Archivum Mathematicum

Donal O'Regan

Fixed point theory for compact perturbations of pseudocontractive maps

Archivum Mathematicum, Vol. 34 (1998), No. 3, 401--415

Persistent URL: http://dml.cz/dmlcz/107667

Terms of use:

© Masaryk University, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)

FIXED POINT THEORY FOR COMPACT PERTURBATIONS OF PSEUDOCONTRACTIVE MAPS

Donal O'Regan

Abstract

Some new fixed point results are established for mappings of the form $F_{1}+F_{2}$ with F_{2} compact and F_{1} pseudocontractive.

1. Introduction

This paper presents two new fixed point theorems for the sum of two operators (for example a pseudocontractive plus a compact operator) between Banach spaces. First however we will establish some general nonlinear alternatives of Leray-Schauder type. These can be established using the degree theory of Browder [2]. However it is of interest to provide elementary proofs. We do so by using the topological transversality of Granas [9] (see [$6,9,11,12$] for an elementary proof of this result). We remark here that our results were motivated by work of Browder [2], Deimling [5], Furi and Pera [7], Granas [9] and Kirk and Schöneberg [10].

We next gather together some definitions and some well known facts. Let E be a Banach space and Ω_{E} the family of all bounded subsets of E. The Kuratowskii measure of noncompactness is the map $\alpha: \Omega_{E} \quad[0, \quad)$ defined by

$$
\alpha(X)=\inf \epsilon>0: X \quad{ }_{i=1}^{n} X_{i} \text { and } \operatorname{diam}\left(X_{i}\right) \quad \epsilon ; \text { here } X \quad \Omega_{E} .
$$

Of course if $S, T \quad \Omega_{E}$ then
(i) $\alpha(S)=0$ iff \bar{S} is compact
(ii) $\alpha(\bar{S})=\alpha(S)$
(iii) if $S \quad T$ then $\alpha(S) \quad \alpha(T)$
(iv) $\alpha(c o(S))=\alpha(S)$
(v) $\alpha(T+S) \quad \alpha(T)+\alpha(S)$.

Let B_{1} and B_{2} be two Banach spaces and let $F: Y \quad B_{1} \quad B_{2}$ be continuous and map bounded sets into bounded sets. We call F a α-Lipschitzian map if F is continuous, bounded and there is a constant $k \quad 0$ with $\alpha(F(X)) \quad k \alpha(X)$

[^0]for all bounded sets $X \quad Y$. We call F a condensing map if F is α-Lipschitzian with $k=1$ and $\alpha(F(X))<\alpha(X)$ for all bounded sets $X \quad Y$ with $\alpha(X)=0$.

Let B be a real Banach space and let B^{\star} denote the dual of B. Notice from the Hahn-Banach theorem that

$$
\left\{x^{\star} \quad B^{\star}: x^{\star}(x)=x^{2}, x^{\star}=x\right\}=
$$

for every $x \quad B$. The mapping $F: B \quad 2^{B^{\star}}$ defined by

$$
F(x)=\left\{x^{\star} \quad B^{\star}: x^{\star}(x)=x^{2}=x^{\star 2}\right\}
$$

is called the duality map $[2,4]$ of B. By means of F, the semi inner product $(., .)_{+}: B \quad B \quad R$, is defined by

$$
(x, y)_{+}=\sup y^{\star}(x): y^{\star} \quad F(y)
$$

Let $\Omega \quad B$. A mapping $T: \Omega \quad B$ is said to be
(i) strongly accretive if for some $c>0$,

$$
\begin{equation*}
(T(x) \quad T(y), x \quad y)_{+} \quad c x \quad y^{2} \text { for all } x, y \quad \Omega \tag{1.1}
\end{equation*}
$$

(ii) accretive if

$$
(T(x) \quad T(y), x \quad y)_{+} \quad 0 \text { for all } x, y \quad \Omega
$$

(iii) pseudocontractive if $I \quad T$ is accretive.

We next state some well known results.
Theorem 1.1. [4]. Let E be a real Banach space and $T: E \quad E$ a continuous and strongly accretive map (i.e. (1.1) holds for some $c>0$). Then T is a homeomorphism from E onto E. Also $T^{-1}: E \quad E$ is a Lipschitz map with Lipschitz constant $\frac{1}{c}$.
Theorem 1.2. [5, 17]. (Deimling's invariance of domain).
Let $U \quad E$ (E a Banach space) be open and $T: U \quad E$ a continuous and strongly accretive map. Then $T(U)$ is open.

Theorem 1.3. [16]. Let B be a uniformly convex Banach space, Q a bounded, closed, convex subset of B and Ω an open set containing Q with dist $(Q, B / \Omega)>$ 0. Suppose $T: \bar{\Omega} \quad B$ is a continuous pseudocontractive mapping which sends bounded sets into bounded sets. Then $I \quad T$ is demiclosed on Q.
Remark. A mapping $T: \Gamma \quad B \quad B$ is called demiclosed on Γ if for every sequence $x_{n} \quad \Gamma$ with $x_{n} \rightharpoonup x$ and $T\left(x_{n}\right) \quad y$ as $n \quad$ we have $x \quad \Gamma$ and $T(x)=y$; here \rightharpoonup denotes weak convergence.

Next we state the topological transversality theorem of Granas [6,9,11,14]. Let E be a Banach space, C a closed convex subset of E and U an open subset of C. We call $N: \bar{U} \quad[0,1] \quad C$ a condensing map if N is continuous, bounded (i.e. $N(\bar{U} \quad[0,1])$ is a subset of a bounded set in $C), \alpha(N(W)) \quad \alpha(\pi W)$ for all bounded sets W of $\bar{U} \quad[0,1]$ and $\alpha(N(\Omega))<\alpha(\pi \Omega)$ for all bounded
non precompact subsets Ω of $\bar{U} \quad[0,1]$; here $\pi: \bar{U} \quad[0,1] \quad \bar{U}$ is the natural projection. $K_{\partial U}(\bar{U}, C)$ denotes the set of all condensing maps $H: \bar{U} \quad C$ with $H(\bar{U})$ a subset of a bounded set in C and with H fixed point free on ∂U. A mapping $F \quad K_{\partial U}(\bar{U}, C)$ is essential if for every $H \quad K_{\partial U}(\bar{U}, C)$ which agrees with F on ∂U we have that H has a fixed point in U.
Theorem 1.4. $[6,9,11,14]$. Let U, C and E be as above. Assume $N: \bar{U}$ $[0,1] \quad C$ is a condensing map with the following conditions satisfied:

$$
\begin{equation*}
N(u, \lambda)=u \text { for all } u \quad \partial U \text { and } \lambda \quad[0,1] \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
N(., 0) \text { is essential on } U . \tag{1.3}
\end{equation*}
$$

Then for each $\lambda \quad[0,1]$ there exists at least one fixed point in U for $N(., \lambda)$.
For convenience we rephrase theorem 1.4. Recall $[6,9,11,14]$ two maps F, G $K_{\partial U}(\bar{U}, C)$ are homotopic in $K_{\partial U}(\bar{U}, C)$, written $F=G$ in $K_{\partial U}(\bar{U}, C)$ if there is a condensing map $N: \bar{U} \quad[0,1] \quad C$ with $N_{t}(u)=N(u, t): \bar{U} \quad C$ belonging to $K_{\partial U}(\bar{U}, C)$ for each $t \quad[0,1]$ and $N_{0}=F, N_{1}=G$.
Theorem 1.5. $[6,9,11,14]$. Let U, C and E be as above. Suppose F and G are two maps in $K_{\partial U}(\bar{U}, C)$ such that $F=G$ in $K_{\partial U}(\bar{U}, C)$. Then F is essential iff G is essential.

Theorem 1.6. [6, 9, 11, 14]. Let U, C and E be as above and let $u_{0} \quad U$. Define $F: \bar{U} \quad C$ by $F(u)=u_{0}$. Then the constant map $F \quad K_{\partial U}(\bar{U}, C)$ is essential.

