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ARCHIVUM MATHEMATICUM (BRNO)Tomus 35 (1999), 29 { 57EXACT CONTROLLABILITY OF THE WAVE EQUATIONWITH MIXED BOUNDARY CONDITION ANDTIME-DEPENDENT COEFFICIENTSM. M. CavalcantiAbstract. In this paper we study the boundary exact controllability for theequation@@t � �(t)@y@t � � n
Xj=1 @@xj � �(t)a(x) @y@xj � = 0 in 
 � (0; T ) ;when the control action is of Dirichlet-Neumann form and 
 is a boundeddomain inRn. The result is obtained by applying the HUM (Hilbert Unique-ness Method) due to J. L. Lions.1. IntroductionLet 
 be a bounded domain in Rn with C2 boundary �;�0 a nonempty open setof � and let Q be the �nite cylinder 
�(0; T ) with lateral boundary � = ��(0; T ).We consider the following system with inhomogenous boundary conditions:(1:1) �

�

�

�

�

�

�

�

�

(�(t)y0)0 +A(t)y = 0 in Q@y@�A = v on �0 = �0 � (0; T )y = 0 on �1 = �n�0y(0) = y0 and y0(0) = y1 in 
 ;where A(t) = � n
Xj=1 @@xj � �(t)a(x) @@xj � :We shall consider the particular case �0 \ (�n�0) = ;; that is, the case where
 = 
0n
1 and 
0 and 
1 are nonempty open sets with C2 boundaries �0 and1991 Mathematics Subject Classi�cation : 35B40, 35B35, 35L99.Key words and phrases: wave equation, boundary value problem, exact controllability,Dirichlet-Neumann condition.Partially supported by CNPq/Brazil.Received September 22, 1997.



30 M. M. CAVALCANTI�1; respectively, with 
1 � 
0. Thus, � possesses two disjointed components�0 and �1.The problem of the exact controllability for the system (1.1) is formulated asfollows:\Given T > 0 large enough, for each pair of initial data fy0; y1g de�ned in asuitable space, �nd a control v such that the solution y = y(x; t) of (1.1) satis�esthe conditions y(T ) = y0(T ) = 0 :"In this paper we shall prove that system (1.1) is exactly controllable by makinguse of HUM ( Hilbert Uniqueness Method) c.f. J. L. Lions [14]. For this, weemploy the multiplier technique to obtain the inverse inequality.When the coe�cients depend on time, with suitable hypotheses on them, theinverse inequality still remains true but since standard arguments are not appli-cable, the regularity of the backward problem requires a new proof, which is themain task of this work.We note that when �(t) = �(t) = a(x) = 1, problem (1.1) was studied byJ. L. Lions [14] using HUM and also by I.Lasiecka and R.Triggiani [13] usingthe ontoness approach. Many other authors have used HUM in the study ofexact controllability of distributed systems with time-dependent or x-dependentcoe�cients. Among them, we mention J.Lagnese [11], C.Bardos, G.Lebeau andJ.Rauch [2], V.Komornik [8], R. Fuentes [5], L. A. Medeiros [16], M. Milla Miranda[17], M. Milla Miranda and L. A. Medeiros [18], J. A. Soriano [19].The goal of this work is to show that HUM can be applied to the case of time-dependent coe�cients with mixed boundary condition. In fact we shall considerthe wave equation for the following simple operatorsA(t) = � n
Xj=1 @@xj � �(t)a(x) @@xj � :However, with appropriated changes, we will obtain analogous results to theoperator given by A(t) = � n

Xj=1 @@xj � a(x; t) @@xj � ;with a(x; t) � �0 > 0 in 
 � (0;1). But, when we have matricial operators likeA(t) = � n
Xi;j=1 @@xi � ai;j(x; t) @@xj �the usual arguments cannot be applied even if i = j and ai;j(x; t) = ai(x).Our paper is divided into sixth sections. In section 2 we give notations andstate the principal result. In section 3 we consider the homogeneous problem andin section 4 we establish the inverse inequality. In section 5 we study the backwardproblem and in the last section, section 6, we apply HUM.



