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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 239 { 256GLOBAL EXISTENCE FOR FUNCTIONALSEMILINEAR INTEGRODIFFERENTIAL EQUATIONSS. K.NtouyasAbstract. In this paper, we study the global existence of solutions for �rst andsecond order initial value problems for functional semilinear integrodi�erential equa-tions in Banach space, by using the Leray-Schauder Alternative or the NonlinearAlternative for contractive maps.1. IntroductionIn this paper we study the global existence of solutions for initial value problems(IVP for short) for semilinear functional integrodi�erential equations. The paperis divided into two parts. In Section 2 we consider the following IVP(1.1) x0(t) = Ax(t) + Z t0 f(s; xs)ds; t 2 [0; b];(1.2) x0 = �;where A is the in�nitesimal generator of a linear semigroup in a Banach space X,and f : [0; b]� C ! X is a function. Here C = C([�r; 0]; X) is the Banach spaceof all continuous functions � : [�r; 0]! X endowed with the sup-normk�k = supfj�(�)j : �r � � � 0g:Also for x 2 C([�r; b]; X) we have xt 2 C for t 2 [0; b], xt(�) = x(t + �) for� 2 [�r; 0]. By using topological degree arguments we prove the global existenceof a solution of (1.1){(1.2)As a model for the equation (1.1) one can takewt(x; t) = wxx(x; t) + Z t0 f(s; w(x; s� r))ds; 0 < x < 1; t > 01991 Mathematics Subject Classi�cation : 35R10.Key words and phrases: Leray-Schauder Alternative, a priori bounds, partial functional in-tegrodi�erential equations, global existence.Receveid October 11, 1996.



240 S. K. NTOUYASw(0; t) = w(1; t) = 0; t > 0; w(x; t) = �(x; t); �r � t � 0for which the equation (1.1) becomes as its abstract formulation. Equation (1.1)has many physical applications. This arises as a very special model for one dimen-sional heat ow in material with memory [7], [14].In Section 3 we study the global existence of solutions for second order initialvalue problems for semilinear functional integrodi�erential equations of the formx00(t) = Ax(t) + Z t0 f(s; xs; x0(s))ds; t 2 [0; b];(1.3) x0 = �; x0(0) = �;(1.4)where A is a linear in�nitesimal generator of a strongly continuous cosine familyfC(t) : t 2 Rg in a Banach space X, and f : [0; T ]� C �X ! X is a function.Recent results on global existence, for ordinary, functional, neutral or partialfunctional di�erential equations with the aid of the Topological Transversalitymethod, may be found in the works listed in our references, [5], [6], [8], [9], [10].Our approach here is essentially an application of the Topological Transversalitymethod to obtain global existence results for functional semilinear integrodi�eren-tial equations. For other results on integrodi�erential equations see [1], [12], [14]and the references cited therein.It is well known, see e.g [15] (for a simple case of ordinary di�erential equationand A = 0) that only the continuity of f is not su�cient to assure local existenceof solutions, even when X is a Hilbert space. Therefore, one has to restrict eitherthe function f or the semi-group operator. Usually restrictions on f are imposed.The function f was assumed to be locally Lipschitz or monotone or completelycontinuous. Here we assume that T (t); C(t) (de�ned below) are compact and thefunction f satis�es the following Caratheodory-type conditions, which not implythat f is completely continuous:(C1) For each t 2 [0; b] the function f(t; :) : C ! X (resp. f(t; :; :) : C�X ! X)is continuous, and for each x 2 C (resp. x; y 2 C�X) the function f(:; x) : [0; b]!X (resp.f(:; x; y) : [0; b]! X) is strongly measurable.(C2) For every positive integer k there exists gk 2 L1([0; b]) such that for a.a.t 2 [0; b] supkxk�k jf(t; x)j � gk(t) (resp. supkxk;jyj�k jf(t; x; y)j � gk(t)):The considerations of this paper are based on the following �xed point results(cf. [2], [4]).Lemma 1.1 (Leray-Schauder Alternative). Let S be a convex subset of anormed linear space E and assume 0 2 S. Let F :S ! S be a completely continuousoperator, and letE(F ) = fx 2 S : x = �Fx for some 0 < � < 1g:Then either E(F ) is unbounded or F has a �xed point.