Theorem 1.4 is valid if the family of maps $N(., \lambda), \lambda \quad[0,1]$ are defined on the same domain \bar{U}. However to prove our fixed point results in section 2 we need to have results for families of maps $N(., \lambda), \lambda \quad[0,1]$ which may be defined on different domains. In fact it is easy to extend theorem 1.4 to this situation; this extension is due to Precup [16] if the maps are compact. However new arguments are needed if the mappings are condensing. We conclude the introduction by stating and proving such a result.

Let E be a Banach space and C a closed convex subset of E. Let $G \quad C \quad[0,1]$ be open in $C \quad[0,1]$. For any $\Omega \quad E \quad[0,1]$ let $\Omega_{\lambda}=x \quad E:(x, \lambda) \quad \Omega$ denote the section of Ω at λ.

Theorem 1.7. Let G, C and E be as above. Assume $N: \bar{G} \quad C$ is a condensing map with

$$
\begin{equation*}
N(x, \lambda)=x \text { for all }(x, \lambda) \quad \partial G \tag{1.4}
\end{equation*}
$$

In addition suppose there exists $p \quad G_{0}$ with

$$
\begin{equation*}
(1 \quad \mu) p+\mu N(x, 0)=x \text { for all }(x, 0) \quad \partial G, 0<\mu<1 \tag{1.5}
\end{equation*}
$$

holding. Then for each $\lambda[0,1]$ there exists at least one fixed point in G_{λ} for $N(., \lambda)$.

Proof. Let

$$
N^{\star}: \bar{G} \quad[0,1] \quad C \quad[0,1]
$$

be given by

$$
N^{\star}(x, \lambda, \mu)=(N(x, \lambda), \mu) \text { for }(x, \lambda) \quad \bar{G} \text { and } \mu \quad[0,1] .
$$

The idea is to apply theorem 1.4 with the Banach space $E \quad R$ with norm $(x, t)_{E \times R}=\max \quad x_{E}, t_{R}$, the convex set $C \quad[0,1]$, the open set G, and the map N^{\star}. We claim that

$$
\begin{equation*}
N^{\star}: \bar{G} \quad[0,1] \quad C \quad[0,1] \text { is a condensing map } \tag{1.6}
\end{equation*}
$$

that

$$
\begin{equation*}
N^{\star}(x, \lambda, \mu)=(x, \lambda) \text { for all }(x, \lambda) \quad \partial G \text { and } \mu \quad[0,1] \tag{1.7}
\end{equation*}
$$

and that

$$
\begin{equation*}
N^{\star}(x, \lambda, 0)=(N(x, \lambda), 0) \text { is essential on } G \tag{1.8}
\end{equation*}
$$

If (1.6), (1.7) and (1.8) are true then theorem 1.4 implies for each $\mu \quad[0,1]$, there exists $(x, \lambda) \quad G$ with

$$
N^{\star}(x, \lambda, \mu)=(x, \lambda)
$$

i.e. $N(x, \lambda)=x$ and $\mu=\lambda$. Thus $x \quad G_{\mu}$ with $N(x, \mu)=x$ and we are finished.

It remains to prove (1.6), (1.7) and (1.8). We first show that $N^{*}: \bar{G} \quad[0,1]$ $C \quad[0,1]$ is a condensing map.
Remark. If $N: \bar{G} \quad C$ is a compact map then clearly $N^{\star}: \bar{G} \quad[0,1] \quad C \quad[0,1]$ is a compact map from Tychonoff's theorem and the fact that $N^{\star}(\bar{G} \quad[0,1])$ $N(\bar{G}) \quad[0,1]$.

Fix $t[0,1]$. Let $N_{t}^{\star}: \bar{G} \quad E \quad t$ be given by $N_{t}^{\star}(x, \lambda)=(N(x, \lambda), t)$ for $(x, \lambda) \quad \bar{G}$. We first show
(1.9) $\quad N_{t}^{\star}: \bar{G} \quad E \quad t$ is a condensing map for each $t \quad[0,1]$.

To see this fix $t \quad[0,1]$ and let W be a bounded non precompact subset of \bar{G}. Then

$$
\alpha\left(N_{t}^{\star}(W)\right) \quad \alpha(N(W) \quad t)=\alpha(N(W))<\alpha(W)
$$

so (1.9) is true.
Remark. Note we used above the fact that $\alpha_{E}(\Omega)=\alpha_{E \times R}(\Omega \quad t)$ for any bounded set Ω in E; here $t \quad[0,1]$ is fixed. To show this suppose $\alpha_{E}(\Omega)<\epsilon$; here $\epsilon>0$. Then there exists subsets $\Omega_{1}, \ldots, \Omega_{m}$ of E with $\Omega \quad \underset{i=1}{m} \Omega_{i}$ and $\operatorname{diam}\left(\Omega_{i}\right) \quad \epsilon$. Also

$$
\Omega \quad t \quad{ }_{i=1}^{m}\left(\Omega_{i} \quad B_{t}\left(\frac{\epsilon}{2}\right)\right)
$$

where $\operatorname{diam}\left(\Omega_{i} \quad B_{t}\left(\frac{\epsilon}{2}\right)\right) \quad \epsilon$ (using the norm in $E \quad R$); here $B_{t}\left(\frac{\epsilon}{2}\right)$ is the ball with center t and radius $\frac{\epsilon}{2}$. Thus $\alpha_{E}(\Omega)<\epsilon$ implies $\alpha_{E \times R}(\Omega \quad t) \quad \epsilon$ and so

$$
\begin{equation*}
\alpha_{E \times R}(\Omega \quad t) \quad \alpha_{E}(\Omega) \tag{1.9a}
\end{equation*}
$$

(there exists a sequence ϵ_{n} with $\epsilon_{n} \alpha_{E}(\Omega)$ and since $\alpha_{E \times R}(\Omega \quad t) \quad \epsilon_{n}$ for all n we deduce (1.9a) immediately).

On the other hand suppose $\alpha_{E \times R}(\Omega \quad t)<\epsilon$. Then there exist subsets V_{1}, \ldots, V_{m} of E with $\Omega \quad t \quad{ }_{i=1}^{m} V_{i}$ and $\operatorname{diam}\left(V_{i}\right) \quad \epsilon$. Thus

$$
\Omega \quad m_{i=1}^{m} \pi V_{i} \text { with } \operatorname{diam}\left(\pi V_{i}\right) \quad \epsilon,
$$

and so $\alpha_{E \times R}(\Omega \quad t)<\epsilon$ implies $\alpha_{E}(\Omega) \quad \epsilon$. Consequently

$$
\begin{equation*}
\alpha_{E}(\Omega) \quad \alpha_{E \times R}(\Omega \quad t) \tag{1.9b}
\end{equation*}
$$

We now prove (1.6). Let W be a bounded non precompact subset of $\bar{G} \quad[0,1]$. Now let $\epsilon(t)>0$ be such that

$$
\begin{equation*}
\alpha\left(N_{t}^{\star}(\pi W)\right)<\alpha(\pi W) \quad 2 \epsilon(t) \tag{1.10}
\end{equation*}
$$

and let $V(t)$ be a neighborhood of t such that

$$
\begin{equation*}
N_{t}^{\star}(x, \lambda) \quad N_{s}^{\star}(x, \lambda)=(0, t s)=t s \quad \epsilon(t) \text { for all } s \quad V(t) \text { and }(x, \lambda) \quad \pi W \tag{1.11}
\end{equation*}
$$

Remark. In (1.10) we used the fact that if W is a non precompact subset of $\bar{G} \quad[0,1]$ then πW is a non precompact subset of \bar{G}.