EXACT CONTROLLABILITY OF THE WAVE EQUATION 312. Notations and Main ResultLet x0 2 Rn, m(x) = x�x0 (x 2 Rn) and �(x) the unit exterior normal vectorat x 2 �, and R(x0) = maxf km(x)k; x 2 
 g :We de�ne: �(x0) = fx 2 �; m(x) � �(x) > 0 g ;��(x0) = fx 2 �; m(x) � �(x) � 0g = �n�(x0) ;�i;� = �i \ ��(x0); i = 0; 1 :In what follows we consider 
1 "star-shaped with respect to x0", that is, thereexist a point x0 2 
1 such that �1;� = �1:Remark 1. We are not considering that 
0 is star-shaped with respect to x0 inorder that �0;� is not necessarily equal to �0. In fact we have �(x0) [ �0;� = �0:We consider: �(x0) = �(x0) � (0; T )and ��(x0) = ��(x0)� (0; T ) = �n�(x0) :Let us introduce some notations that will be used through this work.We de�ne: V = fu 2 H1(
);u = 0 on �1gwhich is a Hilbert space of H1(
):By (�; �) and j�j we denote the inner-product and the norm of L2(
) respectively.The norm in V will be denoted by k � k.Let A be the operator de�ned by the triple fV; L2(
); a(u; v)g wherea(u; v) = n
Xj=1 Z 
 a(x) @u@xj @v@xj dx 8u; v 2 Vand D(A) = fu 2 H2(
) \ V ; @u@�A = 0 on �0g :We recall that the Spectral Theorem for self-adjointed operators guarantees theexistence of a complete orthonormal system (!�) of L2(
) given by the eigen-functions of A. If (��) are the correponding eigenvalues of A, then �� ! +1 as� ! +1. Besides,D(A) = ( u 2 L2(
); +1

X�=1�2�j(u; !�)j2 < +1)



32 M. M. CAVALCANTIand Au = +1
X�=1��(u; !�)!� ; 8u 2 D(A) :Considering in D(A) the norm given by the graph, that is,kukD(A) = (juj2 + jAuj2) 12 ;it turns out that (!�) is a complete system in D(A). In fact, it is known that (!�)is also a complete system in V . Now, since A is positive, given � > 0 one hasD(A�) = ( u 2 L2(
); +1

X�=1�2�� j(u; !�)j2 < +1)and A�u = +1
X�=1���(u; !�)!� ; 8u 2 D(A�) :In D(A�) we consider the natural topology given by the norm kukD(A�) =(juj2+ jA�uj2) 12 . From the Spectral Theory one notes that such operators are alsoself-adjoints, that is, (A�u; v) = (u;A�v) 8u; v 2 D(A�) ;D(A1=2) = V and D(A0) = L2(
). We also observe that A(t) = �(t)A. Here, weare using the same symbol for both operators to simplify the notation.We are going to consider the following hypotheses:(H1) : �; � 2W 1;1loc (0;1), �0; �0 2 L1(0;1),�(t) � �0 > 0 and �(t) � �0 > 0; 8 t � 0 ;and a 2 C1(
) with a(x) � a0 > 0, 8x 2 
.(H2) : If n > 1 krakC0(
) < a0[R(x0)]�1 :(H3) : If n = 19 0 <  < 1 such that krakC0(
) < a0[R(x0)]�1 :Now we are in a position to state our main result. Consider the followingsystem:(2:1) �
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(�(t)y0)0 +A(t)y = 0 in Q@y@�A = �

�

�

�

v0 on �(x0)v1 on �0;�(x0)y = 0 on �1y(0) = y0 and y0(0) = y1 in 
 :



EXACT CONTROLLABILITY OF THE WAVE EQUATION 33Theorem 2.1. Suppose that assumptions (H1)-(H3) are satis�ed. Then thereexists a time T0 > 0 such that for T > T0 and initial data fy0; y1g 2 L2(
) � V 0,there exists a controlv0 2 [H1(0; T ;L2(�(x0))]0 and v1 2 L2(0; T ; [H1(�0;�(x0))]0)such that the ultra-weak 1 solution y = y(x; t) of (2.1) satis�esy(T ) = y0(T ) = 0 :The proof of this theorem will be developed in the following sections.3. The Homogeneous ProblemWe begin this section presenting a standard result for the solutions to the fol-lowing homogeneous problem.(3:1) �
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(�(t)�0)0 +A(t)� = f in Q@�@�A = 0 on �0� = 0 on �1�(0) = �0 and �0(0) = �1 in 
 :We have the following results.Theorem 3.1. Suppose that assumption (H1) holds. Then given k 2 f0; 1; 2gand f�0; �1; fg 2 D(A k+12 ) �D(A k2 )� L1(0; T ;D(A k2 ) ;the problem (3.1) possesses a unique solution � : Q! R in the class� 2 C0([0; T ];D(A k+12 )) \C1([0; T ];D(A k2 )) :Moreover, the linear mapD(A k+12 �D(A k2 )� L1(0; T ;D(A k2 ) ! C0([0; T ];D(A k+12 ))� C1([0; T ];D(A k2 ))f�0; �1; fg 7! f�; �0gis continuous.Theorem 3.1 can be proved in a standard way by applying the Faedo-GalerkinMethod and using the spectral considerations given in section 2.1The solution of (2.1) is de�ned by the transposition method, see J. L. Lions and E. Magenes[14].