GLOBAL EXISTENCE FOR INTEGRODIFFERENTIAL EQUATIONS 241Lemma 1.2 (Nonlinear Alternative for contractions). Let U be a boundedopen subset of a Banach space E. Assume 0 2 U and G : U ! E is a contraction.Then either(i) G has a unique �xed point in U , or(ii) there exists � 2 (0; 1) and u 2 @U such that u = �Gu:We recal that a map H : A! X between metric spaces is contractive providedd(Hx;Hy) � �d(x; y)for all x; y 2 A, where 0 � � < 1.2. Global existence for first order IVPIn what follows we let X be a general Banach space and A is the in�nitesimalgenerator of a strongly continuous semigroup of bounded linear operators T (t); t �0 in X satisfying jT (t)j � Me!t; t � 0for some M � 1 and ! 2 R:By a strong solution of the IVP (1.1){(1.2) on the interval [�r; b] we mean afunction x : [�r; b]! X which is absolutely continuous whose �rst derivative x0(t)exists and equals to Ax(t) + R t0 f(s; xs)ds for a.a. t 2 [0; b] and which satis�es theinitial condition x0 = �:It is known that if T (t); t � 0 is a strongly continuous semigroup of boundedlinear operators in X with in�nitesimal generator A, and x(t) is a solution of theIVP (1.1){(1.2) then(2.1) x(t) = T (t)�(0) + Z t0 T (t� s) Z s0 f(�; x� )d�ds; t 2 [0; b]:Equation (2.1) is more general than equation (1.1), and a solution of (2.1) is calleda mild solution of (1.1){(1.2).Now we present the �rst global existence result for the IVP (1.1){(1.2).Theorem 2.1. Let f : [0; b] � C ! X be a function satisfying (C1) and (C2).Assume that:(Hf) There exists an integrable function m : [0; b]! [0;1) such thatjf(t; �)j � m(t)
(k�k); 0 � t � b; � 2 C;where 
 : [0;1)! (0;1) is a continuous nondecreasing function.Assume also that T (t); t > 0 is compact.



242 S. K. NTOUYASThen if(2.2) Z b0 bm(s)ds < Z 1Mk�k dss+ 
(s) ;where bm(t) = maxn!;M R t0 m(s)dso, the IVP (1.1){(1.2) has at least one mildsolution on [�r; b]:Proof. Consider the space C([�r; b]; X) with norm kxk1 = supfjx(t)j : �r �t � bg. To prove existence of a mild solution of the IVP (1.1){(1.2) we applyLemma 1.1. First we obtain the a priori bounds for the mild solutions of the IVP(1.1)�{(1.2), � 2 (0; 1) where (1.1)� stands for the equationx0(t) = �Ax(t) + � Z t0 f(s; xs)ds; t 2 [0; b]:Let x be a mild solution of the IVP (1.1)�{(1.2). Then we have, by (2.1)jx(t)j �Me!tk�k+Me!t Z t0 e�!s Z s0 m(� )
(kx�k)d�ds; t 2 [0; b]:We consider the function � given by�(t) = supfjx(s)j : �r � s � tg; 0 � t � b:Let t? 2 [�r; t] be such that �(t) = jx(t?)j: If t? 2 [0; b], by the previous inequalitywe have e�!t�(t) � Mk�k+M Z t?0 e�!s Z s0 m(� )
(kx�k)d�ds� Mk�k+M Z t0 e�!s Z s0 m(� )
(�(� ))d�ds; t 2 [0; b]:If t? 2 [�r; 0] then �(t) = k�k and the previous inequality holds since M � 1.Denoting by u(t) the right-hand side of the above inequality we haveu(0) = Mk�k; �(t) � e!tu(t); 0 � t � b;and u0(t) = Me�!t Z t0 m(s)
(�(s))ds� Me�!t Z t0 m(s)
(e!su(s))ds; t 2 [0; b]:



GLOBAL EXISTENCE FOR INTEGRODIFFERENTIAL EQUATIONS 243We remark that(e!tu(t))0 = !e!tu(t) + e!tu0(t)� !e!tu(t) +M Z t0 m(s)
(e!su(s))ds� !e!tu(t) +M
(e!tu(t)) Z t0 m(s)ds� bm(t)[e!tu(t) + 
(e!tu(t))]; t 2 [0; b]:This impliesZ e!tu(t)u(0) dss + 
(s) � Z b0 bm(s)ds < Z 1u(0) dss+ 
(s) ; 0 � t � b:This inequality implies that there is a constant K such that u(t) � K; t 2 [0; b]and hence �(t) � K; t 2 [0; b]: Since for every t 2 [0; b]; kxtk � �(t), we havekxk1 = supfjx(t)j : �r � t � bg � K;where K depends only on b and on the functions m and 
.In the second step we rewrite the IVP (1.1){(1.2) as follows. For � 2 C de�nee� 2 Cb; Cb = C([�r; b]; X) bye�(t) = ( �(t); �r � t � 0;T (t)�(0); 0 � t � b:If x(t) = y(t) + e�(t); t 2 [�r; b] it is easy to see that y satis�esy0 = 0y(t) = Z t0 T (t� s) Z s0 f(�; y� + e�� )d�ds; 0 � t � bif and only if x satis�esx(t) = T (t)�(0) + Z t0 T (t � s) Z s0 f(�; x� )d�ds; 0 � t � band x0 = �:De�ne C0b = fy 2 Cb : y0 = 0g and F :C0b ! C0b ; by(Fy)(t) = ( 0; �r � t � 0R t0 T (t � s) R s0 f(�; y� + e�� )d�ds; 0 � t � b:



