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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 427 { 434EXTREMAL SOLUTIONS AND RELAXATION FOR SECONDORDER VECTOR DIFFERENTIAL INCLUSIONSEvgenios P. Avgerinos and Nikolas S. PapageorgiouAbstract. In this paper we consider periodic and Dirichlet problems forsecond order vector di�erential inclusions. First we show the existence ofextremal solutions of the periodic problem (i.e. solutions moving throughthe extreme points of the multifunction). Then for the Dirichlet problem weshow that the extremal solutions are dense in the C1(T;RN )-norm in the setof solutions of the "convex" problem (relaxation theorem).1. IntroductionPeriodic problems for second order di�erential inclusions were studied recentlyby Frigon [4]. She considered nonconvex scalar di�erential inclusions and assumingthe existence of an upper ' and of a lower solution  such that ' �  provedthe existence of at least one periodic solution located in the order interval [ ; ']:Her method of proof based on truncation and penalization techniques. Here weconsider vector di�erential inclusions and we prove the existence of a periodicsolution when the multifunctionF (t; x; y) is replaced by extF (t; x; y) (the extremepoints of F (t; x; y)). Recall that extF (t; x; y) need not be closed (even if F (t; x; y)is) and need not have any continuity properties (like lower semicontinuity), even ifthe multifunction (x; y) ! F (t; x; y) is regular enough, (like Hausdor� continuous).So even if we restrict ourselves to the scalar case our results in the present workgo beyond those of Frigon [4]. Moreover, in the present paper we also prove forthe Dirichlet problem a relaxation theorem. Namely we show that the solutionspassing from the extreme points of F (t; x; y) are C1(T;RN )� dense, in the solutionset of the convexi�ed problem. Such a result is important in control problem, inconnection with the "bang-bang principle".1991 Mathematics Subject Classi�cation : 34A60, 34B15.Key words and phrases: lower semicontinuous multifunctions, continuous embedding,compact embedding, continuous selector, extremal solution, relaxation theorem.Received August 14, 1996.



428 E. P. AVGERINOS, N. S. PAPAGEORGIOU2. PreliminariesIn what follows, by Pf(c)(RN ) (resp. Pk(c)(RN )), we denote the collectionof all nonempty, closed (and convex) (resp. nonempty, compact (and convex))subsets of RN . Let T = [0; b]. A multifunction F : T ! Pf (RN ) is said tobe measurable, if for all x 2 RN , t ! d (x; F (t)) = inf [k x � v k : v 2 F (t)] ismeasurable. This de�nition of measurability of F (� ) is equivalent to saying thatGrF = �(t; v) 2 T � RN : v 2 F (t)	 2 L � B(RN ), with L being the Borel � ��eld of T ,and B(RN ) being the Borel � � �eld of RN (graph measurability). Fordetails we refer to the survey paper of Wagner [11].Given F : T ! Pf (RN ), we de�ne the setS1F = �v 2 L1(T;RN ) : v(t) 2 F (t) a.e. on T	.This set may be empty. Using Aumann's selection theorem (see Wagner [11],theorem 5.10) we can verify that for a measurable multifunction F (� ), S1F 6= � ifand only if t ! inf fk v k : v 2 F (t)g 2 L1(T ). The set S1F is closed in L1(T;RN ),is convex if and only if F (t) is convex for almost all t 2 T and is bounded ifand only if t ! j F (t)j = sup fk v k : v 2 F (t)g 2 L1(T ). Finally the set S1F is"decomposable"; i.e. if (A; f1; f2) 2 L � S1F � S1F , then �Af1 + �Ac f2 2 S1F .If Y; Z are metric spaces a multifunction G : Y ! 2Z n f�g is said to be"lower semicontinuous "(lsc for short), if for all z 2 Z, the R+ - valued functiony ! dZ (z;G(y)) is upper semicontinuous.On Pf (RN ) we can de�ne a generalized metric, known as the "Hausdor� met-ric", by setting h(A;B) = min� infa2A d(a;B); infb2B d(b; A)�.It is well-known (see for example Kisielewicz [6] or Klein-Thompson [7]), that(Pf (RN ); h) is a complete metric space and Pfc(RN ) is a closed subspace of it. Amultifunction F : RN
! Pf (RN ), is said to be "Hausdor� continuous" (h - con-tinuous for short), if it is continuous from RN into the metric space (Pf (RN ); h).Finally for m 2 N , 1 � r � 1 , by k�k m;r we denote the norm of the Sobolevspace Wm;r(T;RN ). 3. Extremal Periodic SolutionsIn this section we will be dealing with the following two second order periodicdi�erential inclusions:� x00(t) � x(t) 2 F (t; x(t); x0(t)) a.e. on Tx(0) = x(b); x0(0) = x0(b) � (1)and � x00(t) � x(t) 2 extF (t; x(t); x0(t)) a.e. on Tx(0) = x(b); x0(0) = x0(b) � (2)By a solution of (1) (resp(2)), we mean a function x 2 W 2;1(T;RN ) such thatx00(t) � x(t) = v(t) a.e. on T; x(0) = x(b); x0(0) = x0(b); with v 2 S1F (�;x(�);x0(�))(resp. v 2 S1extF (�;x(�);x0(�))).



