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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 401 { 415FIXED POINT THEORY FOR COMPACT PERTURBATIONSOF PSEUDOCONTRACTIVE MAPSDonal O'ReganAbstract. Some new �xed point results are established for mappings of theform F1 + F2 with F2 compact and F1 pseudocontractive.1. IntroductionThis paper presents two new �xed point theorems for the sum of two opera-tors (for example a pseudocontractive plus a compact operator) between Banachspaces. First however we will establish some general nonlinear alternatives ofLeray{Schauder type. These can be established using the degree theory of Brow-der [2]. However it is of interest to provide elementary proofs. We do so by usingthe topological transversality of Granas [9] (see [6,9,11,12] for an elementary proofof this result). We remark here that our results were motivated by work of Browder[2], Deimling [5], Furi and Pera [7], Granas [9] and Kirk and Sch�oneberg [10].We next gather together some de�nitions and some well known facts. Let E bea Banach space and 
E the family of all bounded subsets of E. The Kuratowskiimeasure of noncompactness is the map � : 
E ! [0; 1 ) de�ned by�(X) = inf f � > 0 : X � [

ni=1Xi and diam (Xi) � �g ; here X 2 
E :Of course if S; T 2 
E then(i) �(S) = 0 i� S is compact(ii) �(S) = �(S)(iii) if S � T then �(S) � �(T )(iv) �(co (S)) = �(S)(v) �(T + S) � �(T ) + �(S).Let B1 and B2 be two Banach spaces and let F : Y � B1 ! B2 be continuousand map bounded sets into bounded sets. We call F a �{Lipschitzian map if Fis continuous, bounded and there is a constant k � 0 with �(F (X)) � k�(X)1991 Mathematics Subject Classi�cation: 46H10, 46H09, 46H15, 46H06.Key words and phrases: �xed points, pseudocontractive maps.Received November 3, 1997.



402 D. O'REGANfor all bounded sets X � Y . We call F a condensing map if F is �{Lipschitzianwith k = 1 and �(F (X)) < �(X) for all bounded sets X � Y with �(X) 6= 0.Let B be a real Banach space and let B? denote the dual of B. Notice fromthe Hahn{Banach theorem that�x? 2 B? : x?(x) = k xk

2; k x? k = k xk

	
6= ;for every x 2 B. The mapping F : B ! 2B? de�ned byF (x) = �x? 2 B? : x?(x) = k xk

2 = k x? k

2 	is called the duality map [2,4] of B. By means of F , the semi inner product(: ; :)+ : B � B ! R, is de�ned by(x; y)+ = sup f y?(x) : y? 2 F (y)g :Let 
 � B. A mapping T : 
 ! B is said to be(i) strongly accretive if for some c > 0,(1:1) (T (x) � T (y); x � y)+ � ck x � y k

2 for all x; y 2 
(ii) accretive if (T (x) � T (y); x � y)+ � 0 for all x; y 2 
(iii) pseudocontractive if I � T is accretive.We next state some well known results.Theorem 1.1. [4]: Let E be a real Banach space and T : E ! E a continuousand strongly accretive map (i.e. (1:1) holds for some c > 0). Then T is ahomeomorphism from E onto E. Also T�1 : E ! E is a Lipschitz map withLipschitz constant 1c .Theorem 1.2. [5; 17]: (Deimling's invariance of domain).Let U � E (E a Banach space) be open and T : U ! E a continuous andstrongly accretive map. Then T (U ) is open.Theorem 1.3. [16]: Let B be a uniformly convex Banach space, Q a bounded,closed, convex subset of B and 
 an open set containing Q with dist (Q; B=
) >0. Suppose T : 
 ! B is a continuous pseudocontractive mapping which sendsbounded sets into bounded sets. Then I � T is demiclosed on Q.Remark. A mapping T : � � B ! B is called demiclosed on � if for everysequence f xn g 2 � with xn * x and T (xn) ! y as n ! 1 we have x 2 � andT (x) = y; here * denotes weak convergence.Next we state the topological transversality theorem of Granas [6,9,11,14]. LetE be a Banach space, C a closed convex subset of E and U an open subset ofC. We call N : U � [0; 1] ! C a condensing map if N is continuous, bounded(i.e. N (U � [0; 1]) is a subset of a bounded set in C), �(N (W )) � �(�W )for all bounded sets W of U � [0; 1] and �(N (
)) < �(�
) for all bounded