Also if $s, s_{1} \quad V(t)$ and $(u, \lambda),\left(u_{1}, \lambda_{1}\right) \quad \pi W$ we have

$$
\left.\begin{array}{rl}
N^{\star}(u, \lambda, s) \quad N^{\star}\left(u_{1}, \lambda_{1}, s_{1}\right)= & {\left[N^{\star}(u, \lambda, s)\right.} \\
& \left.N^{\star}(u, \lambda, t)\right]+\left[N^{\star}\left(u_{1}, \lambda_{1}, t\right)\right. \\
& \left.\left.N_{1}, \lambda_{1}, s_{1}\right)\right]+\left[N_{t}^{\star}(u, \lambda)\right.
\end{array} \quad N_{t}^{\star}\left(u_{1}, \lambda_{1}\right)\right] . ~ \$
$$

and so (1.10) and (1.11) imply

$$
\begin{equation*}
\alpha\left(N^{\star}(\pi W \quad V(t))\right)<\alpha(\pi W) \tag{1.12}
\end{equation*}
$$

Now $V(t): t \quad[0,1]$ is an open cover of $[0,1]$ and since $[0,1]$ is compact we suppose

$$
V\left(t_{i}\right), i=1, \ldots, n \quad \text { is a finite covering of }[0,1] .
$$

Now (1.12) together with properties of α imply

$$
\begin{array}{rll}
\alpha\left(N^{\star}(W)\right) \quad \alpha\left(N^{\star}(\pi W\right. & [0,1])) \\
& \max \alpha\left(N^{\star}\left(\pi W \quad V\left(t_{i}\right)\right)\right), i=1, . ., n<\alpha(\pi W)
\end{array}
$$

so (1.6) is true.
Remark. Another way of proving (1.6) is to first show that $\alpha_{E}(\pi \Omega)=\alpha_{E \times R}(\Omega)$ for any bounded subset Ω of $E \quad[0,1]$; this follows from the second last remark and the fact that one can show $\alpha_{E \times R}(\Omega)=\alpha_{E}(\pi \Omega \quad 0)$ (notice $\Omega \quad \pi \Omega$ $0+0 \quad[0,1]$ so $\alpha_{E \times R}(\Omega) \quad \alpha(\pi W \quad 0)$ and the reverse inequality is also easy). Thus if W is a bounded non precompact subset of $\bar{G} \quad[0,1]$, then

$$
\alpha\left(N^{\star}(W)\right) \quad \alpha(N(\pi W) \quad[0,1])=\alpha(N(\pi W))<\alpha(\pi W)
$$

Next we show (1.7) is satisfied. Suppose not i.e. suppose there exists (x_{1}, λ_{1}) ∂G and $\mu_{1} \quad[0,1]$ with

$$
\left(x_{1}, \lambda_{1}\right)=N^{\star}\left(x_{1}, \lambda_{1}, \mu_{1}\right)=\left(N\left(x_{1}, \lambda_{1}\right), \mu_{1}\right) .
$$

Then $\mu_{1}=\lambda_{1}$ and $N\left(x_{1}, \lambda_{1}\right)=x_{1}$ with $\left(x_{1}, \lambda_{1}\right) \quad \partial G$. This contradicts (1.4). Consequenty (1.7) is true. It remains to show (1.8).

The idea is to apply theorem's 1.5 and 1.6. Let the homotopy $H: \bar{G} \quad[0,1]$ $C \quad[0,1]$ be given by

$$
H(x, \lambda, \mu)=((1 \quad \mu) p+\mu N(x, \lambda), 0) \text { for }(x, \lambda) \quad \bar{G} \text { and } 0 \quad \mu \quad 1 .
$$

First notice the map $H(x, \lambda, 0)=(p, 0)$ is essential on G by theorem 1.6 (note $(p, 0) \quad G$ since $\left.p \quad G_{0}\right)$. Next we show $H: \bar{G} \quad[0,1] \quad C \quad[0,1]$ is a condensing map. To see this let W be a bounded non precompact subset of $\bar{G} \quad[0,1]$. Then

$$
\begin{aligned}
\alpha(H(W)) & \alpha(\operatorname{co}(N(\pi W) \\
= & p) \quad 0) \\
\alpha(\operatorname{co}(N(\pi W) & p))=\alpha(N(\pi W))<\alpha(\pi W) .
\end{aligned}
$$

Before we apply theorem 1.5 we need to show that $H_{\mu}: \bar{G} \quad C \quad[0,1]$ belongs to $K_{\partial G}(\bar{G}, C \quad[0,1])$ for each $\mu \quad[0,1]$. Suppose not i.e. suppose there exists $(x, \lambda) \quad \partial G$ and $\mu \quad[0,1]$ with $H_{\mu}(x, \lambda)=(x, \lambda)$. Then $(1 \quad \mu) p+\mu N(x, \lambda)=x$ and $\lambda=0$ i.e. $(1 \mu) p+\mu N(x, 0)=x$. Now if $0<\mu<1$ we have a contradiction since (1.5) holds. If $\mu=1$ then $\lambda=0$ and $N(x, \lambda)=N(x, 0)=x$, which is a contradiction since (1.4) holds. If $\mu=0$ then $\lambda=0$ and $(p, 0)=(x, \lambda) \quad \partial G$ which is a contradiction since $p \quad G_{0}$ (i.e. $\left.(p, 0) \quad G\right)$. Thus $H_{\mu} \quad K_{\partial G}(\bar{G}, C$ $[0,1]$) for each $\mu \quad[0,1]$. Theorem 1.5 now implies that $H_{1}(x, \lambda)=(N(x, \lambda), 0)$ is essential so (1.8) follows.

2. Fixed point theory

We begin this section by presenting some nonlinear alternatives of LeraySchauder type. Our first result is motivated by work of Browder [2].
Theorem 2.1. Let U be an open subset of a real Banach space E and $\Omega \quad \bar{U}$ a subset of E. Assume $p \quad U$, and $F: \bar{U} \quad E$ is given by $F=F_{1}+F_{2}$. Here $I \quad F_{1}: \Omega \quad E$ is continuous and strongly accretive (single valued) with $F_{1}(\bar{U})$ bounded and $F_{2}: \bar{U} \quad E$ is a continuous, compact map. Then either
(A1) F has a fixed point in \bar{U}; or

Proof. Now there exists $c>0$ with

$$
\begin{equation*}
\left(\left(I \quad F_{1}\right)(x) \quad\left(I \quad F_{1}\right)(y), x \quad y\right)_{+} \quad c \quad x \quad y^{2} \text { for all } x, y \quad \Omega . \tag{2.1}
\end{equation*}
$$

Clearly $I \quad F_{1}$ is one to one and $\left(\begin{array}{ll}I & F_{1}\end{array}\right)^{-1}:\left(\begin{array}{ll}I & F_{1}\end{array}\right)(\Omega) \quad E$ is Lipschitz with Lipschitz constant $\frac{1}{c}$ since for $z_{1}, z_{2} \quad\left(\begin{array}{ll}I & F_{1}\end{array}\right)(\Omega)$ we have

$$
\begin{aligned}
& \text { c }\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)^{-1}\left(z_{1}\right) \quad\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)^{-1}\left(z_{2}\right)^{2} \\
& \left(\begin{array}{ll}
z_{1} & z_{2},\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)^{-1}\left(z_{1}\right) \quad\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)^{-1}\left(z_{2}\right)
\end{array}\right)_{+} \\
& z_{1} \quad z_{2} \quad\left(\begin{array}{ll}
I & \left.F_{1}\right)^{-1}\left(z_{1}\right)
\end{array}\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)^{-1}\left(z_{2}\right) .\right.
\end{aligned}
$$

Let

$$
\begin{equation*}
G=(x, \lambda): x \quad E, \lambda \quad[0,1] \text { and } x \quad\left(I \quad \lambda F_{1}\right)(U) \tag{2.2}
\end{equation*}
$$

and for each $\lambda \quad[0,1]$ let G_{λ} be the section of G at level λ i.e.

$$
G_{\lambda}=\left(\begin{array}{ll}
I & \left.\lambda F_{1}\right)(U)=u \quad E:(u, \lambda) \quad G .
\end{array}\right.
$$