EXTREMAL SOLUTIONS, RELAXATION 429In what follows by Sc (resp. Se) we will denote the set of solution set of (1)(resp. of (2)). Here we prove the nonemptiness of Se. For this purpose, we needthe following hypotheses on the multifunction F (t; x; y).H1: F : T � RN
� RN

! Pkc(RN ) is a multifunction such that(i) for every x; y 2 RN , t ! F (t; x; y) is measurable;(ii) for every t 2 T , (x; y) ! F (t; x; y) is h-continuous;(iii) j F (t; x; y)j = sup fk v k : v 2 F (t; x; y)g � 1 (t; k xk )+ 2 (t; k xk ) k y k a.e.on T , with sup f 1(t; r) : j r j � k g � �1;k(t) a.e. on T , �1;k 2 L1(T )and sup f 2(t; r) : j r j � k g � �2;k(t) a.e. on T , �2;k 2 L1(T ).(iv) for almost all t 2 T , all x; y 2 RN and all v 2 F (t; x; y); we have(v; x)RN � � � k xk k y k � a(t) k xkwith 0 � � < 2 and a 2 L1(T ); a � 0.Theorem 1. If F : T � RN
� RN

! Pkc(RN ) is a multifunction satisfyinghypotheses H1, then problem (2) has a solution x(� ) 2 W 2;1(T;RN ) (i.e. Se 6= � ).Proof. We start by obtaining some a priori bounds for the elements of the setSc. So let x 2 Sc. Then by de�nition we have x00(t) � x(t) = v(t) a.e. on T ,x(0) = x(b); x0(0) = x0(b), with v 2 S1F (�;x(�);x0(�)):Hence � x00(t) + x(t) + v(t) = 0 a.e. on T , x(0) = x(b); x0(0) = x0(b). Takingthe inner product with x(t) and then integrating over T , we obtainR b0 (� x00(t); x(t))RN dt+ R b0 k x(t)k

2 dt+ R b0 (v(t); x(t))RN dt = 0. (3)From the integration by parts formula (Green's formula) and the periodicboundary conditions, we obtainR b0 (� x00(t); x(t))RN dt = k x0 k

22 (4)Also from hypothesis H1(iv) and since W 2;1(T;RN ) is embedded continuouslyin C(T;RN ) (see for example Brezis [3]), we haveR b0 (v(t); x(t))RN dt � � � k xk 2 k x0 k 2 � k ak 1 k xk 1. (5)Using (4) and (5) in (3), we have
k xk

21;2 = k xk

22 + k x0 k

22 � � k xk 2 k x0 k 2 + k ak 1 k xk 1.Since 2 k xk 2 k x0 k 2 � k xk

22 + k x0 k

22 = k xk

21;2, we have � k xk 2 k x0 k 2 �

�2 k x0 k

21;2and so (1 �

�2 ) k xk

21;2 � k ak 1 k xk 1.Because W 2;1(T;RN ) is continuously embedded in C(T;RN ), there exists c > 0such that k xk 1 � c k xk 1;2.So (1 �

�2 ) k xk 1;2 � c k ak 1 ) k xk 1;2 �

c1��2 k ak 1 = Mfor all x 2 Sc (since � < 2; see hypothesis H1(iv)).