FIXED POINT THEORY 403non precompact subsets 
 of U � [0; 1]; here � : U � [0; 1] ! U is the naturalprojection. K@U (U;C) denotes the set of all condensing maps H : U ! C withH(U ) a subset of a bounded set in C and with H �xed point free on @U . Amapping F 2 K@U (U;C) is essential if for every H 2 K@U(U;C) which agreeswith F on @U we have that H has a �xed point in U .Theorem 1.4. [6; 9; 11; 14]: Let U; C and E be as above. Assume N : U �[0; 1] ! C is a condensing map with the following conditions satis�ed:(1:2) N (u; �) 6= u for all u 2 @U and � 2 [0; 1]and(1:3) N ( : ; 0) is essential on U:Then for each � 2 [0; 1] there exists at least one �xed point in U for N ( : ; �).For convenience we rephrase theorem 1.4. Recall [6,9,11,14] two maps F;G 2K@U(U;C) are homotopic in K@U(U;C), written F �= G in K@U (U;C) if thereis a condensing map N : U � [0; 1] ! C with Nt(u) = N (u; t) : U ! C belongingto K@U (U;C) for each t 2 [0; 1] and N0 = F; N1 = G.Theorem 1.5. [6; 9; 11; 14]: Let U;C and E be as above. Suppose F and Gare two maps in K@U (U;C) such that F �= G in K@U (U;C). Then F is essentiali� G is essential.Theorem 1.6. [6; 9; 11; 14]: Let U;C and E be as above and let u0 2 U . De�neF : U ! C by F (u) = u0. Then the constant map F 2 K@U (U;C) is essential.Theorem 1.4 is valid if the family of maps N ( : ; �); � 2 [0; 1] are de�ned onthe same domain U . However to prove our �xed point results in section 2 we needto have results for families of maps N ( : ; �); � 2 [0; 1] which may be de�ned ondi�erent domains. In fact it is easy to extend theorem 1.4 to this situation; thisextension is due to Precup [16] if the maps are compact. However new argumentsare needed if the mappings are condensing. We conclude the introduction bystating and proving such a result.Let E be a Banach space and C a closed convex subset of E. Let G � C � [0; 1]be open in C � [0; 1]. For any 
 � E � [0; 1] let 
� = f x 2 E : (x; �) 2 
 gdenote the section of 
 at �.Theorem 1.7. Let G; C and E be as above. Assume N : G ! C is a condensingmap with(1:4) N (x; �) 6= x for all (x; �) 2 @G:In addition suppose there exists p 2 G0 with(1:5) (1 � �)p + �N (x; 0) 6= x for all (x; 0) 2 @G; 0 < � < 1holding. Then for each � 2 [0; 1] there exists at least one �xed point in G� forN ( : ; �).



404 D. O'REGANProof. Let N? : G � [0; 1] ! C � [0; 1]be given byN?(x; �; �) = (N (x; �); �) for (x; �) 2 G and � 2 [0; 1]:The idea is to apply theorem 1.4 with the Banach space E � R with norm
k (x; t)k E�R = max fk xk E; j tj R g , the convex set C � [0; 1], the open set G, andthe map N?. We claim that(1:6) N? : G � [0; 1] ! C � [0; 1] is a condensing mapthat(1:7) N?(x; �; �) 6= (x; �) for all (x; �) 2 @G and � 2 [0; 1]and that(1:8) N?(x; �; 0) = (N (x; �); 0) is essential on G:If (1:6); (1:7) and (1:8) are true then theorem 1.4 implies for each � 2 [0; 1], thereexists (x; �) 2 G with N?(x; �; �) = (x; �)i.e. N (x; �) = x and � = �. Thus x 2 G� with N (x; �) = x and we are �nished.It remains to prove (1:6); (1:7) and (1:8). We �rst show that N? : G � [0; 1] !C � [0; 1] is a condensing map.Remark. If N : G ! C is a compact map then clearly N? : G � [0; 1] ! C � [0; 1]is a compact map from Tychono�'s theorem and the fact that N?(G � [0; 1]) �N (G) � [0; 1] .Fix t 2 [0; 1]. Let N?t : G ! E � f tg be given by N?t (x; �) = (N (x; �); t) for(x; �) 2 G. We �rst show(1:9) N?t : G ! E � f tg is a condensing map for each t 2 [0; 1]:To see this �x t 2 [0; 1] and let W be a bounded non precompact subset of G.Then �(N?t (W )) � �(N (W ) � f tg ) = �(N (W )) < �(W )so (1:9) is true.Remark. Note we used above the fact that �E(
) = �E�R(
 � f tg ) for anybounded set 
 in E; here t 2 [0; 1] is �xed. To show this suppose �E(
) < �;here � > 0. Then there exists subsets 
1; :::; 
m of E with 
 � [

mi=1
i anddiam (
i) � �. Also 
 � f tg � [

mi=1 �
i � Bt � �2��where diam (
i � Bt( �2 )) � � (using the norm in E � R); here Bt( �2 ) is the ballwith center t and radius �2 . Thus �E(
) < � implies �E�R(
 � f tg ) � � and so(1:9a) �E�R(
 � f tg ) � �E(
)