34 M. M. CAVALCANTINext we consider the homogeneous problem(3:2) �
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�

(�(t)�0)0 +A(t)� = f 0 in Q@�@�A = 0 on �0� = 0 on �1�(0) = �0(0) = 0 in 
 ;that will be used in the study of the regularity of the solution of (2.1).Theorem 3.2. Given f 2 D(0; T;D(A)), the unique solution of problem (3.2)satis�es for all t 2 [0; T ]j� 12A 12 �0(t)� ��12 A 12 f(t)jL2(
) + jA�(t)jL2(
) � CkfkL1(0;T ;D(A))and j� 12 �0(t)� ��12 f(t)jL2(
) + jA 12 �(t)jL2(
) � CkfkL1(0;T ;V ) :Proof. Since �0 = �1 = 0 and f 0 2 D(0; T;D(A)), from Theorem 3.1 the aboveproblem has a unique solution � such that(3:3) � 2 C0([0; T ];D(A 32 )) \C1([0; T ];D(A)) :Besides, such a solution satis�es the identity12 n �(t)jA 12 �0(t)j2 + �(t)jA�(t)j2 o =12 Z t0 �0(s)jA�(s)j2ds � 12 Z t0 �0(s)jA�0(s)j2ds+ Z t0 (A 12 f 0(s); A 12 �0(s)) ds :(3.4)From (3.3) we get A� 2 C0([0; T ];D(A 12 )) and therefore(��0)0 2 L1(0; T ;D(A 12 )) :This togheter with assumption (H1) implies thatdds � ��1(s)A 12 f(s); �(s)A 12 �0(s)� = � � �0(s)�2(s)A 12 f(s); �(s)A 12 �0(s)�+ � ��1(s)A 12 f 0(s); �(s)A 12 �0(s)�+ � ��1(s)A 12 f(s); A 12 [(�(s)�0(s))0]� :



EXACT CONTROLLABILITY OF THE WAVE EQUATION 35Integrating this equality and noting that f(0) = 0 we have
Z t0 (A 12 f 0(s); A 12 �0(s))ds = � ��1(t)A 12 f(t); �(t)A 12 �0(t)�+ Z t0 � �0(s)��1(s)A 12 f(s); A 12 �0(s)� ds� Z t0 � ��1(s)A 12 f(s); A 12 [(�(s)�0(s))0]� ds :Replacing (��0)0 by f 0 � �A� in the last integral we obtain

Z t0 (A 12 f 0(s); A 12 �0(s))ds = � A 12 f(t); A 12 �0(t)�+ Z t0 � �0(s)��1(s)A 12 f(s); A 12 �0(s)� ds� Z t0 � ��1(s)A 12 f(s); A 12 f 0(s)� ds(3.5) + Z t0 � ��1(s)A 12 f(s); �(s)A 12 [A�(s)]� ds :Now integrating by parts and noting that f(0) = 0,
Z t0 � ��1(s)A 12 f(s); A 12 f 0(s)� ds =12 � ��1(t)A 12 f(t); A 12 f(t)�+ 12 Z t0 � �0(s)��2(s)A 12 f(s); A 12 f(s)� ds :(3.6)Replacing (3.6) into (3.5) we have,

Z t0 (A 12 f 0(s); A 12 �0(s))ds = � A 12 f(t); A 12 �0(t)�+ Z t0 � �0(s)��1(s)A 12 f(s); A 12 �0(s)� ds� 12 � ��1(t)A 12 f(t); A 12 f(t)�(3.7) � 12 Z t0 � �0(s)��2(s)A 12 f(s); A 12 f(s)� ds+ Z t0 � ��1(s)A 12 f(s); �(s)A 12 [A�(s)]� ds :