430 E. P. AVGERINOS, N. S. PAPAGEORGIOUTherefore Sc is bounded inW 1;2(T;RN ), thus bounded in C(T;RN ) too: Hencewe can �nd M1 > 0 such that k xk 1 � M1 for all x 2 Sc. Using hypothesis H1(iii), we see that for all x 2 Sc we havex001 � k �1;M1 k 1 + k �2;M2 k 1 p bM = M2.Thus we infer that Sc is bounded in W 2;1(T;RN ).Recalling that W 2;1(T;RN ) is embedded continuously in C(T;RN ), we can �ndM3 > 0 such that k xk C1(T;RN ) � M3 for all x 2 Sc. Therefore without any lossof generality we may assume that j F (t; x; y)j = sup fk v k : v 2 F (t; x; y)g � '(t)a.e. on T , with ' 2 L1(T ). Indeed otherwise we replace F (t; x; y) by bF (t; x; y) =F (t; rM3(x); rM3(y)) with rM3(� ) being theM3- radial retraction on RN . Note thatbF (t; x; y) satis�es hypotheses H1(i),(ii) and (iv) and also ��� bF (t; x; y)��� � �1;M3(t) +�2;M3(t)M3 = '(t) a.e. on T; with ' 2 L1(T ) for all x; y 2 RN :Now let V = �u 2 L1(T;RN ) : k u(t)k � '(t) a.e. on T	. Given u 2 V , letp(u)(� ) 2 W 2;1(T;RN ) be the unique solution of the periodic problem � x00(t) �x(t) = u(t) a.e. on T , x(0) = x(b); x0(0) = x0(b). We know that x(t) =R b0 G(t; s)u(s)ds, t 2 T , where G(t; s) is the Green's function for this problem(see �Seda [9]).Note that
� G(t; s) = 12(e�1) ( (e�t+sb + e t�s+bb )I if 0 � t � s � b(e�t+s+bb + e t�sb )I if 0 � s � t � b )Using the fact that x(t) = R b0 G(t; s)u(s)ds, t 2 T , we can easily check that thesets f x = p(u) : u 2 V g and f x0 = p(u)0 : u 2 V g , are both bounded and equicon-tinuous in C(T;RN ) and of course closed. Therefore by the Arzela-Ascoli theoremwe can conclude that K = p(V ) is a compact and of course convex subset ofC1(T;RN ).Then let G : K ! Pfc �L1(T;RN )� be the multivalued Nemitsky operatorG(x) = �v 2 L1(T;RN ) : v(t) 2 F (t; x(t); x0(t)) a.e. on T	 = S1F (�;x(�);x0(�)),x 2 K.Invoking theorem 1.1. of Tolstonogov [10], we can �nd a continuous map r :K ! L1w(T;RN ) such that r(x) 2 extG(x) for all x 2 K:Here by L1w(T;RN ) we mean the space L1(T;RN ) furnished with the weak norm

k v k w = sup �Z t2t1 v(s)ds : 0 � t1 � t2 � b� :From Benamara [1] we know thatextG(x) = extS1F (�;x(�);x0(�)) = S1extF (�;x(�);x0(�))for all x 2 K.Then let q = p � r: Recalling that j F (t; x; y)j � '(t) a.e. on T , we see thatq : K ! K. We claim that q(� ) is continuous. Indeed let xn ! x in K as n � ! 1 .



EXTREMAL SOLUTIONS, RELAXATION 431Then r(xn) k�kw
! r(x) as n ! 1 . But note that r(xn)(t) 2 F (t; BM3 ; BM3) 2Pk(RN ) a.e. on T; with BM3 = �z 2 RN : k z k � M3	. So we can apply the theo-rem of Gutman [5] and obtain that r(xn) w

! r(x) in L1(T;RN ) as n ! 1 . Usingthe fact that q(xn)(t) = R b0 G(t; s)r(xn)(s)ds and q(x)(t) = R b0 G(t; s)r(x)(s)dsfor all t 2 T , we see that q(xn)(t) ! q(x)(t) as n ! 1 for all t 2 T . Since
f q(xn)(� )g n�1 � K and the latter is compact in C1(T;RN ), we have q(xn) ! q(x)in C1(T;RN ) as n ! 1 . This proves the continuity of q(� ): We apply Schauder's�xed point theorem and obtain x 2 K such that x = q(x). Evidently x 2 Se 6= ; .�4. Relaxation theoremIn this section we show that every solution of the Dirichlet problem x00(t) �x(t) 2 F (t; x(t); x0(t)) a.e. on T; x(0) = x(b) = 0 can be obtained as theC1(T;RN )- limit of a sequence of solutions of the "extremal" Dirichlet problemx00(t) � x(t) 2 extF (t; x(t); x0(t)) a.e. on T; x(0) = x(b) = 0. Such a result isknown as "relaxation theorem". To prove such a result, we strengthen our hy-potheses on the multifunction F (t; x; y): To simplify our calculations we assumeb = 1; i.e. T = [0; 1]:H2: F : T � RN