FIXED POINT THEORY 405(there exists a sequence �n with �n # �E(
) and since �E�R(
 � f tg ) � �n forall n we deduce (1:9a) immediately).On the other hand suppose �E�R(
 � f tg ) < �. Then there exist subsetsV1; ::::; Vm of E with 
 � f tg � [

mi=1 Vi and diam (Vi) � �. Thus
 � [

mi=1 � Vi with diam (� Vi) � �;and so �E�R(
 � f tg ) < � implies �E(
) � �. Consequently(1:9b) �E(
) � �E�R(
 � f tg ):We now prove (1:6). Let W be a bounded non precompact subset of G � [0; 1].Now let �(t) > 0 be such that(1:10) �(N?t (�W )) < �(�W ) � 2�(t)and let V (t) be a neighborhood of t such that(1:11)
k N?t (x; �)� N?s (x; �)k = k (0; t� s)k = j t� sj � �(t) for all s 2 V (t) and (x; �) 2 �W:Remark. In (1:10) we used the fact that if W is a non precompact subset ofG � [0; 1] then �W is a non precompact subset of G.Also if s; s1 2 V (t) and (u; �); (u1; �1) 2 �W we haveN?(u; �; s) � N?(u1; �1; s1) = [N?(u; �; s) � N?(u; �; t)] + [N?(u1; �1; t)

� N?(u1; �1; s1)] + [N?t (u; �) � N?t (u1; �1)]and so (1:10) and (1:11) imply(1:12) �(N?(�W � V (t))) < �(�W ):Now f V (t) : t 2 [0; 1] g is an open cover of [0; 1] and since [0; 1] is compact wesuppose
f V (ti); i = 1; :::; n g is a �nite covering of [0; 1]:Now (1:12) together with properties of � imply�(N?(W )) � �(N?(�W � [0; 1]))

� max f �(N?(�W � V (ti))); i = 1; ::; ng < �(�W )so (1:6) is true.Remark. Another way of proving (1:6) is to �rst show that �E(�
) = �E�R(
)for any bounded subset 
 of E � [0; 1]; this follows from the second last remarkand the fact that one can show �E�R(
) = �E(�
 � f 0g ) (notice 
 � �
 �

f 0g + f 0g � [0; 1] so �E�R(
) � �(�W � f 0g ) and the reverse inequality is alsoeasy). Thus if W is a bounded non precompact subset of G � [0; 1], then�(N?(W )) � �(N (�W ) � [0; 1]) = �(N (�W )) < �(�W ):



406 D. O'REGANNext we show (1:7) is satis�ed. Suppose not i.e. suppose there exists (x1; �1) 2@G and �1 2 [0; 1] with(x1; �1) = N?(x1; �1; �1) = (N (x1; �1); �1):Then �1 = �1 and N (x1; �1) = x1 with (x1; �1) 2 @G. This contradicts (1:4).Consequenty (1:7) is true. It remains to show (1:8).The idea is to apply theorem's 1.5 and 1.6. Let the homotopy H : G � [0; 1] !C � [0; 1] be given byH(x; �; �) = ((1 � �)p+ �N (x; �); 0) for (x; �) 2 G and 0 � � � 1:First notice the map H(x; �; 0) = (p; 0) is essential on G by theorem 1.6 (note(p; 0) 2 G since p 2 G0). Next we show H : G � [0; 1] ! C � [0; 1] is a condensingmap. To see this let W be a bounded non precompact subset of G � [0; 1]. Then�(H(W )) � �( co (N (�W ) [ f pg ) � f 0g )= �( co (N (�W ) [ f pg )) = �(N (�W )) < �(�W ):Before we apply theorem 1.5 we need to show that H� : G ! C � [0; 1] belongsto K@G(G;C � [0; 1]) for each � 2 [0; 1]. Suppose not i.e. suppose there exists(x; �) 2 @G and � 2 [0; 1] with H�(x; �) = (x; �). Then (1 � �)p+�N (x; �) = xand � = 0 i.e. (1 � �)p+�N (x; 0) = x. Now if 0 < � < 1 we have a contradictionsince (1:5) holds. If � = 1 then � = 0 and N (x; �) = N (x; 0) = x, which is acontradiction since (1:4) holds. If � = 0 then � = 0 and (p; 0) = (x; �) 2 @Gwhich is a contradiction since p 2 G0 (i.e. (p; 0) 2 G). Thus H� 2 K@G(G;C �[0; 1]) for each � 2 [0; 1]. Theorem 1.5 now implies that H1(x; �) = (N (x; �); 0)is essential so (1:8) follows. �2. Fixed point theoryWe begin this section by presenting some nonlinear alternatives of Leray{Schauder type. Our �rst result is motivated by work of Browder [2].Theorem 2.1. Let U be an open subset of a real Banach space E and 
 � Ua subset of E. Assume p 2 U , and F : U ! E is given by F = F1 + F2. HereI � F1 : 
 ! E is continuous and strongly accretive (single valued) with F1(U )bounded and F2 : U ! E is a continuous, compact map. Then either(A1) F has a �xed point in U ; or(A2) there exists u 2 @U and � 2 (0; 1) with u = �F (u) + (1 � �)p.Proof. Now there exists c > 0 with(2:1) ((I � F1)(x) � (I � F1)(y); x � y)+ � c k x � y k