244 S. K. NTOUYASIt will now be shown that F is a completely continuous operator.Let Bk = fy 2 C0b : kyk1 � kg for some k � 1. We �rst show that F maps Bkinto an equicontinuous family. Let y 2 Bk and t1; t2 2 [0; b] and � > 0. Then if0 < � < t1 < t2 � b;j(Fy)(t1)� (Fy)(t2)j = ����Z t10 T (t1 � s) Z s0 f(�; y� +f�� )d�ds� Z t20 T (t2 � s) Z s0 f(�; y� +f�� )d�ds����� ����Z t1��0 [T (t1 � s) � T (t2 � s)] Z s0 f(�; y� +f�� )d�ds����+ ����Z t1t1��[T (t1 � s) � T (t2 � s)] Z s0 f(�; y� +f�� )d�ds����+ ����Z t2t1 T (t2 � s) Z s0 f(�; y� +f�� )d�ds����� Z t1��0 jT (t1 � s)� T (t2 � s)j Z s0 gk0(� )d�ds+ Z t1t1�� jT (t1 � s) � T (t2 � s)j Z s0 gk0(� )d�ds+ Z t2t1 jT (t2 � s)j Z s0 gk0(� )d�ds;where k0 = k + ke�k: The right hand side is independent of y 2 Bk and tends tozero as t2 � t1 ! 0 and � su�ciently small, since the compacteness of T (t) fort > 0 implies the continuity in the uniform operator topology.Thus F maps Bk into an equicontinuous family of functions.Notice that we considered here only the case 0 < t1 < t2; since the other casest1 < t2 < 0 or t1 < 0 < t2 are very simple.It is easy to see that the family Bk is uniform bounded. Next, we show FBk iscompact. Since we have shown FBk is an equicontinuous collection, it su�ces byArzela-Ascoli theorem to show that F maps Bk into a precompact set in X.Let 0 < t � b be �xed and � a real number satisfying 0 < � < t: For y 2 Bk wede�ne (F�y)(t) = Z t��0 T (t � s) Z s0 f(�; y� + e�� )d�ds= T (�) Z t��0 T (t � s � �) Z s0 f(�; y� + e�� )d�ds:Since T (t) is a compact operator, the set Y�(t) = f(F�y)(t) : y 2 Bkg is precompact



GLOBAL EXISTENCE FOR INTEGRODIFFERENTIAL EQUATIONS 245in X, for every �; 0 < � < t. Moreover, for every y 2 Bk we havej(Fy)(t)� (F�y)(t)j � Z tt�� jT (t� s) Z s0 f(�; y� + e�� )jd�ds� Z tt�� jT (t� s)j Z s0 gk0(� )d�ds:Therefore there are precompact sets arbitrary close to the set f(Fy)(t) : y 2 Bkg.Hence the set f(Fy)(t) : y 2 Bkg is precompact in X.It remains to show that F : C0b ! C0b is continuous. Let fung10 � C0b withun ! u in C0b . Then there is an integer q such that jun(t)j � q for all n andt 2 [0; b]; so un 2 Bq and u 2 Bq . By (C1) f(t; un(t) + e�t) ! f(t; u(t) + e�t) foreach t 2 [0; b] and since jf(t; un(t) + e�t) � f(t; u(t) + e�t)j � 2gq0(t); q0 = q + ke�kwe have by dominated convergencekFun � Fuk = supt2[0;b] ����Z t0 T (t � s) Z s0 [f(�; un(� ) + e�� ) � f(�; u(� ) + e�� )]d�ds����� Z b0 jT (t� s)j Z s0 jf(�; un(� ) + e�� )� f(�; u(� ) + e�� )jds! 0Thus F is continuous. This completes the proof that F is completely continuous.Finally, the set E(F ) = fy 2 C0b : y = �Fy; � 2 (0; 1)g is bounded, sincefor every solution y in E(F ) the function x = y + e� is a mild solution of IVP(1.1)�{(1.2), for which we have proved that kxk1 � K and hencekyk1 � K + ke�k:Consequently, by Lemma 1.1, the operator F has a �xed point in C0b . This meansthat the IVP (1.1)-(1.2) has a mild solution, completing the proof of the theorem.�A more general IVP than the IVP (1.1){(1.2) is the following(2.4) x0(t) = A(t)x(t) + Z t0 f(s; xs)ds; t 2 I;(2.5) x0 = �;where A(t) is a linear closed densely de�ned operator in a Banach space X, andf : I �X ! X is a given function.It is well known that the IVP (2.4){(2.5) can be written as a nonlinear Volterraintegral equationx(t) = W (t; 0)x(0) + Z t0 W (t; s) Z s0 f(�; x� )d�ds; t 2 [0; b];



