ϕ+λq(t) sin2 ϕ is increasing with respect to λ, the initial inequality
(34) implies that

ϕ(t; λ) > ϕ(t; µ) for t > b,

or

arctan
x0(t; λ)

x′
0(t; λ)

> arctan
x0(t; µ)

x′
0(t; µ)

, t > b.

Consequently, there exists c > b such that

x0(t; λ)

x′
0(t; λ)

>
x0(t; µ)

x′
0(t; µ)

, t ≥ c. (35)

Put
X(t; λ, µ) = x0(t; λ)x′

0(t; µ) − x′
0(t; λ)x0(t; µ).

Then X(t; λ, µ) > 0, t ≥ c, by (35), and since

X ′(t; λ, µ) = (λ − µ)q(t)x0(t; λ)x0(t; µ) > 0, t ≥ c,

provided c is taken sufficiently large, X(t; λ, µ) tends to a positive constant as
t → ∞. But this is impossible, since the boundary condition (27) implies that
X(t; λ, µ) → 0 as t → ∞. Therefore, ϕ(t; λ) must be a decreasing function of
λ > 0 for each fixed t ≥ a.

Finally consider the values ϕ(a; λ) for λ > 0. Since ϕ(t; λ) is an increasing
function of t for fixed λ > 0, we have ϕ(a; λ) < π/2 (cf. (33)). If λ > 0 is sufficiently
small, then ϕ(a; λ) > 0, because x0(t; λ) has no zero in [a,∞) as proven above. On
the other hand, the fact that N [x0(λ)] → ∞ as λ → ∞ shows that ϕ(a; λ) → −∞
as λ → ∞. Since ϕ(a; λ) is decreasing with respect to λ > 0, for every n ∈ N∪{0},
there exists λn > 0 such that

ϕ(a; λn) = −nπ, (36)

which means that the principal solution x0(t; λn) of (B) satisfies the boundary
condition x0(a; λn) = 0 and has exactly n zeros in (a,∞). It is almost trivial to
see that (19) holds for the sequence of principal eigenvalues {λn}. This completes
the proof of Theorem 1.
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Remark. It is well-known [6] that the equation (A) is nonoscillatory for all λ > 0
if and only if

lim
t→∞

P (t)

∫ ∞

t

q(s)ds = 0 in case (4) holds; (37)

lim
t→∞

1

π(t)

∫ ∞

t

(π(s))2q(s)ds = 0 in case (5) holds. (38)

The condition (8) or (9) required in Theorem I is stronger than (37) or (38),
respectively. We conjecture that an analogue of Theorem I will hold under the
most general condition (37) or (38).

3 Nonprincipal eigenvalue problem

Let us turn to the nonprincipal eigenvalue problem for (A) mentioned in the In-
troduction. As in the preceding section it can be shown that our main result,
Theorem II, follows from the corresponding result for the particular equation (B).

Theorem 2. Suppose that

∫ ∞

a

t2q(t)dt < ∞. (39)

Then, there exists a sequence of numbers {λn}:

0 ≤ λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn = ∞ (40)

such that, for each λ = λn, the equation (B) possesses a solution x1(t; λn) satis-

fying the boundary conditions

x1(a; λn) = 0, lim
t→∞

[x1(t; λn) − t] = 0, lim
t→∞

t[x′
1(t; λn) − 1] = 0 (41)

and having exactly n zeros in (a,∞), n = 0, 1, 2, . . . .

We will give a proof of this theorem, leaving the reduction of Theorem II to
Theorem 2 to the reader.

Because of (39) there exists, for each λ, a unique nonprincipal solution x1(t; λ)
of (B) such that

lim
t→∞

[x1(t; λ) − t] = 0, lim
t→∞

t[x′
1(t; λ) − 1] = 0. (42)

This solution is characterized as the solution to the integral equation

x1(t; λ) = t − λ

∫ ∞

t

(s − t)q(s)x1(s; λ)ds, t ≥ a, (43)



68 Elbert, Kusano and Naito

and this enables us to obtain the estimate

|x1(t; λ) − t| ≤ |λ|K(λ)

∫ ∞

a

s2q(s)ds ≡ L(λ), t ≥ a, (44)

where K(λ) is the constant defined in (29). For the details the reader is referred
to Hille [3, Theorem 9.1.1].