Let $J: G_{0} \quad E$ be given by $J(x)=p$ and $N_{1}: G_{1} \quad E$ be given by $N_{1}(u)=$ $F_{2}\left(\begin{array}{ll}I & \left.F_{1}\right)^{-1}(u) \text {. }\end{array}\right.$
Remark. Fix $0 \quad \lambda$ 1. Then $I \quad \lambda F_{1}: \Omega \quad E$ is strongly accretive. This is immediate since for $x, y \quad \Omega$,

$$
\begin{aligned}
& \left(\left(\begin{array}{ll}
I & \left.\lambda F_{1}\right)(x) \quad\left(\begin{array}{ll}
I & \lambda F_{1}
\end{array}\right)(y), x
\end{array} \quad y\right)_{+}\right. \\
& =\left(\begin{array}{ll}
\left.\lambda\left[\begin{array}{ll}
I & \lambda F_{1}
\end{array}\right)(x) \quad\left(\begin{array}{ll}
I & \lambda F_{1}
\end{array}\right)(y)\right]+\left(\begin{array}{ll}
1 & \lambda
\end{array}\right)\left(\begin{array}{ll}
x & y
\end{array}\right), x & y
\end{array}\right)_{+} \\
& =\lambda\left(\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)(x) \quad\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)(y), x \quad y\right)_{+}+\left(\begin{array}{ll}
1 & \lambda
\end{array}\right) x \quad y^{2} \\
& \left(\lambda c+\left(\begin{array}{ll}
1 & \lambda))
\end{array} \quad x \quad y^{2}\right.\right.
\end{aligned}
$$

since $\left(z_{1}+\alpha z_{2}, z_{2}\right)_{+}=\left(z_{1}, z_{2}\right)_{+}+\alpha z_{2}{ }^{2}$ (here $z_{1}, z_{2} \quad E$ and α is a scaler). Also $\left(\begin{array}{ll}I & \lambda F_{1}\end{array}\right)^{-1}:\left(\begin{array}{ll}I & \lambda F_{1}\end{array}\right)(\Omega) \quad E$ is a Lipschitz map with Lipschitz constant $\frac{1}{c_{\lambda}}$; here $c_{\lambda}=\lambda c+\left(\begin{array}{ll}1 & \lambda\end{array}\right)$ and notice $\frac{1}{c_{\lambda}} \quad \frac{1}{\min \{1, c\}}$.

Consider the homotopy $N: \bar{G} \quad E$ joining J and N_{1} given by

$$
N(u, \lambda)=\lambda F_{2}\left(I \quad \lambda F_{1}\right)^{-1}(u)+\left(\begin{array}{ll}
1 & \lambda) p \tag{2.3}
\end{array}\right.
$$

Fix $\lambda \quad[0,1]$. Define $h_{\lambda}: \bar{U} \quad E$ by $h_{\lambda}(u)=\left(\begin{array}{ll}I & \left.\lambda F_{1}\right)(u) \text {. Now Deimling's }\end{array}\right.$ invariance of domain theorem (theorem 1.2) implies that $G_{\lambda}=h_{\lambda}(U)$ is open. Next we claim that $h_{\lambda}(\bar{U})$ is closed and $h_{\lambda}(\bar{U})=\overline{h_{\lambda}(U)}=\overline{G_{\lambda}}$. To see that $h_{\lambda}(\bar{U})$ is closed let $w \overline{h_{\lambda}(\bar{U})}$. Then there exists $u_{n} \quad \bar{U}$ with $h_{\lambda}\left(u_{n}\right) \quad w$. Now since

$$
\left(\lambda c+\left(1 \begin{array}{ll}
1 & \lambda))
\end{array}\right) u_{n} \quad u_{m} \quad\left(\begin{array}{ll}
I & \left.\lambda F_{1}\right)\left(u_{n}\right)
\end{array} \quad\left(\begin{array}{ll}
I & \lambda F_{1}
\end{array}\right)\left(u_{n}\right)\right.\right.
$$

we have that u_{n} is a Cauchy sequence in \bar{U}. Thus there exists $u \quad \bar{U}$ with $u_{n} \quad u$. Since h_{λ} is continuous we have that $h_{\lambda}\left(u_{n}\right) \quad h_{\lambda}(u)$ so $w=h_{\lambda}(u)$. Thus $h_{\lambda}(\bar{U})$ is closed. In addition since h_{λ} is continuous we have that $h_{\lambda}(\bar{U})$ $\overline{h_{\lambda}(U)}$. On the other hand $\overline{h_{\lambda}(U)} \quad \overline{h_{\lambda}(\bar{U})}=h_{\lambda}(\bar{U})$ since $h_{\lambda}(\bar{U})$ is closed. Consequently $h_{\lambda}(\bar{U})=\overline{h_{\lambda}(U)}=\overline{G_{\lambda}}$. Next since $F_{1}(\bar{U})$ is bounded there exists a constant M with $F_{1}(u) \quad M$ for all $u \quad \bar{U}$. Thus if $t, \lambda \quad[0,1]$ and $u \quad \bar{U}$ we have

$$
h_{\lambda}(u) \quad h_{t}(u)=\left(\begin{array}{ll}
\lambda & t) F_{1}(u) \tag{2.4}
\end{array} \quad M \lambda \quad t .\right.
$$

The above together with a result of F. E. Browder [2, Prop. 12.2,p. 189] implies that G given in (2.2) is an open subset of $E \quad[0,1]$ and

$$
\begin{equation*}
\partial G=(x, \lambda): x \quad E, \lambda \quad[0,1] \text { and } x \quad\left(I \quad \lambda F_{1}\right)(\partial U) . \tag{2.5}
\end{equation*}
$$

We now return to the homotopy $N: \bar{G} \quad E$ joining J and N_{1} given in (2.3). Either $N(x, \mu)=x$ for all $(x, \mu) \quad \partial G$ or not. Suppose not i.e. suppose there exists $(y, \lambda) \quad \partial G$ with $N(y, \lambda)=y$. Then there exists $u \quad \partial U$ (by (2.5)) with $N(y, \lambda)=y=\left(\begin{array}{ll}I & \lambda F_{1}\end{array}\right)(u)$. Now $\lambda=0$ since if $\lambda=0$ then $p=N(y, 0)=$ $y=I u=u \quad \partial U$, a contradiction. Thus $0<\lambda \quad 1$. Also $N(y, \lambda)=y$ means $\lambda F_{2}\left(\begin{array}{ll}I & \left.\lambda F_{1}\right)^{-1}(y)+\left(\begin{array}{ll}1 & \lambda) p=y\end{array}\right) \text { and so }\end{array}\right.$

$$
\lambda F_{2}(u)=\lambda F_{2}\left(I \quad \lambda F_{1}\right)^{-1}(y)=y \quad(1 \quad \lambda) p=\left(\begin{array}{lll}
I & \left.\lambda F_{1}\right)(u)
\end{array} \quad(1 \quad \lambda) p\right.
$$

That is

$$
\lambda F(u)+(1 \quad \lambda) p=u, 0<\lambda \quad 1 \quad \text { and } \quad u \quad \partial U .
$$

Hence ($A 2$) occurs if $0<\lambda<1$ and ($A 1$) occurs if $\lambda=1$ and we are finished. So for the remainder of the proof we assume $N(x, \mu)=x$ for all $(x, \mu) \quad \partial G$.

Next we claim that $N: \bar{G} \quad E$ is a continuous, compact map. To see the continuity let $\left(y_{n}, \lambda_{n}\right),(y, \lambda) \quad \bar{G}$ with $\left(y_{n}, \lambda_{n}\right) \quad(y, \lambda)$. We first show

$$
\begin{equation*}
h_{\lambda_{n}}^{-1}\left(y_{n}\right) \quad h_{\lambda}^{-1}(y) . \tag{2.6}
\end{equation*}
$$

To see this recall (2.4) implies that given $\epsilon>0$ there exists a positive integer k such that for $n>k$ we have

$$
h_{\lambda_{n}}(x) \quad h_{\lambda}(x) \quad \epsilon \text { for all } x \quad \bar{U} .
$$

Let $x_{n}=h_{\lambda_{n}}^{-1}\left(y_{n}\right)$. Thus for $n>k$ we have

$$
y_{n} \quad h_{\lambda}\left(x_{n}\right)=h_{\lambda_{n}}\left(x_{n}\right) \quad h_{\lambda}\left(x_{n}\right) \quad \epsilon .
$$

Also since $y_{n} \quad y$ then there exists an integer $n_{0} \quad k$ such that

$$
h_{\lambda}\left(x_{n}\right) \quad y \quad 2 \epsilon \text { for } n>n_{0}
$$