246 S. K. NTOUYASwith x0 = �; where fW (t; s) : 0 � s � t � bg is a strongly continuous familyof evolution operators on X. We shall make the following assumptions on theevolution system W (t; s):(W1)W (t; s) 2 L(X), the space of bounded linear transformations on X, when-ever 0 � s � t � b and for each x 2 X the mapping (t; s)!W (t; s)x is continuous.(W2) W (t; s)W (s; r) = W (t; r); 0 � r � s � t � b:(W3) W (t; t) = I; the identity operator on X.(W4) W (t; s) is a compact operator whenever t� s > 0:Su�cient conditions for (W1) � (W4) to hold may be found in Friedman [3].If the conditions in [3] are satis�ed, and if for each t 2 [0; b] there is a number� in the resolvent set of A(t) such that the resolvent R(�;A(t)) is compact thegenerated evolution system will satisfy (W4).Theorem 2.2. Let fW (t; s) : 0 � s � t � bg satisfy (W1) � (W4) and f : [0; b]�C ! X be a function satisfying (C1), (C2) and (Hf).Then the IVP (2.4){(2.5) has at least one mild solution on [�r; b] provided(2.6) N Z b0 Z t0 m(s)dsdt < Z 1bNk�k ds
(s) ;where N = supfjW (t; s)j : 0 � s � t � bg and bN = maxf1; Ng.Proof. We apply again Lemma 1.1. In order to apply this Lemma we mustestablish the a priori bounds for the solutions of the IVP (2.4)�{(2.5), � 2 (0; 1);where (2.4)� stands for the equationx0(t) = �A(t)x(t) + � Z t0 f(s; xs)ds; t 2 I:Let x be a solution of the IVP (2.4)�{(2.5). Then we havejx(t)j � Nk�k+ N Z t0 Z s0 m(� )
(kx�k)d�ds; 0 � t � b;or �(t) � bNk�k+ N Z t0 Z s0 m(� )
(�(� ))d�ds; 0 � t � b;with � as de�ned in the propf of Theorem 2.1.Denoting by u(t) the right-hand side of the above inequality we haveu(0) = bNk�k; �(t) � u(t); 0 � t � b;and u0(t) = N Z t0 m(s)
(�(s))ds � N
(u(t)) Z t0 m(s)ds; 0 � t � b:



GLOBAL EXISTENCE FOR INTEGRODIFFERENTIAL EQUATIONS 247Then Z u(t)u(0) ds
(s) � N Z b0 Z t0 m(s)dsdt < Z 1u(0) ds
(s) ; 0 � t � b:This inequality implies that there is a constant K such that u(t) � K; t 2 [0; b]and hence �(t) � K; t 2 [0; b]: Since for every t 2 [0; b]; kxtk � �(t), we havekxk1 � K;where K depends only on b and the functions m and 
:We will rewrite the IVP (2.4){(2.5) as follows. For � 2 C de�ne e� 2 Cb; Cb =C([�r; b]; X) by e�(t) = ( �(t); �r � t � 0;W (t; 0)�(0); 0 � t � b:If x(t) = y(t) + e�(t); t 2 [�r; b] it is easy to see that y satis�esy0 = 0y(t) = Z t0 W (t; s) Z s0 f(�; y� + e�� ); d�ds; 0 � t � b:De�ne C0b = fy 2 Cb : y0 = 0g and F :C0b ! C0b ; by(Fy)(t) = ( 0; �r � t � 0R t0 W (t; s) R s0 (�; y� + e�� )d�ds; 0 � t � b:We can prove, as in Theorem 2.1 that F is a completely continuous operator.The proof of the theorem is now complete. �Remark. Although the IVP (1.1)-(1.2) is a special case of the IVP (2.4)-(2.5)when A(t) � A, constant, the condition (2.2) is di�erent from the condition (2.6).Generally Theorem 2.1 cannot be derived from Theorem 2.2.By applying the Nonlinear Alternative for contractive maps we have the follow-ing result for the IVP (2.4){(2.5).Theorem 2.3. Let fW (t; s) : 0 � s � t � bg satisfy (W1) � (W4) and f : [0; b]�C ! X be a function satisfying (C1), (C2) and (Hf). Moreover we assume that:(`f) For h > 0 there exists lh � 0 such thatjf(t; u)� f(t; v)j � lhku� vkfor t 2 [0; b] and u; v 2 C, satisfying kuk; kvk � h:



248 S. K. NTOUYASThen if N Z b0 Z t0 m(s)dsdt < Z 1bNk�k ds
(s) ;where N = supfjW (t; s)j : 0 � s � t � bg; bN = maxf1; Ng the IVP (2.4){(2.5)has a unique mild solution on [�r; b]:Proof. By Theorem 2.2 there exists a constant K such that kxk1 < K, for allsolutions of the family of problems( x0(t) = �A(t)x(t) + � R t0 f(s; xs)ds; 0 � t � bx0 = ��;for � 2 [0; 1].Let L be a constant (> 1N ). In the space C([�r; b]; X) consider the two norms:kxk1 = supfjx(t)j : t 2 [�r; b]gkxkL = supfe�NLtjx(t)j : t 2 [�r; b]g:Since kxkL � kxk1 � eNLbkxkL, these norms are equivalent. PutU = fx 2 C([�r; b]; X) : kxk1 � K; t 2 [�r; b]gand consider the operator G : U ! C([�r; b]; X) de�ned by(Gy)(t) = ( �(t); �r � t � 0W (t; 0)�(0) + R t0 W (t� s) R s0 f(�; y� )d�ds; 0 � t � b:We shall prove that the operator G from (U; k:kL) into C([�r; b]; X); k:kL); is acontraction, with L = `K ; `K the constant de�ned in (`f). Indeed we have:kGx�GykL � sup�e�LNtLN Z t0 Z s0 e�LN� eLN� kx� � y� kd�ds�� LNkx� ykL�e�LNt Z t0 Z s0 eLN�d�ds�� LNkx� ykL�e�LNt 1LN Z t0 �eLNs � 1�ds�� kx� ykL� 1LN �1� e�LNt�� 1LN te�LNt�� kx� ykL �1� e�LNb�� �kx� ykL; � = 1� e�LNb < 1:Hence by Lemma 1.2, this completes the proof, since (ii) of the alternative cannothold by the choice of U . �



GLOBAL EXISTENCE FOR INTEGRODIFFERENTIAL EQUATIONS 2493. Global existence for second order IVPIn this section we study the global existence of solutions for IVP (1.3){(1.4).In many cases it is advantageous to treat second order abstract di�erentialequations directly rather than to convert them to �rst order systems. A usefulmachinery for the study of abstract second order equations is the theory of stronglycontinuous cosine families.Given a Banach space X, we say that the family fC(t) : t 2 Rg in the spaceL(X) of bounded linear operators on X is a strongly continuous cosine family if(i) C(0)=I;(ii) C(t)x is strongly continuous in t on R for each �xed x 2 X;(iii) C(t+ s) +C(t� s) = 2C(t)C(s) for all t; s 2 R.The strongly continuous sine family fS(t) : t 2 Rg, is de�ned byS(t)x = Z t0 C(s)xds; x 2 X; t 2 R:The in�nitesimal generator A of a cosine family fC(t) : t 2 Rg is de�ned byAx = d2dt2C(t)xjt=0; x 2 D(A) = fx 2 X : C(:)x 2 C2(R;X)g:Assume now that A is a linear in�nitesimal generator of a strongly continuouscosine family fC(t) : t 2 Rg of bounded linear operators from X into itself.Moreover we assume that the adjoint operator A? is densely de�ned i.e D(A?) =X?. See [1].It is known that if C(t); t 2 R is a strongly continuous cosine family within�nitesimal generator A; and x(t) is a solution of the IVP (1.3){(1.4), then(3.1) x(t) = C(t)�(0) + S(t)� + Z t0 S(t � s) Z s0 f(�; x� ; x0(� ))d�ds; t 2 [0; b];with x0 = �: Equation (3.1) is easier to work with than (1.3){(1.4) because of thenice properties of the bounded operators C(t); t 2 R and S(t); t 2 R, as opposedto the unbounded operator A in equation (1.3).The global existence result for the IVP (1.3){(1.4) is the following:Theorem 3.1. Let f : [0; b]� C � X ! X be a function satis�es (C1); (C2) andC(t) (resp. S(t)), t 2 [0; b] be a strongly continuous cosine (resp. sine) family onX with the in�nitesimal generator A as de�ned above. Assume that:(Hf � 1) There exists an integrable function m : [0; b]! [0;1) such thatjf(t; �; v)j � m(t)
 (max(k�k; jvj)) ; 0 � t � b; � 2 C; v 2 X;