2 for all x; y 2 
:



FIXED POINT THEORY 407Clearly I � F1 is one to one and (I � F1)�1 : (I � F1)(
) ! E is Lipschitz withLipschitz constant 1c since for z1; z2 2 (I � F1)(
) we havec k (I � F1)�1(z1) � (I � F1)�1(z2)k

2
�

�z1 � z2; (I � F1)�1(z1) � (I � F1)�1(z2)�+
� k z1 � z2 k k (I � F1)�1(z1) � (I � F1)�1(z2)k :Let(2:2) G = f (x; �) : x 2 E; � 2 [0; 1] and x 2 (I � �F1)(U ) gand for each � 2 [0; 1] let G� be the section of G at level � i.e.G� = (I � �F1)(U ) = f u 2 E : (u; �) 2 G g :Let J : G0 ! E be given by J(x) = p and N1 : G1 ! E be given by N1(u) =F2(I � F1)�1(u).Remark. Fix 0 � � � 1. Then I � �F1 : 
 ! E is strongly accretive. This isimmediate since for x; y 2 
,((I � �F1)(x) � (I � �F1)(y); x � y)+= (�[(I � �F1)(x) � (I � �F1)(y)] + (1 � �)(x � y); x � y)+= � ((I � F1)(x) � (I � F1)(y); x � y)+ + (1 � �)k x � y k

2
� (�c+ (1 � �)) k x � y k

2since (z1 + �z2; z2)+ = (z1; z2)+ + �k z2 k

2 (here z1; z2 2 E and � is a scaler).Also (I � �F1)�1 : (I � �F1)(
) ! E is a Lipschitz map with Lipschitz constant1c� ; here c� = �c+ (1 � �) and notice 1c� �

1minf1;cg .Consider the homotopy N : G ! E joining J and N1 given by(2:3) N (u; �) = �F2(I � �F1)�1(u) + (1 � �)p:Fix � 2 [0; 1]. De�ne h� : U ! E by h�(u) = (I � �F1)(u). Now Deimling'sinvariance of domain theorem (theorem 1.2) implies that G� = h�(U ) is open.Next we claim that h�(U ) is closed and h�(U ) = h�(U ) = G�. To see that h�(U )is closed let w 2 h�(U ). Then there exists un 2 U with h�(un) ! w. Now since(�c+ (1 � �))k un � um k � k (I � �F1)(un) � (I � �F1)(un)kwe have that f un g is a Cauchy sequence in U . Thus there exists u 2 U withun ! u. Since h� is continuous we have that h�(un) ! h�(u) so w = h�(u).Thus h�(U ) is closed. In addition since h� is continuous we have that h�(U ) �h�(U ). On the other hand h�(U ) � h�(U ) = h�(U ) since h�(U ) is closed.Consequently h�(U ) = h�(U ) = G�. Next since F1(U ) is bounded there exists aconstant M with k F1(u)k � M for all u 2 U . Thus if t; � 2 [0; 1] and u 2 Uwe have(2:4) k h�(u) � ht(u)k = k (� � t)F1(u)k � M j � � tj :