Thus as $n \quad$ we have $h_{\lambda}\left(x_{n}\right) \quad y$ in E. Consequently

$$
h_{\lambda}^{-1}\left(y_{n}\right)=h_{\lambda}^{-1}\left(h_{\lambda}\left(x_{n}\right)\right) \quad h_{\lambda}^{-1}(y)
$$

since h_{λ}^{-1} is continuous on $\overline{h_{\lambda}(U)}=h_{\lambda}(\bar{U})$. Next notice

$$
\begin{aligned}
& N\left(y_{n}, \lambda_{n}\right) \quad N(y, \lambda) \quad \lambda_{n} F_{2} h_{\lambda_{n}}^{-1}\left(y_{n}\right) \quad \lambda F_{2} h_{\lambda}^{-1}(y)+\lambda_{n} \quad \lambda \quad p \\
& \lambda_{n} F_{2} h_{\lambda_{n}}^{-1}\left(y_{n}\right) \quad \lambda_{n} F_{2} h_{\lambda}^{-1}(y) \\
& +\lambda_{n} F_{2} h_{\lambda}^{-1}(y) \quad \lambda F_{2} h_{\lambda}^{-1}(y)+\lambda_{n} \quad \lambda \quad p \\
& =\lambda_{n} \quad F_{2} h_{\lambda_{n}}^{-1}\left(y_{n}\right) \quad F_{2} h_{\lambda}^{-1}(y) \\
& +\lambda_{n} \quad \lambda \quad F_{2} h_{\lambda}^{-1}(y)+\lambda_{n} \quad \lambda \quad p .
\end{aligned}
$$

Now $F_{2}: \bar{U} \quad \underline{E}$ being continuous together with (2.6) and $F_{2}(\bar{U})$ bounded implies that $N: \bar{G} \quad E$ is continuous. To see that N is a compact map let
$(y, \lambda) \quad \bar{G}$. Then $y=\left(\begin{array}{ll}I & \lambda F_{1}\end{array}\right)(\bar{U})$, i.e. $y=\left(\begin{array}{ll}I & F_{1}\end{array}\right)(u)$ for some $u \quad \bar{U}$, and $N(y, \lambda)=\lambda F_{2}\left(\begin{array}{ll}I & \left.\lambda F_{1}\right)^{-1}(y)+\left(\begin{array}{ll}1 & \lambda\end{array}\right) p=\lambda F_{2}(u)+\left(\begin{array}{lll}1 & \lambda\end{array}\right) p \quad c o\left(F_{2}(\bar{U})\right.\end{array} \quad p\right)$. Consequently

$$
N(\bar{G}) \quad c o\left(F_{2}(\bar{U}) \quad p\right)
$$

and so

$$
\alpha(N(\bar{G})) \quad \alpha\left(c o\left(F_{2}(\bar{U}) \quad p\right)\right)=\alpha\left(F_{2}(\bar{U}) \quad p\right)=0 .
$$

Consequently $N: \bar{G} \quad E$ is a compact map.
Remark. Alternatively one can deduce that N is a compact map if one notices

$$
F_{2}(\bar{U}) \quad K, K \text { compact; } N(\bar{G}) \quad \overline{c o}(K \quad p)
$$

and that $\overline{c o}\left(\begin{array}{ll}K & p\end{array}\right)$ is compact by Mazur's theorem.
We are also assuming $N(x, \lambda)=x$ for all $(x, \lambda) \quad \partial G$. Also since $N(x, 0)=p$ we have $(1 \quad \mu) p+\mu N(x, 0)=x$ for all $(x, 0) \quad \partial G$ and $0<\mu<1$ since if $p=(1 \mu) p+\mu N(x, 0)=x$ for some $(x, 0) \quad \partial G$ and $0<\mu<1$ then $(p, 0) \quad \partial G$ which is a contradiction since $p / \partial U=I(\partial U)$. Now theorem 1.7 implies that there exists $y \quad G_{1}=\left(\begin{array}{ll}I & F_{1}\end{array}\right)(U)$ with $N(y, 1)=y$. So there exists $u \quad U$ with $N(y, 1)=y=\left(I \quad F_{1}\right)(u)$. Now $N(y, 1)=y$ means $F_{2}\left(I \quad F_{1}\right)^{-1}(y)=y$ so

$$
F_{2}(u)=F_{2}\left(I \quad F_{1}\right)^{-1}(y)=y=\left(I \quad F_{1}\right)(u) .
$$

That is $F(u)=u$ with $u \quad U$ so (A1) occurs.
Remark. The assumption that $h_{1}=I \quad F_{1}: \Omega \quad E$ is continuous and strongly accretive in theorem 2.1 could be replaced by the more general condition
(2.7) $\left\{\begin{array}{l}h_{1}: \Omega \quad E \text { is continuous with } h_{1}^{-1}: h(\Omega) \quad E \text { continuous } \\ \text { (assuming the inverse } h_{1}^{-1} \text { exists), } h_{1}(U) \text { open, } h_{1}(\bar{U}) \overline{h_{1}(U)} \\ \text { and (2.4) holds for some } M>0 \text { (independent of } u \bar{U}) .\end{array}\right.$

Theorem 2.2. Let U be an open set in a a real Banach space E and $\Omega \quad \bar{U}$ a subset of E. Assume $0 \quad U$ and $F: \bar{U} \quad E$ is given by $F=F_{1}+F_{2}$. Here $I \quad F_{1}: \Omega \quad E$ is continuous and accretive (i.e $F_{1}: \Omega \quad E$ is pseudocontractive) with $F_{1}(\bar{U})$ bounded and $F_{2}: \bar{U} \quad E$ is a continuous, compact map. Also assume $\left(\begin{array}{ll}I & F\end{array}\right)(\bar{U})$ is closed. Then either
(A1) F has a fixed point in \bar{U}; or
(A2) there exists $u \quad \partial U$ and $\lambda \quad(0,1)$ with $u=\lambda F(u)$.
Proof. Assume (A2) does not hold. Consider for each $n \quad 2,3, \ldots$ the mapping

$$
S_{n}=\left(\begin{array}{ll}
1 & \frac{1}{n} \tag{2.8}
\end{array}\right) F: \bar{U} \quad E .
$$

Notice (1, $\frac{1}{n}$) $F_{2}: \bar{U} \quad E$ is compact and $I \quad\left(1 \quad \frac{1}{n}\right) F_{1}: \Omega \quad E$ is strongly accretive since for $x, y \quad \Omega$ we have

$$
\begin{aligned}
& \left(\left(\begin{array}{ll}
I & \left.\left.\left(\begin{array}{ll}
1 & \frac{1}{n}
\end{array}\right)\right) F_{1}(x) \quad\left(\begin{array}{lll}
I & (1 & \frac{1}{n}
\end{array}\right)\right) F_{1}(y), x \\
y
\end{array}\right)_{+}\right. \\
& =\left(\begin{array}{ll}
1 & \frac{1}{n}
\end{array}\right)\left[\begin{array}{lll}
\left(\begin{array}{ll}
1 & \left.F_{1}\right)(x) \\
\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)(y)
\end{array}\right]+\frac{1}{n}\left(\begin{array}{lll}
x & y
\end{array}\right), x & y
\end{array}\right)_{+} \\
& \\
& \\
& \\
&
\end{aligned}
$$