250 S. K. NTOUYASwhere 
 : [0;1)! (0;1) is a continuous nondecreasing function.Assume also that C(t); t > 0 is compact.Then if(3.2) M (b+ 1) Z b0 Z t0 m(� )d�dt < Z 1c ds
(s) ;where M = supfjC(t)j : t 2 [0; b]g; M 0 = supfjC 0(t)j : t 2 [0; b]g and c =(M +M 0)k�k+M (1+ b)j�j; the IVP (1.3){(1.4) has at least one mild solution on[�r; b]:Proof. In the space B = C([�r; b]; X)\C1([0; b]; X) consider the normkxk? = maxfkxkr; kxk1gwhere kxkr = supfjx(t)j : �r � t � bg; kxk1 = supfjx0(t)j : 0 � t � bg:To prove existence of a mild solution of the IVP (1.3){(1.4) we apply Lemma 1.1.First we obtain the a priori bounds for the mild solutions of the IVP (1.3)�{(1.4),� 2 (0; 1) where (1.3)� stands for the equationx00(t) = �Ax(t) + � Z t0 f(s; xs; x0(s))ds; t 2 [0; b]:Let x be a mild solution of the IVP (1.3)�{(1.4). Then we havejx(t)j �Mk�k+Mbj�j+Mb Z t0 Z s0 m(� )
(max(kx� k; jx0(� )j))d�ds�Mk�k+Mbj�j+Mb Z t0 Z s0 m(� )
(kx�k+ jx0(� )j)d�ds; t 2 [0; b];or �(t) � Mk�k+Mbj�j+Mb Z t0 Z s0 m(� )
(�(� ) + jx0(� )j)d�ds; t 2 [0; b];with � as de�ned in the proof of the Theorem 2.1.Denoting by u(t) the right-hand side of the above inequality we haveu(0) = Mk�k+Mbj�j; �(t) � u(t); 0 � t � b;and u0(t) � Mb Z t0 m(s)
(u(s) + jx0(s)j)ds; 0 � t � b:



GLOBAL EXISTENCE FOR INTEGRODIFFERENTIAL EQUATIONS 251Therefore, if �(t) = supfjx0(s)j : s 2 [0; t]g; t 2 [0; b]we obtain u0(t) � Mb
(u(t) + �(t)) Z t0 m(s)ds; 0 � t � b:Butx0(t) = C0(t)�(0) + S0(t)� + Z t0 C(t� s) Z s0 f(�; x� ; x0(� ))d�ds; 0 � t � band thus�(t) � M 0k�k+M j�j+M Z t0 Z s0 m(� )
(�(� ) + �(� ))d�ds; t 2 [0; b]:Denoting by r(t) the right-hand side in the above inequality we haver(0) = M 0k�k+M j�j; �(t) � r(t); 0 � t � b;andr0(t) =M Z t0 m(s)
(�(s) + �(s))ds � M
(u(t) + r(t)) Z t0 m(s)ds; t 2 [0; b]:Hence, we obtain(u(t) + r(t))0 � M (1 + b)
(u(t) + r(t)) Z t0 m(s)ds; t 2 [0; b]:This impliesZ u(t)+r(t)u(0)+r(0) ds
(s) � M (1 + b) Z b0 Z t0 m(s)dsdt < Z 1c ds
(s) ; 0 � t � b:This inequality implies that there is a constant K such thatu(t) + r(t) � K; t 2 [0; b]:Then jx(t)j � �(t) � u(t); t 2 [0; b]jx0(t)j � �(t) � r(t); t 2 [0; b]and hence kxk? � K;where K depends only on b and on the functions m and 
.