36 M. M. CAVALCANTIFrom (3.4) and (3.7) it follows that12 j� 12 (t)A 12 �0(t)� ��12 (t)A 12 f(t)j2 + 12�(t)jA�(t)j2 = 12 Z t0 �0(s)jA�(s)j2ds� 12 Z t0 �0(s)jA 12 �0(s)j2ds+ Z t0 � �0(s)��1(s)A 12 f(s); A 12 �0(s)� ds� 12 Z t0 � �0(s)��2(s)A 12 f(s); A 12 f(s)� ds+ Z t0 � ��1(s)A 12 f(s); �(s)A 12 [A�(s)]� ds :De�ning � 12 �0 � ��12 f = ' and replacing �0 by ��12 ' + ��1f in the aboveexpression we have12 jA 12'(t)j2 + 12�(t)jA�(t)j2 = 12 Z t0 �0(s)jA�(s)j2ds� 12 Z t0 �0(s)��1jA 12'(s)j2ds(3.8) + Z t0 ��1(s)�(s) (Af(s); A�(s)) ds :From the hypotheses (H1), (H2) and (3.8) there exists a constant C > 0 inde-pendent of f and � such that12 jA 12'(t)j2 + 12 jA�(t)j2� C �

Z t0 jA�(s)j2ds + 12 Z t0 jA 12'(s)j2ds+ Z t0 jAf(s)j[jA�(s)j + jA 12'(s)j]ds� :Applying the Gronwall's inequality it follows thatjA 12'(t)j+ jA�(t)j � CkfkL1(0;T ;D(A)) 8 t 2 [0; T ] :In a similar way we also infer thatj'(t)j+ jA�(t)j � CkfkL1(0;T ;V ) 8 t 2 [0; T ] :Using the de�nition of ' by its de�nition we get the desired inequalities. �



EXACT CONTROLLABILITY OF THE WAVE EQUATION 374. The Inverse InequalityIn this section we construct an special T0 time depending on n, R(x0), on thefunctions �(t), �(t), a(t), and also on the geometry of 
.Taking into account the regularity of �, we can de�ne on � a unit exteriornormal vector �eld �(x) of class C1. In the same way we can de�ne a family of(n�1) tangents vector �eld f�1(x); � � � ; �n�1(x)g of class C1 such that the familyf�(x); �1(x); � � � ; �n�1(x)g de�nes a orthonormal basis for Rn, for all x 2 �. If' : 
! R is a regular function, we have(4:1) @'@xj = �j @'@� + n�1
Xk=1 �kj @'@�k on �; j = 1; � � � ; n ;where @'@� = r' � � and @'@�k = r' � �k :De�ning(4:2) �j' = n�1

Xk=1 �kj @'@�kwe obtain from (4.1) and (4.2)(4:3) @'@xj = �j @'@� + �j' on �; j = 1; � � � ; n :We observe that when @'@�A = 0 on �0 then @'@� = 0 since@'@�A = a(x)@'@� on �0; and a(x) � a0 > 0Then, de�ning r�' = (�1'; � � � ; �n'), we obtain from (4.3)(4:4) r�' = r' on �0 ;and consequently,(4:5) jr'j2 = jr�'j2 = n
Xj=1 j�j'j2 on �0 :Remark 2. In this point we observe that when A is a matricial operator, that is,when it is given by A(t) = � n

Xi;j=1 @@xi � aij(x; t) @@xj �then we have @y@�A = n
Xi;j=1aij(x; t) @y@xj �i



38 M. M. CAVALCANTIand therefore if @y@�A = 0 we don't have necessarely that @y@� = 0 and consequentlywe can not use the identity jryj2 = jr�yj2 on �0even if i = j and aij(x; t) = aj(x). As this identity is fundamental to prove theinverse inequality, this case requires another treatment which will not be consideredin this work.If ' 2 H2(
) we can de�ne in a natural way a continuous linear operator(4:6) �1j : H2(
)! H 12 (�)such that(4:7) �1j' = (�j') j�0 on � ; 8' 2 C2(
) :In addition, we can also consider a continuous linear operator(4:8) �2j : H1(�0)! L2(�0)where �0 is a nonempty open subset of � (sometimes the hole �) such that(4:9) �2j'j�0 = (�j') j�0 on �0; 8' 2 C2(
) :Thus, from (4.7) and (4.9) and by density arguments it results that(4:10) � �1ju� j�0 = �2j (uj�0) on �0; 8u 2 H2(
) :Considering the above equality we are able to de�ne the tangential gradientr�u = ((�11u)j�0; � � � ; (�1nu)j�0) = (�11uj�0; � � � ; �1nuj�0); 8u 2 H2(
) :Dropping the index \2" in (4.8) to simplify the notation, we de�ne the adjointoperator ��j : L2(�0)! (H1(�0))0(4:11) h��j ; 'i = ( ; �j')L2(�0) 8' 2 H1(�0) ;and from (4.8) and (4.11) we de�ne the continuous linear operator���0 : H1(�0)! (H1(�0))0' 7�! ���0' = n
Xj=1(��j � �j)' :Hence for all ';  2 H1(�0),(4:12) h���0';  i = Z �0 r�'r� d� :In particular,(4:13) h���0'; 'i = Z �0 jr�'j2 d� :