Remark. $\left(z_{1}+\alpha z_{2}, z_{2}\right)_{+}=\left(z_{1}, z_{2}\right)_{+}+\alpha \quad z_{2}{ }^{2}$; here $z_{1}, z_{2} \quad E$ and α is a scaler.
Apply theorem 2.1 to S_{n}. If there exists $\lambda \quad(0,1)$ and $u \quad \partial U$ with $u=$ $\lambda S_{n}(u)$ then

$$
u=\lambda\left(\begin{array}{ll}
1 & \frac{1}{n}
\end{array}\right) F(u)=\eta F(u) \quad \text { where } 0<\eta=\lambda\left(\begin{array}{ll}
1 & \frac{1}{n}
\end{array}\right)<1
$$

which is a contradiction since ($A 2$) was assumed not to hold. Consequently for each $n \quad 2,3, \ldots$ we have that S_{n} has a fixed point $u_{n} \quad \bar{U}$. Notice also since $u_{n}=\left(\begin{array}{ll}1 & \frac{1}{n}\end{array}\right) F\left(u_{n}\right)$ we have that $u_{n} \quad F\left(u_{n}\right)=\frac{1}{n} F\left(u_{n}\right)$ and so $u_{n} \quad F\left(u_{n}\right)$
0 as $n \quad$ (since $F(\bar{U})$ is bounded). Consequently $0 \quad\left(\begin{array}{ll}I & F\end{array}\right)(\bar{U})$ since $\left(\begin{array}{ll}I & F\end{array}\right)(\bar{U})$ is closed. Thus there exists $u \quad \bar{U}$ with $0=\left(\begin{array}{ll}I & F\end{array}\right)(u)$.
Theorem 2.3. Let U be a bounded, open, convex subset of a uniformly convex Banach space E. Suppose Ω is an open set containing \bar{U} with dist $(\bar{U}, E / \Omega)>0$. Assume $0 \quad U$ and $F: \bar{U} \quad E$ is given by $F=F_{1}+F_{2}$. Here $I \quad F_{1}: \Omega \quad E$ is a continuous accretive mapping which sends bounded sets into bounded sets and $F_{2}: \bar{U} \quad E$ is a continuous, compact map. In addition suppose $F_{2}: \bar{U} \quad E$ is strongly continuous. Then either
(A1) F has a fixed point in \bar{U}; or
(A2) there exists $u \quad \partial U$ and $\lambda(0,1)$ with $u=\lambda F(u)$.
Remark. $F_{2}: \bar{U} \quad E$ is said to be strongly continuous [18] if $x_{x} \rightharpoonup x$ implies $F_{2}\left(x_{n}\right) \quad F_{2}(x)$; here $x_{n}, x \quad \bar{U}$.
Proof. Assume (A2) does not hold. Consider for each $n \quad 2,3, \ldots$ the mapping S_{n} given by (2.8). Essentially the same reasoning as in theorem 2.2 implies that S_{n} has a fixed point $u_{n} \bar{U}$.

A standard result in functional analysis (if E is a reflexive Banach space then any norm bounded sequence in E has a weakly convergent subsequence) implies (since \bar{U} is bounded) that there exists a subsequence S of integers and a $u \bar{U}$ (notice \bar{U} is strongly closed and convex so weakly closed) with

$$
u_{n} \rightharpoonup u \text { as } n \quad \text { in } S .
$$

Also since $u_{n}=\left(\begin{array}{ll}1 & \frac{1}{n}\end{array}\right) F_{1}\left(u_{n}\right)+\left(\begin{array}{ll}1 & \frac{1}{n}\end{array}\right) F_{2}\left(u_{n}\right)$ we have

$$
\begin{array}{r}
\left(\begin{array}{ll}
\left.I \quad F_{1}\right)\left(u_{n}\right) \quad F_{2}(u)= & \frac{1}{n} F_{1}\left(u_{n}\right)+\left(\begin{array}{ll}
1 & \frac{1}{n}
\end{array}\right) F_{2}\left(u_{n}\right) \quad F_{2}(u) \\
& \frac{1}{n} F\left(u_{n}\right)+F_{2}\left(u_{n}\right) \quad F_{2}(u)
\end{array}, ~\right.
\end{array}
$$

so since F_{2} is strongly continuous and $F(\bar{U})$ is bounded we have $\left(\begin{array}{ll}I & F_{1}\end{array}\right)\left(u_{n}\right)$ $F_{2}(u)$.

Theorem 1.3 (i.e. $I \quad F_{1}$ is demiclosed on $\left.\bar{U}\right)$ implies $\left(I \quad F_{1}\right)(u)=F_{2}(u)$.
Remark. Of course one can prove theorem 2.3 directly from theorem 2.2 by showing that $\left(\begin{array}{ll}I & F\end{array}\right)(\bar{U})$ is closed. To see this let $\left.y \quad \overline{(I} F\right)(\bar{U})$ so there exists $u_{n} \quad \bar{U}$ with $\left(\begin{array}{ll}I & F\end{array}\right)\left(u_{n}\right) \quad y$. Since $u_{n} \quad \bar{U}$ there exists a subsequence S of integers and a $u \quad \bar{U}$ with $u_{n} \rightharpoonup u$ as $n \quad$ in S. Consequently $\left(\begin{array}{ll}I & F\end{array}\right)\left(u_{n}\right) \quad\left(\begin{array}{ll}I & F\end{array}\right)(u)$ i.e. $y=\left(\begin{array}{ll}I & F\end{array}\right)(u)$.

Next we present two new fixed point results.
Theorem 2.4. Let Q be a closed, convex subset of a a real Banach space E with $0 \quad Q$. Also let $\Omega \quad Q$ be a subset of E with $U_{i}=x \quad E: d(x, Q)<\frac{1}{i} \quad \Omega$ for i sufficiently large; here d denotes the metric induced by the norm. Now $F: Q \quad E$ is given by $F=F_{1}+F_{2}$ where $I \quad F_{1}: \Omega \quad E$ is continuous, strongly accretive (i.e. (2.1) is satisfied) with $F_{1}\left(\overline{U_{1}}\right)$ bounded and $F_{2}: Q \quad E$ is a bounded continuous,compact map. In addition suppose $F_{2}(Q) \quad\left(\begin{array}{ll}I & F_{1}\end{array}\right)(\Omega)$ with $\left(\begin{array}{ll}I & F_{1}\end{array}\right)(\Omega)$ closed and also that

$$
\left\{\begin{array}{l}
\text { if }\left(x_{j}, \lambda_{j}\right){ }_{j=1}^{\infty} \text { is a sequence in } \partial Q \quad[0,1] \text { converging } \tag{2.9}\\
\text { to }(x, \lambda) \text { with } x=\lambda F(x) \text { and } 0 \quad \lambda<1, \text { and if } z_{j} \\
\text { is a sequence in } U_{m}(m \text { sufficiently large) with } \\
z_{j} \partial U_{j} \text { for } j=m+1, m+2, \ldots \text { and } z_{j} \quad x \text {, then } \\
\lambda_{j}\left[F_{1}\left(z_{j}\right)+F_{2}\left(x_{j}\right)\right] \quad Q \text { for } j \text { sufficiently large }
\end{array}\right.
$$

holds. Then F has a fixed point in Q.
Remarks. (i) If $\Omega=E$ then $\left(I \quad F_{1}\right)(\Omega)=E$. Notice theorem 1.1 implies that $I \quad F_{1}$ is a homeomorphism from E onto E.
(ii) In the statement of theorem 2.4, $F_{1}\left(\overline{U_{1}}\right)$ bounded may be replaced by $F_{1}\left(\overline{U_{m}}\right)$ bounded for some $m \quad 1,2, \ldots$.
(iii) Theorem 2.4 was proved by Furi and Pera [7], by a different method, when $F_{1}=0$ and F_{2} is a compact map.
Proof. Let r : E Q be a continuous retraction [13] with $r(z) \quad \partial Q$ for $z \quad E Q$. Consider

$$
B=\left\{\begin{array}{lll}
x & (I & \left.F_{1}\right)(\Omega): x=F_{2} r\left(I \quad F_{1}\right)^{-1}(x)
\end{array}\right\}
$$