Since

x1(t; λ) − x1(t; µ) = −λ

∫ ∞

t

(s − t)q(s)[x1(s; λ) − x1(s; µ)]ds

−(λ − µ)

∫ ∞

t

(s − t)q(s)x1(s; µ)ds, t ≥ a,

using (43), we see that the function u(t) = |x1(t; λ) − x1(t; µ)| satisfies

u(t) ≤ |λ − µ|

∫ ∞

a

sq(s)[s + L(µ)]ds + |λ|

∫ ∞

t

sq(s)u(s)ds, t ≥ a,

and hence we have

u(t) ≤ |λ − µ|M(µ) exp

[

|λ|

∫ ∞

a

sq(s)ds

]

, t ≥ a,

where

M(µ) =

∫ ∞

a

sq(s)[s + L(µ)]ds.

This shows that x1(t; λ) is a continuous function of λ for each fixed t ≥ a. The
continuity of x′

1(t; λ) with respect to λ follows from the equation

x′
1(t; λ) = 1 + λ

∫ ∞

t

q(s)x1(s; λ)ds, t ≥ a.

Nonnegative values of λ [or negative values of λ] may be excluded from our
consideration in the case a > 0 [or in the case a = 0], since it follows from (A)
and (43) that x1(t; λ) is unable to satisfy the boundary condition x1(a; λ) = 0 for
such values of λ.

Now we perform the Prüfer transformation:

x1(t; λ) = ρ(t; λ) sin ϕ(t; λ), x′
1(t; λ) = ρ(t; λ) cos ϕ(t; λ), (45)

or equivalently

ρ(t; λ) =
[

(x1(t; λ))2 + (x′
1(t; λ))2

]

1

2

> 0,

ϕ(t; λ) = arctan
x1(t; λ)

x′
1(t; λ)

.
(46)
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The function ϕ(t; λ) satisfies (32), and so it is an increasing function of t for λ > 0.
Also, ϕ(t; λ) is continuous with respect to λ, since so are x1(t; λ) and x′

1(t; λ) as
stated above.

From (45) and (42) we have ρ(t; λ)/t → 1, sin ϕ(t; λ) → 1 and cosϕ(t; λ) → 0
as t → ∞, which implies that

lim
t→∞

ϕ(t; λ) ≡
π

2
(mod π).

To fix the idea we suppose that

lim
t→∞

ϕ(t; λ) =
π

2
. (47)

Proceeding exactly as in the proof of Theorem 1 we can show that the number
of zeros of x1(t; λ) in [a,∞) can be made as large as possible if λ > 0 is chosen
sufficiently large. It follows that ϕ(a; λ) → −∞ as λ → ∞.

To examine the values ϕ(a; λ) for small λ > 0, we distinguish the two cases:
either a = 0 or a > 0. Consider the case where a = 0. Let λ = 0. Then, x1(t; 0) = t
by inspection. This solution has no zero in (0,∞). It should be noted that x1(t; 0)
itself is a nonprincipal eigenfunction for (B) corresponding to a nonprincipal eigen-
value λ = 0. Next consider the case where a > 0 and claim that x1(t; λ) > 0 on
[a,∞) for all sufficiently small λ > 0. In fact, let λ > 0 be small enough so that

λ

∫ ∞

a

sq(s)[s + L(λ)]ds < a,

where L(λ) is defined in (44). Then, from (43) and (44) we obtain

x1(t; λ) ≥ a − λ

∫ ∞

a

sq(s)|x1(s; λ)|ds

≥ a − λ

∫ ∞

a

sq(s)[s + L(λ)]ds > 0, t ≥ a.

It remains to establish the decreasing property of ϕ(t; λ) with respect to λ > 0.
Suppose to the contrary that ϕ(b; λ) ≥ ϕ(b; µ) for some b ∈ [a,∞) and λ and µ
with λ > µ > 0. Applying the argument which derived (35) from (34), we see that
the function

X(t; λ, µ) = x1(t; λ)x′
1(t; µ) − x′

1(t; λ)x1(t; µ)

and its derivative X ′(t; λ, µ) are positive for all sufficiently large t. It follows that
X(t; λ, µ) tends to a positive constant or ∞ as t → ∞. On the other hand, using
the relation

X(t; λ, µ) = [x1(t; λ) − t]x′
1(t; µ) − [x1(t; µ) − t]x′

1(t; λ)

−t[x′
1(t; λ) − 1] + t[x′

1(t; µ) − 1]

and (42), we find that X(t; λ, µ) → 0 as t → ∞. This contradiction proves that
ϕ(t; λ) is a decreasing function of λ > 0 for each fixed t ≥ a.
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From the above observations we conclude that, for every n ∈ N ∪ {0}, there
exists λn such that ϕ(a; λn) = −nπ, so that x1(t; λn) is a desired nonprincipal
eigenfunction for (B). It is clear that the sequence of eigenvalues {λn} satisfies
(40). Note that λ0 = 0 if a = 0 and λ0 > 0 if a > 0. This completes the proof of
Theorem 2.