408 D. O'REGANThe above together with a result of F. E. Browder [2, Prop. 12.2,p. 189] impliesthat G given in (2:2) is an open subset of E � [0; 1] and(2:5) @G = f (x; �) : x 2 E; � 2 [0; 1] and x 2 (I � �F1)(@U ) g :We now return to the homotopy N : G ! E joining J and N1 given in (2:3).Either N (x; �) 6= x for all (x; �) 2 @G or not. Suppose not i.e. suppose thereexists (y; �) 2 @G with N (y; �) = y. Then there exists u 2 @U (by (2:5)) withN (y; �) = y = (I � �F1)(u). Now � 6= 0 since if � = 0 then p = N (y; 0) =y = I u = u 2 @U , a contradiction. Thus 0 < � � 1. Also N (y; �) = y means�F2(I � �F1)�1(y) + (1 � �)p = y and so�F2(u) = �F2(I � �F1)�1(y) = y � (1 � �)p = (I � �F1)(u) � (1 � �)p:That is �F (u) + (1 � �)p = u; 0 < � � 1 and u 2 @U:Hence (A2) occurs if 0 < � < 1 and (A1) occurs if � = 1 and we are �nished. Sofor the remainder of the proof we assume N (x; �) 6= x for all (x; �) 2 @G.Next we claim that N : G ! E is a continuous, compact map. To see thecontinuity let (yn; �n); (y; �) 2 G with (yn; �n) ! (y; �). We �rst show(2:6) h�1�n (yn) ! h�1� (y):To see this recall (2:4) implies that given � > 0 there exists a positive integer ksuch that for n > k we have
k h�n(x) � h�(x)k � � for all x 2 U:Let xn = h�1�n (yn). Thus for n > k we have

k yn � h�(xn)k = k h�n(xn) � h�(xn)k � �:Also since yn ! y then there exists an integer n0 � k such that
k h�(xn) � y k � 2� for n > n0:Thus as n ! 1 we have h�(xn) ! y in E. Consequentlyh�1� (yn) = h�1� (h�(xn)) ! h�1� (y)since h�1� is continuous on h�(U ) = h�(U ). Next notice

k N (yn; �n) � N (y; �)k � k �nF2h�1�n (yn) � �F2h�1� (y)k + j �n � �j k pk

� k �nF2h�1�n (yn) � �nF2h�1� (y)k+ k �nF2h�1� (y) � �F2h�1� (y)k + j �n � �j k pk= j �n j k F2h�1�n (yn) � F2h�1� (y)k+ j �n � �j k F2h�1� (y)k + j �n � �j k pk :Now F2 : U ! E being continuous together with (2:6) and F2(U ) boundedimplies that N : G ! E is continuous. To see that N is a compact map let



FIXED POINT THEORY 409(y; �) 2 G. Then y = (I � �F1)(U ), i.e. y = (I � F1)(u) for some u 2 U , andN (y; �) = �F2(I � �F1)�1(y) + (1 � �)p = �F2(u) + (1 � �)p � co (F2(U ) [ f pg ).Consequently N (G) � co (F2(U ) [ f pg )and so �(N (G)) � �(co (F2(U ) [ f pg )) = �(F2(U ) [ f pg ) = 0:Consequently N : G ! E is a compact map.Remark. Alternatively one can deduce that N is a compact map if one noticesF2(U ) � K; K compact; N (G) � co (K [ f pg )and that co (K [ f pg ) is compact by Mazur's theorem.We are also assuming N (x; �) 6= x for all (x; �) 2 @G. Also since N (x; 0) = pwe have (1 � �)p + �N (x; 0) 6= x for all (x; 0) 2 @G and 0 < � < 1 since ifp = (1 � �)p+�N (x; 0) = x for some (x; 0) 2 @G and 0 < � < 1 then (p; 0) 2 @Gwhich is a contradiction since p =2 @U = I(@U ). Now theorem 1.7 implies thatthere exists y 2 G1 = (I � F1)(U ) with N (y; 1) = y. So there exists u 2 U withN (y; 1) = y = (I � F1)(u). Now N (y; 1) = y means F2(I � F1)�1(y) = y soF2(u) = F2(I � F1)�1(y) = y = (I � F1)(u):That is F (u) = u with u 2 U so (A1) occurs. �Remark. The assumption that h1 = I � F1 : 
 ! E is continuous and stronglyaccretive in theorem 2.1 could be replaced by the more general condition(2:7) 8<: h1 : 
 ! E is continuous with h�11 : h(
) ! E continuous(assuming the inverse h�11 exists); h1(U ) open; h1(U ) = h1(U )and (2:4) holds for some M > 0 (independent of u 2 U ):Theorem 2.2. Let U be an open set in a a real Banach space E and 
 � Ua subset of E. Assume 0 2 U and F : U ! E is given by F = F1 + F2. HereI � F1 : 
 ! E is continuous and accretive (i.e F1 : 
 ! E is pseudocontractive)with F1(U ) bounded and F2 : U ! E is a continuous, compact map. Alsoassume (I � F )(U) is closed. Then either(A1) F has a �xed point in U ; or(A2) there exists u 2 @U and � 2 (0; 1) with u = �F (u).Proof. Assume (A2) does not hold. Consider for each n 2 f 2; 3; :::g the mapping(2:8) Sn = �1 �

1n�F : U ! E:



410 D. O'REGANNotice �1 �

1n�F2 : U ! E is compact and I �

�1 �

1n�F1 : 
 ! E is stronglyaccretive since for x; y 2 
 we have((I �

�1 �

1n��F1(x) �

�I �

�1 �

1n��F1(y); x � y�+=��1 �

1n� [(I � F1)(x) � (I � F1)(y)] + 1n (x � y); x � y�+
�

1n k x � y k

2:Remark. (z1+�z2; z2)+ = (z1; z2)++�k z2 k

2; here z1; z2 2 E and � is a scaler.Apply theorem 2.1 to Sn. If there exists � 2 (0; 1) and u 2 @U with u =�Sn(u) thenu = ��1 �

1n�F (u) = �F (u) where 0 < � = ��1 �

1n� < 1;which is a contradiction since (A2) was assumed not to hold. Consequently foreach n 2 f 2; 3; :::g we have that Sn has a �xed point un 2 U . Notice also sinceun = �1 �

1n�F (un) we have that un � F (un) = �

1nF (un) and so un � F (un) !0 as n ! 1 (since F (U ) is bounded). Consequently 0 2 (I � F )(U ) since(I � F )(U ) is closed. Thus there exists u 2 U with 0 = (I � F )(u). �Theorem 2.3. Let U be a bounded, open, convex subset of a uniformly convexBanach space E. Suppose 
 is an open set containing U with dist (U;E=
) > 0.Assume 0 2 U and F : U ! E is given by F = F1+F2. Here I � F1 : 
 ! E isa continuous accretive mapping which sends bounded sets into bounded sets andF2 : U ! E is a continuous, compact map. In addition suppose F2 : U ! E isstrongly continuous. Then either(A1) F has a �xed point in U ; or(A2) there exists u 2 @U and � 2 (0; 1) with u = �F (u).Remark. F2 : U ! E is said to be strongly continuous [18] if xx * x impliesF2(xn) ! F2(x); here xn; x 2 U .Proof. Assume (A2) does not hold. Consider for each n 2 f 2; 3; :::g the mappingSn given by (2:8). Essentially the same reasoning as in theorem 2.2 implies thatSn has a �xed point un 2 U .A standard result in functional analysis (if E is a reexive Banach space thenany norm bounded sequence in E has a weakly convergent subsequence) implies(since U is bounded) that there exists a subsequence S of integers and a u 2 U(notice U is strongly closed and convex so weakly closed) withun * u as n ! 1 in S:



FIXED POINT THEORY 411Also since un = �1 �

1n�F1(un) + �1 �

1n�F2(un) we have
k (I � F1)(un) � F2(u)k = k �

1nF1(un) +�1 �

1n�F2(un) � F2(u)k

�

1n k F (un)k + k F2(un) � F2(u)kso since F2 is strongly continuous and F (U) is bounded we have (I � F1)(un) !F2(u).Theorem 1.3 (i.e. I � F1 is demiclosed on U ) implies (I � F1)(u) = F2(u). �Remark. Of course one can prove theorem 2.3 directly from theorem 2.2 byshowing that (I � F )(U) is closed. To see this let y 2 (I � F )(U) so thereexists un 2 U with (I � F )(un) ! y. Since un 2 U there exists a subsequenceS of integers and a u 2 U with un * u as n ! 1 in S. Consequently(I � F )(un) ! (I � F )(u) i.e. y = (I � F )(u).Next we present two new �xed point results.Theorem 2.4. Let Q be a closed, convex subset of a a real Banach space E with0 2 Q. Also let 
 � Q be a subset of E with Ui = f x 2 E : d(x;Q) < 1i g � 
for i su�ciently large; here d denotes the metric induced by the norm. NowF : Q ! E is given by F = F1 + F2 where I � F1 : 
 ! E is continuous,strongly accretive (i.e. (2:1) is satis�ed) with F1(U1) bounded and F2 : Q ! Eis a bounded continuous,compact map. In addition suppose F2(Q) � (I � F1)(
)with (I � F1)(
) closed and also that(2:9) 8>>>><>>>>: if f (xj; �j)g