252 S. K. NTOUYASIn order to apply Lemma 1.1 we must prove that the operator F : B ! Bde�ned by(Fy)(t) = ( �(t); �r � t � 0C(t)�(0) + S(t)� + R t0 S(t � s) R s0 f(�; y� ; y0(� ))d�ds; 0 � t � b:is a completely continuous operator. We proceed as in Theorem 2.1.Let Bk = fy 2 B : kyk? � kg for some k � 1. We �rst show that F maps Bkinto an equicontinuous family. Let y 2 Bk and t1; t2 2 [0; b] and � > 0. Then if0 < � < t1 < t2 � b;j(Fy)(t1)� (Fy)(t2)j = jC(t1)�(0)� C(t2)�(0) + S(t1)�� S(t2)� + Z t10 S(t1 � s) Z s0 f(�; y� ; y0(� ))d�ds� Z t20 S(t2 � s) Z s0 f(�; y� ; y0(� ))d�ds����� jC(t1) �C(t2)jj�(0)j+ jS(t1)� S(t2)jj�j+ Z t1��0 jS(t1 � s)� S(t2 � s)j Z s0 gk(� )d�ds+ Z t1t1�� jS(t1 � s) � S(t2 � s)j Z s0 gk(� )d�ds+ Z t2t1 jS(t2 � s)j Z s0 gk(� )d�dsand j(Fy)0(t1)� (Fy)0(t2)j = jC0(t1)�(0)� C0(t2)�(0) + S0(t1)�� S0(t2)� + Z t10 C(t1 � s) Z s0 f(�; y� ; y0(� ))d�ds� Z t20 C(t2 � s) Z s0 f(�; y� ; y0(� ))d�ds����� jC0(t1)� C0(t2)jj�(0)j+ jS0(t1)� S0(t2)jj�j+ Z t1��0 jC(t1 � s) � C(t2 � s)j Z s0 gk(� )d�ds+ Z t1t1�� jC(t1 � s) �C(t2 � s)j Z s0 gk(� )d�ds+ Z t2t1 jC(t2 � s)j Z s0 gk(� )d�ds:The right hand sides are independent of y 2 Bk and tends to zero as t2 � t1 ! 0and � su�ciently small, since C(t); S(t); C0(t); S0(t) are uniformly continuous for



GLOBAL EXISTENCE FOR INTEGRODIFFERENTIAL EQUATIONS 253t > 0 and the compacteness of C(t); S(t) for t > 0 implies the continuity in theuniform operator topology. The compactness of S(t) follows from that of C(t) andthe Proposition 2.1 of [11] and Lemma 2.5 of [13].Thus F maps Bk into an equicontinuous family of functions.The equicontinuity for the cases t1 < t2 � 0 and t1 � 0 � t2 follows from theuniform continuity of � on [�r; 0] and from the relationj(Fy)(t1) � (Fy)(t2)j � j�(t1)� (Fy)(t2)j � j(Fy)(t2)� (Fy)(0)j+ j�(0)� �(t1)jrespectively.It is easy to see that the family Bk is uniform bounded.Next, we show that for each �xed t the set f(Fy)(t) : y 2 Bkg is precompact inX. Let 0 < t � b be �xed and � a real number satisfying 0 < � < t: For y 2 Bk wede�ne (F�y)(t) = C(t)�(0) + S(t)� + Z t��0 S(t � s) Z s0 f(�; y� ; y0(� ))d�ds:Since S(t) is a compact operator, the set Y�(t) = f(F�y)(t) : y 2 Bkg is precompactin X, for every �; 0 < � < t. Moreover, for every y 2 Bk we havej(Fy)(t)� (F�y)(t)j � Z tt�� jS(t � s)j Z s0 gk(� )d�ds;j(Fy)0(t) � (F�y)0(t)j � Z tt�� jC(t� s)j Z s0 gk(� )d�ds:Hence the set f(Fy)(t) : y 2 Bkg is precompact in X.Next, we show that F : B ! B is continuous. Let fung10 � C0b with un ! u inC0b . Then there is an integer q such that jun(t)j; ju0n(t)j � q for all n and t 2 [0; b];so un; u0n 2 Bq and u; u0 2 Bq . By (C1) f(t; un(t); u0n(t)) ! f(t; u(t); u0(t)) foreach t 2 [0; b] and since jf(t; un(t); u0n(t)) � f(t; u(t); u0(t))j � 2gq0(t) we have bydominated convergencekFun � Fuk = supt2[0;b] ����Z t0 S(t � s) Z s0 [f(�; un(� ); u0n(� )) � f(�; u(� ); u0(� ))]d�ds����� Z b0 jS(t � s)j Z s0 jf(�; un(� ); un(� ))� f(�; u(� ); u0(� ))jds! 0andk(Fun)0 � (Fu)0k= supt2[0;b] ����Z t0 C(t� s) Z s0 [f(�; un(� ); u0n(� ))� f(�; u(� ); u0(� ))]d�ds����� Z b0 jC(t� s)j Z s0 jf(�; un(� ); un(� )) � f(�; u(� ); u0(� ))jds! 0