EXACT CONTROLLABILITY OF THE WAVE EQUATION 39Theorem 4.1. Let � be the weak solution of the problem (3.1), that is, f�0; �1g 2V � L2(
). Then if f = 0,e�C0E(0) � E(t) � eC0E(0) 8 t � 0 ;where C0 = maxf��10 ; ��10 g Z +10 (j�0(t)j+ j�0(t)j)dtand(4:14) E(t) = 12 �

Z 
 �(t)j�0(x; t)j2dx+ Z 
 �(t)a(x)jr�(x; t)j2dx� :Proof. We suppose �rst that f�0; �1g 2 D(A) � V . Then, in view of Theorem3.1, there exists a unique solution � in the class� 2 C0([0; T ];D(A)) \C1([0; T ];V ) :Multiplying (3.1)1 by �0(t) we obtain�0(t)j�0(t)j2 + �(t)12 ddt j�0(t)j2 + �(t)12 ddt ja 12 (x)r�(t)j2 = 0 :Integrating this relation from 0 to t and then integrating by parts we get12 h �0(t)j�0(t)j2 + �(t)ja 12 (x)r�(t)j2 i = 12 h �(0)j�1j2 + �(0)ja 12 (x)r�0j2 i�12 Z t0 �0(s)j�0(s)j2ds+ 12 Z t0 �0(s)ja 12 (x)r�(s)j2ds :Taking (4.14) into account we can rewrite the above expression as follows.0 � E(t) = E(0) � 12 Z t0 �0(s)j�0(s)j2ds+ 12 Z t0 �0(s)ja 12 (x)r�(s)j2ds ;On the other hand, di�erentiating E(t) we haveE0(t) = �12�0(t)j�0(t)j2 + 12�0(t)ja 12 (x)r�(t)j2 ;and thereforejE0(t)j � maxf��10 ; ��10 g[ j�0(t)j+ j�0(t)j ] [�(t)j�0(t)j2 + �(t)ja 12 (x)r�(t)j2 ] ;So jE0(t)j � G(t)E(t) ;where G(t) = maxf��10 ; ��10 g[ j�0(t)j+ j�0(t)j ] :The above inequality gives,(4:15) �G(t)E(t) � E0(t) � G(t)E(t) :



40 M. M. CAVALCANTINow, considering C0 = Z +10 G(s)dsit follows from (4.15) thate�C0E(0) � E(t) � eC0E(0) 8 t � 0 :Finally, assuming f�0; �1g 2 V � L2(
)we obtain the desired result using density arguments. �Theorem 4.2. Let q = (qk)1�k�n be a vector �eld such that q 2 [C1(
)]n. Theneach weak solution � of problem (3.1) satis�es:12 Z �0 qk�k[�(t)j�0(t)j2 � �(t)a(x)jr��j2] d�+ 12 Z �1 qk�k�(t)a(x)j@�@� j2= � �(t)�0(t); qk @�(t)@xk �

�

�

T0 + 12 Z Q �(t) @qk@xk j�0j2dxdt� 12 Z Q �(t)a(x) @qk@xk jr�j2dxdt+ Z Q �(t)a(x) @�@xi @qk@xj @�@xk dxdt� 12 Z Q �(t)@a(x)@xk qkjr�j2dxdt� Z Q fqk @�@xk dxdt :Proof. First we prove the identity for the strong 2 solutions of (3.1) and then theresult follows by density arguments. So, let us suppose that� 2 C0([0; T ];D(A)) \C1([0; T ];V ) :By multiplying equation (3.1)1 by qk @�@xk and integrating over Q,(4.16) Z Q((�(t)�0)0qk @�@xk dxdt� Z Q �(t) @@xi (a(x) @�@xi )qk @�@xk dxdt = Z Q fqk @�@xk dxdt :Integrating by parts the left hand side of equality (4.16) we get(4.17) Z Q((�(t)�0)0qk @�@xk dxdt= � �(t)�0(t); qk @�(t)@xk �

�

�

T0 � Z Q �(t)qk�0 @�0@xk dxdt :2It means that the initial data fy0; y1g 2 D(A)� V



EXACT CONTROLLABILITY OF THE WAVE EQUATION 41On the other hand, since
Z Q �(t)qk�0 @�0@xk dxdt = 12 Z Q �(t)qk @@xk (�0)2dxdt ;we have from (4.17) that(4.18) Z Q((�(t)�0)0qk @�@xk dxdt= � �(t)�0(t); qk@�(t)@xk �

�

�

T0 � 12 Z Q �(t)qk @@xk (�0)2dxdt :We also have(4.19) 12 Z Q �(t)qk @@xk (�0)2dxdt= �12 Z Q �(t) @qk@xk j�0j2dxdt+ 12 Z �0 �(t)qkj�0j2�kd� :Thus, combining (4.19) and (4.18) we obtain(4.20) Z Q((�(t)�0)0qk @�@xk dxdt = � �(t)�0(t); qk @�(t)@xk �

�

�

T0+ 12 Z Q �(t) @qk@xk j�0j2dxdt� 12 Z �0 �(t)qkj�0j2�kd� :Now, estimating the right hand side of (4.16), we have from the Green identity� Z Q �(t) @@xi (a(x) @�@xi )qk @�@xk dxdt = Z Q �(t)a(x) @�@xi @qk@xi @�@xk dxdt� 12 Z Q �(t) @a@xk qkjr�j2dxdt� 12 Z Q �(t)a(x) @qk@xk jr�j2dxdt(4.21) + 12 Z �0 �(t)a(x)qk�kjr�j2dxdt+ 12 Z �1 �(t)a(x)qk�kjr�j2d�� Z �1 �(t)a(x)qk @�@xk @�@� d� :Combining (4.16), (4.20), (4.21) and (4.5) and observing that @�@xk = �k @�@� on �1we obtain the desired identity. �The above mentioned T0 time is de�ned byT0 = T (x0; �; �; a) =2maxf��10 ; ��10 a�10 geC0R(x0)k�kL1(0;T )(1� krakC0(
)a�10 R(x0))�1 if n > 1 ;T0 = T (x0; �; �; a) =2maxf��10 ; ��10 a�10 geC0R(x0)k�kL1(0;T )( � k@a@xkC0(
)a�10 R(x0))�1 if n = 1 :



42 M. M. CAVALCANTIand uniquely depends on n;R(x0); �(t); �(t); a(x) and the geometry of 
:Remark 3. We note that if �(t) = �(t) = a(x) = 1; then T0 = 2R(x0). Thisoptimal time was determined in J.L.Lions [14] and V.Komornik [7] for the waveequation u00 ��u = 0:Theorem 4.3. Suppose that hypotheses (H1), (H2) and (H3) hold and thatT > T0 is given. Then for each weak solution � of (3.1) with f = 0 there existsC > 0 such that(i) If n > 1 thenk�0k2V + j�1j2L2(
)� C �

Z �0m � �[�(t)j�0j2 � �(t)a(x)jr�(�)j2]d�+ Z �0m � �[ j�(0)j2+ j�(T )j2d�� :(ii) If n = 1 thenk�0k2V + j�1j2L2(
) � C �

Z �0 m�(t)j�0j2d�+ Z �0m[ j�(0)j2 + j�(T )j2d�� :Proof. By using the identity given in the Theorem 4.2 with q(x) = m(x) = x�x0,we get after some calculations12 Z �0 m � �[�(t)j�0j2 � �(t)a(x)jr��j2]d�+ 12 Z �1 m � ��(t)a(x)j@�@� j2d�=(�(t)�0(t);m � r�(t)) jT0 + n2 Z Q �(t)j�0j2dxdt� n2 Z Q �(t)a(x)jr�j2dxdt+ Z Q �(t)a(x)jr�j2dxdt(4.22) � 12 Z Q �(t)ra �mjr�j2dxdt :On the other hand,n2 Z Q[�(t)j�0j2 � �(t)a(x)jr�j2 ] dxdt=n � 12 Z Q[�(t)j�0j2 � �(t)a(x)jr�j2 ] dxdt+ Z T0 E(t)dt� Z Q �(t)a(x)jr�j2dxdt :(4.23)Multiplying equation (3.1)1 by � and integrating over Q we have(4:24) (�(t)�0(t); �(t))jT0 = Z T0 [�(t)j�0j2 � �(t)ja 12 (x)r�j2 ]dt :



EXACT CONTROLLABILITY OF THE WAVE EQUATION 43Replacing (4:24) in (4:23) it follows thatn2 Z Q[�(t)j�0j2 � �(t)a(x)jr�j2 ] dxdt =(�(t)�0(t); n� 12 �(t))jT0+ Z T0 E(t)dt � Z Q �(t)a(x)jr�j2dxdt :(4.25)Now, substituting (4:25) in (4:22) we obtain12 Z �0 m � �[�(t)j�0j2 � 12�(t)a(x)jr��j2]d�+ 12 Z �1 m � ��(t)a(x)j@�@� j2d�= � �(t)�0(t);m � r�(t) + n� 12 �(t)�

�

�

T0+ Z T0 E(t)dt� 12 Z Q �(t)ra �mjr�j2dxdt :(4.26)Since R(x0) = maxf km(x)k; x 2 
 g, then from the hypothesis (H1) we have(4:27) 12 Z Q �(t)ra �mjr�j2dxdt � krakC0(
)R(x0)a�10 Z T0 E(t)dt :Hence, from (4.26), (4.27) and noting that m � � � 0 on �1 we have
� �(t)�0(t);m � r�(t) + n� 12 �(t)�

�

�

T0 + (1 � krakC0(
)a�10 R(x0)) Z T0 E(t) dt�12 Z �0 m � �[�(t)j�0j2 � �(t)a(x)jr��j2]d� ;and from hypothesis (H2) and Theorem 4.1 we obtain(�(t)�0(t);m � r�(t) +n� 12 �(t)�

�

�

T0 + (1� krakC0(
)a�10 R(x0))e�C0E(0)�12 Z �0m � �[�(t)j�0j2 � �(t)a(x)jr��j2]d� :(4.28)Next, we estimatez(t) = (�(t)�0(t);m � r�(t) + n � 12 �); 8 t 2 [0; T ] :From the hypothesis (H1) and Theorem 4.1, we have,jz(t)j � k�kL1(0;T ) ( max(��10 ; ��10 a�10 ge2C0R(x0)� n2 � 18R(x0) j�(t)j2 + n� 14R(x0) Z �0 m � �j�(t)j2d�) ;



44 M. M. CAVALCANTIand from (4.29) we obtain(4.30) �

�

�

�

�

� �(t)�0(t); m � r�(t) + n� 12 ��

�

�

�

�

T0 �

�

�

�

�� k�kL1(0;T ) ( 2max(��10 ; ��10 a�10 geC0R(x0) � n2 � 18R(x0) (j�(0)j2+ j�(T )j2)+ n� 14R(x0) Z �0 m � �(j�(0)j2+ j�(T )j2)d�� :From the above inequality we have
h (1� krakC0(
)R(x0)a�10 )e�C0T � 2maxf��10 ; ��10 a�10 geC0R(x0)k�kL1(0;T ) i E(0)+ n2 � 18R(x0)k�kL1(0;T )[j�(0)j2+ j�(T )j2]� � �(t)�0(t); m � r�(t) + n� 12 ��

�

�

�

�

T0+ (1� krakC0(
)R(x0)a�10 )e�C0E(0)T+ n� 14R(x0)k�kL1(0;T ) Z �0m � �(j�(0)j2+ j�(T )j2)d� ;which, together with (4:28) implies that
h (1� krakC0(
)R(x0)a�10 )e�C0T � 2maxf��10 ; ��10 a�10 geC0R(x0)k�kL1(0;T ) i E(0)+ n2 � 18R(x0)k�kL1(0;T )[j�(0)j2+ j�(T )j2]�12 Z �0 m � �[�(t)j�0j2 � �(t)a(x)jr��j2]d�+ n� 14R(x0)k�kL1(0;T ) Z �0m � �(j�(0)j2+ j�(T )j2)d� ;where we deduce (i).To prove (ii), we consider the identity12 Z Q[�(t)j�0j2 � �(t)a(x)jr�j2 ]dxdt = 2 Z Q[�(t)j�0j2 + �(t)a(x)jr�j2 ]dxdt+ 1� 2 Z Q[�(t)j�0j2 � �(t)a(x)jr�j2 ]dxdt+ (1� ) Z Q �(t)a(x)jr�j2dxdt :(4.31)