1j=1 is a sequence in @Q � [0; 1] convergingto (x; �) with x = �F (x) and 0 � � < 1; and if f zj gis a sequence in Um (m su�ciently large) withzj 2 @Uj for j = m+ 1;m+ 2; ::: and zj ! x; then�j [F1(zj) + F2(xj)] 2 Q for j su�ciently largeholds. Then F has a �xed point in Q.Remarks. (i) If 
 = E then (I � F1)(
) = E. Notice theorem 1.1 implies thatI � F1 is a homeomorphism from E onto E.(ii) In the statement of theorem 2.4, F1(U1) bounded may be replaced by F1(Um)bounded for some m 2 f 1; 2; :::g .(iii) Theorem 2.4 was proved by Furi and Pera [7], by a di�erent method, whenF1 = 0 and F2 is a compact map.Proof. Let r : E ! Q be a continuous retraction [13] with r(z) 2 @Q forz 2 E n Q. ConsiderB = �x 2 (I � F1)(
) : x = F2 r (I � F1)�1(x)	 :We claim B 6= ; . To see this we look at r(I � F1)�1F2 : Q ! Q (notice this isa well de�ned map since F2(Q) � (I � F1)(
)). Now r(I � F1)�1F2 : Q ! Qis a compact map since F2 : Q ! E is a compact map and r; (I � F1)�1 are



412 D. O'REGANcontinuous maps. Schauder's �xed point theorem implies that there exists y 2 Qwith y = r(I � F1)�1F2(y). Let z = F2(y). ThenF2 r (I � F1)�1(z) = F2 r (I � F1)�1F2(y) = F2(y) = zso z 2 B (notice y 2 Q and F2(Q) � (I � F1)(
)) and B 6= ; . In addition thecontinuity of F2 r (I � F1)�1 together with (I � F1)(
) closed implies that B isclosed. Also B � F2(Q)together with F2 : Q ! E being a compact map implies that B is compact. Let� = (I � F1)�1(B):Notice � is a compact set. We claim � \ Q 6= ; .To do this we argue by contradiction. Suppose � \ Q = ; . Then since � iscompact and Q is closed there exists � > 0 with dist (�; Q) > �. De�neUi = �x 2 E : d(x;Q) < 1i� for i 2 f N;N + 1; ::::g :Here N 2 f 1; 2; :::g is chosen so that 1 < �N and Ui � 
 for i � N . Fixi 2 f N;N + 1; ::::g . Notice Ui is open and since dist (�; Q) > � then � \ Ui = ; .Also F2 r : Ui ! E is a compact map. Now theorem 2.1 (with F1+ F2 r) impliesthat there exists (yi; �i) 2 @Ui � (0; 1) with yi = �i [F1(yi) + F2 r(yi)].Remark. Notice there cannot exist a y 2 Ui with y = F1(y) + F2 r(y) since� \ Ui = ; . To see this suppose there exists y 2 Ui with y = F1(y) + F2 r(y).We claim y 2 � (which will yield a contradiction). Let x = (I � F1)(y). Thenx 2 B since F2 r (I � F1)�1(x) = F2 r(y) = (I � F1)(y) = xand so y 2 �.Consequently for each j 2 f N;N + 1; :::g there exists (yj ; �j) 2 @Uj � (0; 1)with yj = �j [F1(yj) + F2 r(yj)]. Notice in particular since yj 2 @Uj that(2:10) �j [F1(yj) + F2 r(yj)] 62 Q for j 2 f N;N + 1; :::g :Now let G = f (x; �) : x 2 E; � 2 [0; 1] and x 2 (I � �F1)(UN )g :As, in theorem 2.1,G = �(x; �) : x 2 E; � 2 [0; 1] and x 2 (I � �F1)(UN )	 :Next letD = �x 2 E : x 2 (I � �F1)(UN ) for some � and N0(x; �) = x	where N0 : G ! E is given byN0(u; �) = �F2 r (I � �F1)�1(u):