254 S. K. NTOUYASThis completes the proof that F is completely continuous.Finally, the set E(F ) = fy 2 B : y = �Fy; � 2 (0; 1)g is bounded, as we provedin the �rst part. Consequently, by Lemma 1.1, the operator F has a �xed point inB. This means that the IVP (1.3){(1.4) has a mild solution, completing the proofof the theorem. �Also by applying the Nonlinear Alternative for conrtactive maps we have thefollowing result for the IVP (1.3){(1.4).Theorem 3.2. Let f : [0; b]�C �X ! X be a function satisfying (C1), (C2) and(Hf � 1). Assume that:(c̀f ) For h > 0 there exists lh � 0 such thatjf(t; u; v)� f(t; w; z)j � lh(ku� wk+ kv � zk1)for t 2 [0; b] and u;w 2 C, v; z 2 X satisfying kuk; kvk1; kwk; kzk1 � h:Assume also that C(t); t > 0 is compact.Then if M (b+ 1) Z b0 Z t0 m(� )d�dt < Z 1c ds
(s) ;where M = supfjC(t)j : 0 � s � t � bg; M 0 = supfjC0(t)j : 0 � s � t � bgandc = (M +M 0)k�k+M (1 + b)j�j, the IVP (1.3){(1.4) has a unique mild solutionon [�r; b]:Proof. By Theorem 3.1 there exists a constant K such that kxk? < K, for allsolutions of the family of problems( x00(t) = �Ax(t) + � R t0 f(s; xs; x0(s))ds; 0 � t � b;x0 = ��; x0(0) = ��;for � 2 [0; 1].Let L be a constant and Q = M (1 + b). In the space B = C([�r; b]; X) \C1([0; b]; X) consider the two norms:kxk? = maxfkxkr; kxk1gkxkL = maxfkxkLr; kxkL1g;where kxkr = supfjx(t)j : �r � t � bg; kxk1 = supfjx0(t)j : 0 � t � bg;kxkLr = supfe�QLtjx(t)j : t 2 [�r; b]g; kxkL1 = supfe�QLtjx0(t)j : t 2 [0; b]g:



GLOBAL EXISTENCE FOR INTEGRODIFFERENTIAL EQUATIONS 255Since kxkL � kxk? � eQLbkxkL, these norms are equivalent. PutU = fx 2 C([�r; b]; X)\C1([0; b]; X) : kxkr; kxk1 � Kgand consider the operator G : U ! C([�r; b]; X)\C1([0; b]; X) de�ned by(Gy)(t) = ( �(t); �r � t � 0C(t)�(0) + S(t)� + R t0 S(t � s) R s0 f(�; y� ; y0(� ))d�ds; 0 � t � b:We have, if L = lK , that:kGx�GykL � sup�e�LQtL Z t0 (jS(t � s)j+ jC(t� s)j)� Z s0 (kx� � y�k+ jx0(� )� y0(� )j)d�ds; t 2 [0; b]�� sup�e�LQtLQ Z t0 Z s0 e�LQ� eLQ� (kx� � y�k+jx0(� ) � y0(� )j)d�dsg� LQkx� ykL�e�LQt Z t0 Z s0 eLQ�d�ds�� LQkx� ykL� 1L2Q2 � e�LQbL2Q2 � be�LQbLQ �� 1LQ (1 � e�LQb)kx� ykL� (1 � e�LQb)kx� ykL:This means that G is a contraction. Hence by Lemma 1.2 this completes theproof. �ACKNOWLEDGMENT. The author thanks the referee for his/her commentsand suggestions. References[1] Bochenek, J., Second order semilinear Volterra integrodi�erential equation in Banach space,,Ann. Pol. Math. 57 (1992), 231{241.[2] Dugundji, J., Granas, A., Fixed Point Theory, Vol. I, Monographie Matematyczne, PNWWarsawa, 1982.[3] Friedman, A., Partial di�erential equations, Holt, Rinehat and Winston,, New York, 1969.[4] Frigon, M., Granas, A., Resultats du type de Leray-Schauder pour des contractions multivo-ques, Topol. Methods Nonlinear Anal. 4 (1994), 197{208.[5] Lee, J., O'Regan, D., Topological transversality. Applications to initial value problems, Ann.Pol. Math. 48 (1988), 247{252.[6] , Existence results for di�erential delay equations-I, J. Di�erential Equations 102(1993), 342{359.
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