Example. As an example of equations to which Theorems 1 and 2 apply we give
Halm’s equation ([3, p. 357])

x′′ + λ(1 + t2)−2x = 0, t ≥ 0.

4 Application to elliptic equations

Our purpose here is to show that Theorems I and II can be applied to a qualitative
study of elliptic partial differential equations of the type

∆u + λc(|x|)u = 0, x ∈ Ea, (C)

where x = (x1, . . . , xN ) ∈ R
N , N ≥ 2, |x| =

(

ΣN
i=1x

2
i

)1/2
, ∆ is the N -dimensional

Laplace operator, Ea = {x ∈ R
N : |x| ≥ a}, a > 0, c(t) is a positive continuous

function on [a,∞), and λ is a real parameter. We are interested in the existence
of radially symmetric solutions u(x) which satisfy the Dirichlet condition

u(x) = 0, x ∈ ∂Ea = {x ∈ R
N : |x| = a}. (48)

Radial symmetry of a solution means that it depends only on |x|, that is, it is of
the form u(x) = y(|x|).

It is easy to see that a radially symmetric function u(x) = y(|x|) is a solution of
the exterior Dirichlet problem (C)–(48) if and only if the function y(t) is a solution
of the ordinary differential equation

(tN−1y′)′ + λtN−1c(t)y = 0, t ≥ a (49)

satisfying

y(a) = 0. (50)

The equation (49) is a special case of (A) in which

p(t) = tN−1 and q(t) = tN−1c(t). (51)

We note that:

(i) (4) holds if and only if N = 2, in which case the function P (t) defined by (6)
is

P (t) = log
t

a
, t ≥ a; (52)
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(ii) (5) holds if and only if N ≥ 3, in which case the function π(t) defined by (7)
is

π(t) =
t2−N

N − 2
, t ≥ a. (53)

Therefore, the conditions (8), (9) reduce to
∫ ∞

t(log t)c(t)dt < ∞, (54)

∫ ∞

tc(t)dt < ∞, (55)

and the conditions (14), (15) to
∫ ∞

t(log t)2c(t)dt < ∞, (56)

∫ ∞

tN−1c(t)dt < ∞. (57)

The next result follows from Theorem I applied to (49)–(50).

Theorem 3. (i) Let N = 2 and suppose that (54) holds. Then, there exists a

sequence of positive numbers {λn}:

0 < λ0 < λ1 < · · · < λn < · · · , lim
n→∞

λn = ∞ (58)

such that, for each λ = λn, the exterior Dirichlet problem (C)–(48) possesses a

radially symmetric solution u(x; λn) satisfying

lim
|x|→∞

u(x; λn) = 1 (59)

and having exactly n spherical nodes in the interior of Ea, n = 0, 1, 2, . . . .
(ii) Let N ≥ 3 and suppose that (55) holds. Then, there exists a sequence of

positive numbers {λn} with the property (58) such that, for each λ = λn, the

problem (C)–(48) possesses a radially symmetric solution u(x; λn) satisfying

lim
|x|→∞

|x|N−2u(x; λn) = 1 (60)

and having exactly n spherical nodes in the interior of Ea, n = 0, 1, 2, . . . .

Theorem II specialized to (49)–(50) yields another result for the exterior Dirich-
let problem under consideration.

Theorem 4. (i) Let N = 2 and suppose that (56) holds. Then, there exists a se-

quence of positive numbers {λn} with the property (58) such that, for each λ = λn,

the problem (C)–(48) possesses a radially symmetric solution u(x; λn) satisfying

lim
|x|→∞

u(x; λn)

log |x|
= 1 (61)
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and having exactly n spherical nodes in the interior of Ea, n = 0, 1, 2, . . . .
(ii) Let N ≥ 3 and suppose that (57) holds. Then, there exists a sequence of

positive numbers {λn} with the property (58) such that, for each λ = λn, the

problem (C)–(48) possesses a radially symmetric solution u(x; λn) satisfying

lim
|x|→∞

u(x; λn) = 1 (62)

and having exactly n spherical nodes in the interior of Ea, n = 0, 1, 2, . . . .

Remark. A related problem for (C) in the entire space R
N has been studied by

Naito [5] and Kabeya [4].
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