� RN
! Pkc(RN ) is a multifunction such that(i) for every x; y 2 RN , t ! F (t; x; y) is measurable;(ii) h (F (t; x; y); F (t; x0; y0)) � k(t) [k x � x0 k + k y � y0 k ] a.e. on T for allx; x0; y; y0 2 RN ; with k 2 L1(T ); k k k 1 < 1;(iii) j F (t; x; y)j � 1(t; k xk ) + 2(t; k xk ) k y k a.e. on T , withsup f 1(t; r) : 0 � r � k g � �1;k(t) a.e. on T , �1;k 2 L1(T ) andsup f 2(t; r) : 0 � r � k g � �2;k(t) a.e. on T , �2;k 2 L1(T );(iv) for almost all t 2 T , all x; y 2 RN and all v 2 F (t; x; y)(v; x)RN � � � k xk k y k � a(t) k xkwith 0 � � < 2 and a 2 L1(T ); a � 0:As we did before in section 2, by Sc � W 2;1(T;RN ) we denote the solution setof the "convexi�ed problem" x00(t) � x(t) 2 F (t; x(t); x0(t)) a.e. on T; x(0) =x(1) = 0 and by Se � W 2;1(T;RN ) we denote the solution set of x00(t) � x(t) 2extF (t; x(t); x0(t)) a.e. x(0) = x(1) = 0:Theorem 2. If F : T � RN

� RN
! Pkc(RN ) is a multifunction satisfyinghypotheses H2, then SC1(T;RN )e = Sc.Proof. Let x 2 Sc. Then by de�nition we have that x00(t) � x(t) = v(t) a.e. onT , with x(0) = x(b) = 0 and v 2 S1F (�;x(�);x0(�)). Arguing as in the proof of theorem1, we know that without any loss of generality, we may assume that for almost allt 2 T and all x; y 2 RN , j F (t; x; y)j � '(t) with ' 2 L1(T ):



432 E. P. AVGERINOS, N. S. PAPAGEORGIOUAs in the proof of theorem 1, a nonempty, compact and convex set K �C1(T;RN ) can be constructed such that Sc � K (note that because of the Dirich-let boundary conditions, equation (4) holds and so the estimation which led to thederivation of K is still valid here).Given y 2 K and " > 0, we de�ne the multifunction U" : T ! 2RN n f �g byU"(t) == �u 2 RN : k v(t) � uk < " + d (v(t); F (t; y(t); y0(t))) ; u 2 F (t; y(t); y0(t))	 :Because of hypotheses H2(i) and (ii), t ! d (v(t); F (t; y(t); y0(t))) is measurableand so the multifunction t ! F (t; y(t); y0(t)) is graph measurable (see Papageor-giou [8]). Therefore GrU" 2 L � B(RN ):Apply Aumann's selection theorem (see Wagner [11], theorem 5.10), to obtainu : T ! RN measurable such that u(t) 2 U"(t) for all t 2 T . Thus if we de�neG" : K ! 2L1(T;RN) byG"(y) == nu 2 S1F (�;y(�);y0(�)) : k v(t) � u(t)k < " + d (v(t); F (t; y(t); y0(t))) a.e. on Towe have shown that G"(y) 6= � for all y 2 K. Moreover proposition 4 of Bressan-Colombo [2], tells us that G"(� ) is lsc. Therefore y ! G"(y) is lsc and clearly hasdecomposable values (i.e. if (A; u1; u2) 2 L � G"(y) � G"(y), then �Au1 + �Acu2 2 G"(y)). Thus we can apply theorem 3 of Bressan Colombo [2] and obtaing" : K ! L1(T;RN ) a continuous map such that g"(y) 2 G"(y) for all y 2 K.In addition theorem 1.1 of Tolstonogov [10], gives us a continuous map r" : K !L1w(T;RN ) such that r"(y) 2 extG(y) = S1extF (�;y(�);y0(�)) and k r"(y) � g"(y)k w < "for all y 2 K.Now let "n # 0 and set gn = g"n , rn = r"n ; n � 1.Also let V = �u 2 L1(T;RN ) : k u(t)k � '(t) a.e. on T	and let p : V ! C1(T;RN ) be the map which to each u 2 V assigns the uniquesolution of the Dirichlet problem y00(t) � y(t) = u(t) a.e. on T , y(0) = y(1) = 0.We claim that p(V ) is compact in C1(T;RN ):To this end let yn 2 p(V ); n � 1: Then yn = p(un) with un 2 V; n � 1. Wehave y00n(t) � yn(t) = un(t) a.e. on T; y(0) = y(1) = 0.Take the inner product with � yn(t) and then integrate over T: We obtain
k yn k