We claim $B=$. To see this we look at $r\left(I \quad F_{1}\right)^{-1} F_{2}: Q \quad Q$ (notice this is a well defined map since $F_{2}(Q) \quad\left(\begin{array}{llll}I & \left.\left.F_{1}\right)(\Omega)\right) \text {. Now } r\left(I \quad F_{1}\right)^{-1} F_{2}: Q \quad Q\end{array}\right.$ is a compact map since $F_{2}: Q \quad E$ is a compact map and $r,\left(I \quad F_{1}\right)^{-1}$ are
continuous maps. Schauder's fixed point theorem implies that there exists y Q with $y=r\left(I \quad F_{1}\right)^{-1} F_{2}(y)$. Let $z=F_{2}(y)$. Then

$$
F_{2} r\left(I \quad F_{1}\right)^{-1}(z)=F_{2} r\left(I \quad F_{1}\right)^{-1} F_{2}(y)=F_{2}(y)=z
$$

so $z \quad B$ (notice $y \quad Q$ and $\left.F_{2}(Q) \quad\left(\begin{array}{ll}I & F_{1}\end{array}\right)(\Omega)\right)$ and $B=$. In addition the continuity of $F_{2} r\left(\begin{array}{ll}I & F_{1}\end{array}\right)^{-1}$ together with $\left(\begin{array}{ll}I & F_{1}\end{array}\right)(\Omega)$ closed implies that B is closed. Also

$$
B \quad F_{2}(Q)
$$

together with $F_{2}: Q \quad E$ being a compact map implies that B is compact. Let

$$
\Phi=\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)^{-1}(B)
$$

Notice Φ is a compact set. We claim $\Phi \quad Q=$
To do this we argue by contradiction. Suppose $\Phi \quad Q=$. Then since Φ is compact and Q is closed there exists $\delta>0$ with $\operatorname{dist}(\Phi, Q)>\delta$. Define

$$
U_{i}=\left\{\begin{array}{cc}
x & \left.E: d(x, Q)<\frac{1}{i}\right\} \quad \text { for } i \quad N, N+1, \ldots ~
\end{array}\right.
$$

Here $N \quad 1,2, \ldots$ is chosen so that $1<\delta N$ and $\overline{U_{i}} \quad \Omega$ for $i \quad N$. Fix $i \quad N, N+1, \ldots$. Notice U_{i} is open and since $\operatorname{dist}(\Phi, Q)>\delta$ then $\Phi \overline{U_{i}}=$. Also $F_{2} r: \overline{U_{i}} \quad E$ is a compact map. Now theorem 2.1 (with $F_{1}+F_{2} r$) implies that there exists $\left(y_{i}, \lambda_{i}\right) \quad \partial U_{i} \quad(0,1)$ with $y_{i}=\lambda_{i}\left[F_{1}\left(y_{i}\right)+F_{2} r\left(y_{i}\right)\right]$.
Remark. Notice there cannot exist a $y \quad \overline{U_{i}}$ with $y=F_{1}(y)+F_{2} r(y)$ since $\Phi \overline{U_{i}}=$. To see this suppose there exists $y \overline{U_{i}}$ with $y=F_{1}(y)+F_{2} r(y)$. We claim $y \quad \Phi$ (which will yield a contradiction). Let $x=\left(\begin{array}{ll}I & F_{1}\end{array}\right)(y)$. Then $x \quad B$ since

$$
F_{2} r\left(I \quad F_{1}\right)^{-1}(x)=F_{2} r(y)=\left(I \quad F_{1}\right)(y)=x
$$

and so $y \quad \Phi$.
Consequently for each $j \quad N, N+1, \ldots$ there exists $\left(y_{j}, \lambda_{j}\right) \quad \partial U_{j}$ with $y_{j}=\lambda_{j}\left[F_{1}\left(y_{j}\right)+F_{2} r\left(y_{j}\right)\right]$. Notice in particular since $y_{j} \quad \partial U_{j}$ that

$$
\begin{equation*}
\lambda_{j}\left[F_{1}\left(y_{j}\right)+F_{2} r\left(y_{j}\right)\right] \quad Q \text { for } j \quad N, N+1, \ldots \tag{2.10}
\end{equation*}
$$

Now let

$$
G=(x, \lambda): x \quad E, \lambda \quad[0,1] \text { and } x \quad\left(I \quad \lambda F_{1}\right)\left(U_{N}\right)
$$

As, in theorem 2.1,

$$
\bar{G}=\left\{(x, \lambda): x \quad E, \lambda \quad[0,1] \text { and } x \quad\left(\begin{array}{ll}
I & \left.\lambda F_{1}\right)\left(\overline{U_{N}}\right)
\end{array}\right\}\right.
$$

Next let

$$
D=\left\{\begin{array}{llll}
x & E: x & (I & \left.\lambda F_{1}\right)\left(\overline{U_{N}}\right)
\end{array} \text { for some } \lambda \text { and } N_{0}(x, \lambda)=x\right\}
$$

where $N_{0}: \bar{G} \quad E$ is given by

$$
N_{0}(u, \lambda)=\lambda F_{2} r\left(I \quad \lambda F_{1}\right)^{-1}(u)
$$

Also, as in theorem 2.1 since $F_{2} r: \overline{U_{N}} \quad E$ is a compact map, we have that N_{0} : $\bar{G} \quad E$ is a continuous compact map. Notice $x_{i} \quad D, i \quad N, N+1, \ldots$ where $x_{i}=\left(\begin{array}{ll}I & \left.\lambda_{i} F_{1}\right)\left(y_{i}\right) . \text { To see this notice } x_{i}\end{array}\left(\begin{array}{lll}I & \left.\lambda_{i} F_{1}\right)^{-1}\left(\begin{array}{ll}\partial U_{i}\end{array}\right) & \left(\begin{array}{ll}I & \lambda_{i} F_{1}\end{array}\right)^{-1}\left(\overline{U_{N}}\right)\end{array}\right.\right.$ and

$$
\lambda_{i} F_{2} r\left(I \quad \lambda_{i} F_{1}\right)^{-1}\left(x_{i}\right)=\lambda_{i} F_{2} r\left(y_{i}\right)=\left(\begin{array}{ll}
I & \lambda_{i} F_{1}
\end{array}\right)\left(y_{i}\right)=x_{i} .
$$

Also D is closed. To see this let $x \quad \bar{D}$. Then there exists $z_{n} \quad D$ with $z_{n} \quad x$. Also there exists $\mu_{n} \quad[0,1]$ with $z_{n} \quad\left(I \quad \mu_{n} F_{1}\right)\left(\overline{U_{N}}\right)$. Without loss of generality assume $\mu_{n} \quad \mu$. Then $\left(z_{n}, \mu_{n}\right),(x, \mu) \quad \bar{G}$ together with $N_{0}: \bar{G} \quad E$ continuous implies $N_{0}(x, \mu)=x$. Hence $x \quad D$ and D is closed. Also since $D \quad N_{0}(\bar{G})$ we have that D is compact (so sequentially compact).

This together with $\lambda_{j} \quad 1$ (for $j \quad N, N+1, \ldots$) implies that we may assume without loss of generality that $\lambda_{j} \quad \lambda^{\star}$ and $x_{j} \quad x^{\star}$. Now $\left(x_{j}, \lambda_{j}\right),\left(x^{\star}, \lambda^{\star}\right)$ $\bar{G}, x_{j}=N_{0}\left(x_{j}, \lambda_{j}\right)$ together with $N_{0}: \bar{G} \quad E$ continuous implies $N_{0}\left(x,{ }^{\star}, \lambda^{\star}\right)=$ x^{\star}. Also as in theorem 2.1 (see (2.6)) we have immediately that

$$
y_{j}=\left(\begin{array}{ll}
I & \left.\lambda_{i} F_{1}\right)^{-1}\left(x_{i}\right)
\end{array} \quad\left(\begin{array}{ll}
I & \lambda^{\star} F_{1}
\end{array}\right)^{-1}\left(x^{\star}\right) .\right.
$$

 $d\left(y_{j}, Q\right)=\frac{1}{j}$. Also

$$
\lambda^{\star} F_{2}\left(y^{\star}\right)=\lambda^{\star} F_{2} r\left(y^{\star}\right)=\lambda^{\star} F_{2} r\left(I \quad \lambda^{\star} F_{1}\right)^{-1}\left(x^{\star}\right)=x^{\star}=\left(\begin{array}{ll}
I & \left.\lambda^{\star} F_{1}\right)\left(y^{\star}\right)
\end{array}\right.
$$

so $y^{\star}=\lambda^{\star} F\left(y^{\star}\right)$. If $\lambda^{\star}=1$ then $y^{\star}=F\left(y^{\star}\right), y^{\star} \quad \partial Q$ and $x^{\star}=\left(\begin{array}{ll}I & F_{1}\end{array}\right)\left(y^{\star}\right)$ B since

$$
F_{2} r\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)^{-1}\left(x^{\star}\right)=F_{2} r\left(y^{\star}\right)=F_{2}\left(y^{\star}\right)=\left(\begin{array}{ll}
I & F_{1}
\end{array}\right)\left(y^{\star}\right)=x^{\star} .
$$