FIXED POINT THEORY 413Also, as in theorem 2.1 since F2 r : UN ! E is a compact map, we have that N0 :G ! E is a continuous compact map. Notice xi 2 D; i 2 f N;N + 1; :::g wherexi = (I � �iF1)(yi). To see this notice xi 2 (I � �iF1)�1(@Ui) � (I � �iF1)�1(UN )and �iF2 r (I � �iF1)�1(xi) = �iF2 r (yi) = (I � �iF1)(yi) = xi:Also D is closed. To see this let x 2 D. Then there exists zn 2 D with zn ! x.Also there exists �n 2 [0; 1] with zn 2 (I � �nF1)(UN ). Without loss of generalityassume �n ! �. Then (zn; �n); (x; �) 2 G together with N0 : G ! E continuousimplies N0(x; �) = x. Hence x 2 D and D is closed. Also since D � N0(G) wehave that D is compact (so sequentially compact).This together with j �j j � 1 (for j 2 f N;N+1; :::g ) implies that we may assumewithout loss of generality that �j ! �? and xj ! x?. Now (xj ; �j); (x?; �?) 2G; xj = N0(xj ; �j) together with N0 : G ! E continuous implies N0(x;? ; �?) =x?. Also as in theorem 2.1 (see (2:6)) we have immediately thatyj = (I � �iF1)�1(xi) ! (I � �?F1)�1(x?):Let y? = (I � �?F1)�1(x?). Then yj ! y? and y? 2 @Q since yj 2 @Uj sod(yj; Q) = 1j . Also�? F2 (y?) = �? F2 r (y?) = �? F2 r (I � �?F1)�1(x?) = x? = (I � �?F1)(y?)so y? = �? F (y?). If �? = 1 then y? = F (y?); y? 2 @Q and x? = (I � F1)(y?) 2B since F2 r (I � F1)�1(x?) = F2 r (y?) = F2(y?) = (I � F1)(y?) = x?:Hence y? 2 � which contradicts � \ Q = ; . Hence we may assume 0 � �? < 1.But in this case (2:9) with xj = r(yj) 2 @Q; x = y? = r(y?) and zj = yj , implies�j [F1(yj) + F2 r(yj)] 2 Q for j su�ciently large. This contradicts (2:10). Thus� \ Q 6= ; so there exists x 2 � \ Q. Let z = (I � F1)(x). Then z 2 B sincex 2 � so F2 r (I � F1)�1(z) = z. Consequently, since x 2 Q,F2(x) = F2 r(x) = F2 r (I � F1)�1(z) = z = (I � F1)(x):That is x = F (x). �Remarks. (i) Notice we only need the assumptions F2(Q) � (I � F1)(
) and(I � F1)(
) closed to show B 6= ; and closed.(ii) Of course if we know that �F; 0 � � < 1 has no �xed points on @Q then(2:9) is trivially satis�ed.(iii) In theorem 2.4 if 0 2 int (Q) then the proof would be a lot simpler (simplyshow condition (A2) in theorem 2.1 is not satis�ed). In this situation 0 � � < 1can be replaced by 0 < � < 1 in (2:9).Theorem 2.5. Let Q be a closed, convex subset of a real Banach space E with0 2 Q. Also let 
 � Q be a subset of E with Ui = f x 2 E : d(x;Q) < 1i g � 
for i su�ciently large. Now F : Q ! E is given by F = F1 + F2 whereI � F1 : 
 ! E is continuous, accretive (i.e. F1 : 
 ! E is pseudocontractive)



414 D. O'REGANwith F1(U1) bounded and F2 : Q ! E is a continuous, compact map. In additionsuppose F2(Q) � (I � F1)(
) with (I � F1)(
) closed and that (2:9) holds. Alsoassume (I � F )(Q) is closed. Then F has a �xed point in Q.Proof. Consider for each n 2 f 2; 3; :::g the mappingSn = �1 �

1n�F : Q ! E:As in theorem 2.2, �1 �

1n�F2 : Q ! E is compact and I �

�1 �

1n�F1 : 
 ! E isstrongly accretive. We will apply theorem 2.4. Let f (xj; �j)g

1j=1 be a sequence in@Q � [0; 1] converging to (x; �) with x = �Sn(x) and 0 < � < 1. Also let f zj gbe a sequence in Um (m su�ciently large) with zj 2 @Uj for j = m+1;m+2; :::and zj ! x. Then�j �1 �

1n�F1(zj) + �j �1 �

1n�F2(xj) = �jF1(zj) + �jF2(xj) 2 Q ;for j su�ciently large, since (2:9) is satis�ed (note �j = �j �1 �

1n� is a sequencein [0; 1] with �j ! � �1 �

1n� = �; 0 < � < 1 and x = �Sn(x) = � �1 �

1n�F (x) =�F (x)). Apply theorem 2.4 to Sn to deduce that Sn has a �xed point un 2 Q.Now since un � F (un) = �
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