21;2 = k yn k

22 + k y0n k

22 � k un k 1 k yn k 1.Since W 1;2(T;RN ) is continuously embedded in C(T;RN ), we can �nd c > 0such that k yn k

21;2 � c k un k 1 k yn k 1;2 ; hence k yn k 1;2 � c k 'k 1 for all n � 1: So
f yn g n�1 is bounded in W 2;1(T;RN ).Since y00n = un+yn, we infer that f y00n g n�1 � L1(T;RN ) is uniformly integrable.



EXTREMAL SOLUTIONS, RELAXATION 433Since V is weakly compact (Dunford-Pettis theorem) by passing to a subse-quence if necessary, we may assume that un w
! u in L1(T;RN ); u 2 V: Then itis easy to see that yn = p(un) ! p(u) = y in W 2;1(T;RN ) and so yn w

! y inC1(T;RN ): But f yn g n�1 � K and the latter is compact in C1(T;RN ):So yn ! y in C1(T;RN ) as n ! 1 ; which proves the compactness of p(V ) inC1(T;RN ):Hence qn = p � rn : K ! K; n � 1 and by Schauder's �xed point theorem, wecan �nd xn = q(xn) n � 1. Since f xn g n�1 � K by passing to a subsequence ifnecessary, we may assume that xn ! z in C1(T;RN ) as n ! 1 .Then for almost t 2 T we have(x00n(t) � x00(t); x0n(t) � x0(t))RN � (x(t) � xn(t); xn(t) � x(t))RN= (rn(xn)(t) � v(t); xn(t) � x(t))RN == (v(t) � rn(xn)(t); xn(t) � x(t))RN + (gn(xn)(t) � rn(xn)(t); xn(t) � x(t))RN=) k x0n � x0 k

2
� k xn � xk

2
�

�

R 10 "n + h(F (t; x(t); x0(t)); F (t; xn(t); x0n(t))) k xn(t) � x(t)k dt+ R 10 (gn(xn)(t) � rn(xn)(t); xn(t) � x(t))RN dt �

�

R 10 "n + k(t)(k xn(t) � x(t)k + k x0n(t) � x0(t)k ) k xn(t) � x(t)k dt++ R 10 (gn(xn)(t) � rn(xn)(t); xn(t) � x(t))RN dtNote that for all t 2 T
k xn(t) � x(t)k �

Z t0 k x0n(s) � x0(s)k ds � k x0n � x0 k 1 :So we have
k x0n � x0 k

22 + k xn � xk

22 �

� "n k xn � xk 1 + k k k 1 k xn � xk

22 + k k k 1 k x0n � x0 k

22 ++ Z 10 (gn(xn)(t) � rn(xn)(t); xn(t) � x(t))RN dt :By construction k gn(xn) � rn(xn)k w ! 0 as n ! 1 and so as in the proofof theorem 1 via Gutman's theorem we can have that (gn(xn) � rn(xn)) w
! 0 inL1(T;RN ) as n ! 1 .So we have R 10 (gn(xn)(t) � rn(xn)(t); xn(t) � x(t))RN dt ! 0 as n ! 1 .Therefore in the limit as n ! 1 we obtain k z � xk 1;2 � k k k 1 k z � xk 1;2Since by hypothesis H2(ii) k k k 1 < 1; we deduce that z = x: Therefore xn ! xin C1(T;RN ): But xn 2 Se: Hence Sc � SeC1(T;RN): Since we gan easily checkthat Sc is closed in C1(T;RN ) we conclude that Sc = SeC1(T;RN ): �References[1] Benamara, M., Points extremaux, multiapplications et fonctionelles integrales, These de3eme cycle, Universite de Grenoble 1975.[2] Bressan, A., Colombo, G., Extensions and selections on maps with decomposable values,Studia Math., XC(1988), 69-85.
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