Hence $y^{\star} \quad \Phi$ which contradicts $\Phi \quad Q=$. Hence we may assume $0 \quad \lambda^{\star}<1$. But in this case (2.9) with $x_{j}=r\left(y_{j}\right) \quad \partial Q, x=y^{\star}=r\left(y^{\star}\right)$ and $z_{j}=y_{j}$, implies $\lambda_{j}\left[F_{1}\left(y_{j}\right)+F_{2} r\left(y_{j}\right)\right] \quad Q$ for j sufficiently large. This contradicts (2.10). Thus $\Phi \quad Q=$ so there exists $x \quad \Phi \quad Q$. Let $z=\left(\begin{array}{ll}I & F_{1}\end{array}\right)(x)$. Then $z \quad B$ since $x \quad \Phi$ so $F_{2} r\left(\begin{array}{ll}I & F_{1}\end{array}\right)^{-1}(z)=z$. Consequently, since $x \quad Q$,

$$
F_{2}(x)=F_{2} r(x)=F_{2} r\left(I \quad F_{1}\right)^{-1}(z)=z=\left(I \quad F_{1}\right)(x)
$$

That is $x=F(x)$.
Remarks. (i) Notice we only need the assumptions $F_{2}(Q) \quad\left(\begin{array}{ll}I & F_{1}\end{array}\right)(\Omega)$ and ($\left.I \quad F_{1}\right)(\Omega)$ closed to show $B=$ and closed.
(ii) Of course if we know that $\lambda F, 0 \quad \lambda<1$ has no fixed points on ∂Q then (2.9) is trivially satisfied.
(iii) In theorem 2.4 if 0 int (Q) then the proof would be a lot simpler (simply show condition (A2) in theorem 2.1 is not satisfied). In this situation $0 \quad \lambda<1$ can be replaced by $0<\lambda<1$ in (2.9).

Theorem 2.5. Let Q be a closed, convex subset of a real Banach space E with $0 \quad Q$. Also let $\Omega \quad Q$ be a subset of E with $U_{i}=x \quad E: d(x, Q)<\frac{1}{i} \quad \Omega$ for i sufficiently large. Now $F: Q \quad E$ is given by $F=F_{1}+F_{2}$ where $I \quad F_{1}: \Omega \quad E$ is continuous, accretive (i.e. $F_{1}: \Omega \quad E$ is pseudocontractive)
with $F_{1}\left(\overline{U_{1}}\right)$ bounded and $F_{2}: Q \quad E$ is a continuous, compact map. In addition suppose $F_{2}(Q) \quad\left(\begin{array}{ll}I & F_{1}\end{array}\right)(\Omega)$ with $\left(\begin{array}{ll}I & F_{1}\end{array}\right)(\Omega)$ closed and that (2.9) holds. Also assume $\left(\begin{array}{ll}I & F\end{array}\right)(Q)$ is closed. Then F has a fixed point in Q.
Proof. Consider for each $n \quad 2,3, \ldots$ the mapping

$$
S_{n}=\left(\begin{array}{ll}
1 & \frac{1}{n}
\end{array}\right) F: Q \quad E .
$$

As in theorem 2.2, (1 $\left.\frac{1}{n}\right) F_{2}: Q \quad E$ is compact and $I \quad\left(1 \frac{1}{n}\right) F_{1}: \Omega \quad E$ is strongly accretive. We will apply theorem 2.4. Let $\left(x_{j}, \lambda_{j}\right){ }_{j=1}^{\infty}$ be a sequence in $\partial Q \quad[0,1]$ converging to (x, λ) with $x=\lambda S_{n}(x)$ and $0<\lambda<1$. Also let z_{j} be a sequence in U_{m} (m sufficiently large) with $z_{j} \quad \partial U_{j}$ for $j=m+1, m+2, \ldots$ and $z_{j} \quad x$. Then

$$
\lambda_{j}\left(\begin{array}{ll}
1 & \frac{1}{n}
\end{array}\right) F_{1}\left(z_{j}\right)+\lambda_{j}\left(\begin{array}{ll}
1 & \frac{1}{n}
\end{array}\right) F_{2}\left(x_{j}\right)=\mu_{j} F_{1}\left(z_{j}\right)+\mu_{j} F_{2}\left(x_{j}\right) \quad Q
$$

for j sufficiently large, since (2.9) is satisfied (note $\mu_{j}=\lambda_{j}\left(\begin{array}{ll}1 & \left.\frac{1}{n}\right)\end{array}\right.$ is a sequence in $[0,1]$ with $\mu_{j} \quad \lambda\left(1 \quad \frac{1}{n}\right)=\mu, 0<\mu<1$ and $x=\lambda S_{n}(x)=\lambda\left(1 \quad \frac{1}{n}\right) F(x)=$ $\mu F(x))$. Apply theorem 2.4 to S_{n} to deduce that S_{n} has a fixed point $u_{n} \quad Q$. Now since $u_{n} \quad F\left(u_{n}\right)=\frac{1}{n} F\left(u_{n}\right)$ we have $0 \quad\left(\begin{array}{ll}I & F\end{array}\right)(Q)$ since $\left(\begin{array}{ll}I & F\end{array}\right)(Q)$ is closed. Thus there exists $u \quad Q$ with $0=\left(\begin{array}{ll}I & F\end{array}\right)(u)$.

References

[1] Banas, J., Goebel, K., Measures of noncompactness in Banach spaces, Marcel Dekker, New York, 1980.
[2] Browder, F. E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math, 18, Part II, Amer. Math. Soc., Providence, 1976.
[3] Day, M., Normed linear spaces, Springer Verlag, Berlin, 1973.
[4] Deimling, K., Ordinary differential equations in Banach spaces, Springer, 596, 1977.
[5] Deimling, K., Zeros of accretive operators, Manuscripta Math., 13(1974), 365-374.
[6] Dugundji, J., Granas, A., Fixed point theory, Monografie Mat., PWN, Warsaw, 1982.
[7] Furi, M., Pera, P., A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Polon. Math., 47(1987), 331346.
[8] Gatica, J. A., Kirk, W. A., Fixed point theorems for contractive mappings with applications to nonexpansive and pseudo-contractive mappings, Rocky Mount. J. Math., 4(1974), 69-79.
[9] Granas, A., Sur la méthode de continuité de Poincare, C.R. Acad. Sci. Paris, 282(1976), 983-985.
[10] Kirk, W. A., Schöneberg, R., Some results on pseudo-contractive mappings, Pacific Jour. Math., 71(1977), 89-100.
[11] Krawcewicz, W., Contribution à la théorie des équations nonlinéaires dan les espaces de Banach, Dissertationes Matematicae, 273(1988).
[12] O'Regan, D., Theory of singular boundary value problems, World Scientific Press, Singapore, 1994.
[13] O'Regan, D., Some fixed point theorems for concentrative mappings between locally convex linear topological spaces, Jour. Nonlinear Anal., 27(1996), 1437-1446.
[14] O'Regan, D., Continuation fixed point theorems for locally convex linear topological spaces, Mathematical and Computer Modelling, 24(1996), 57-70.
[15] Petryshyn, W. V., Structure of the fixed point set of k-set contractions, Arch. Rational Mech. Anal., 40(1970/71), 312-328.
[16] Precup, R., A Granas type approach to some continuation theorems and periodic boundary value problems with impulses, preprint.
[17] Schöneberg, R., On the domain invariance theorem for accretive mappings, J. London Math. Soc., 24(1981), 548-554.
[18] Zeidler, E., Nonlinear functional analysis and its applications, Vol I, Springer, New York, 1986.

Defartment of Mathematics, National University of Ireland
Galway, IRELAND
E-mail: donal.oregan@nuigalway.ie

[^0]: 1991 Mathematics Subject Classification: 46H10, 46H09, 46H15, 46H06.
 Key words and phrases: fixed points, pseudocontractive maps.
 Received November 3, 1997.