EXACT CONTROLLABILITY OF THE WAVE EQUATION 45Then, it follows from (4.22) and (4.31) that(�(t)�0(t);m � r�(t))jT0 + 2 Z Q[�(t)j�0j2 + �(t)a(x)jr�j2 ]dxdt+ 1� 2 Z Q[�(t)j�0j2 � �(t)a(x)jr�j2 ]dxdt+ (1� ) Z Q �(t)a(x)jr�j2dxdt� 12 Z Q �(t)ra �mjr�j2 dxdt = 12 Z �0 �(t)mj�0j2d� :From (H3) we have that 0 <  < 1 and therefore(�(t)�0(t);m � r�(t))jT0 + 2 Z Q[�(t)j�0j2 + �(t)a(x)jr�j2 ]dxdt+ 1� 2 Z Q[�(t)j�0j2 � �(t)a(x)jr�j2 ]dxdt(4.32) � 12 Z Q �(t)ra �mjr�j2 dxdt � 12 Z �0 �(t)mj�0j2d� :Then by making use of the same arguments of (4.27) and (4.28), from (4.32)we obtain(�(t)�0(t);m � r�(t) + 1� 2 �(t))jT0 + ( � krakC0(
)R(x0)a�10 )e�C0TE(0)�12 Z �0 �(t)mj�0j2d� :De�ning z(t) = (�(t)�0(t);m � r�(t) + 1� 2 �(t))jT0 ;in view of hypothesis (H2) and using similar arguments to the case n > 1 weobtain (ii). �Theorem 4.4 (Inverse Inequality). Suppose that hypotheses (H1)-(H3) holdand let T > T0. Then for each strong solution � of (3.1) with f = 0 there existsC > 0 such that(i) If n > 1k�0k2V + j�1j2L2(
) � C (

Z �(x0)[j�j2+ j�0j2]d�+ Z �0;�(x0) jr��j2d�)(ii) If n = 1 k�0k2V + j�1j2L2(
) � C Z �(x0)[j�j2+ j�0j2]d� :



46 M. M. CAVALCANTIProof. We prove the case (i). Dropping the terms that contribute to negativeparts in the Theorem 4.3, one has(4.33) k�0k2V + j�1j2L2(
) � C1 (

Z �(x0)[j�j2+ j�0j2]d�+ Z �0;�(x0) jr��j2d�+ Z �(x0)[j�(0)j2+ j�0(T )j2]d�) :On the other hand, there exists a constant C2 > 0 such that(4:34) Z �(x0)[j�(0)j2+ j�0(T )j2]d� � C2 Z �(x0)[j�j2+ j�0j2]d� :Indeed, since � is a regular solution, then� 2 C0([0; T ];D(A))\C1([0; T ];V )and therefore(4:35) �j� 2 C0([0; T ];H 32 (�)) and �0j� 2 C0([0; T ];H 12 (�)) :De�ning h(t) = j�(t)j2L2(�(x0)) 8 t 2 [0; T ] ;we have h0(t) = 2(�(t); �0(t))L2(�(x0)) 8 t 2 [0; T ] ;and from (4.35) it follows that h,h0 2 L2(0; T ) and hence h 2 C0[0; T ]. Lett0 2 [0; T ] a minimizer of h. Thus,h(t)� h(t0) = Z tt0 h0(s)dsand consequently(4:36) h(t) � h(t0) + Z T0 j�(s)j2L2(�(x0))ds + Z T0 j�0(s)j2L2(�(x0))ds :But, since t0 is a minimizer, we have that
Z T0 h(t)dt � h(t0)T ;and then(4:37) h(t0) � 1T0 Z T0 h(t)dt :Thus, from (4:36) and (4:37) we obtainh(t) � C0 (

Z T0 j�(s)j2L2(�(x0))ds+ Z T0 j�0(s)j2L2(�(x0))ds) 8 t 2 [0; T ] ;



EXACT CONTROLLABILITY OF THE WAVE EQUATION 47which proves (4.34). Combining (4.33) and (4.34) one �nishes the proof. �5. The Backward ProblemLet T > T0 as in previous section and consider the following homogeneousproblem(5:1) �

�

�

�

�

�

�

�

(�(t)�0)0 +A(t)� = 0 in Q@�@�A = 0 on �0� = 0 on �1�(0) = �0 �0(0) = �1 on 
 :According to the inverse inequality (Theorem 4.4), the expressionkf�0; �1gk� = (

Z �(x0)[j�j2+ j�0j2]d�+ Z �0;�(x0) jr��j2d�)

12de�nes a norm in D(A) � V . We de�ne the Hilbert space(5:3) F = D(A) � V k�k�equipped with the topology(5:4) kf�0; �1gkF = lim�!1 kf�0�; �1�gk�where (f�0�; �1�g) �2N is any Cauchy sequence in (D(A) � V; k � k�) de�ned by theequivalence relationf�0�; �1�g � f 0� ;  1�g , lim�!1 kf�0� �  0� ; �1�;  1�gk� = 0 :For every 8 f�0; �1g 2 D(A) � V we have:kf�0; �1gk� � C1kf�0; �1gkD(A)�Vand kf�0; �1gkV�L2(
) � C2kf�0; �1gk� :Now, since D(A) � V is dense in F , we have(5:5) D(A) � V ,! F ,! V � L2(
) ;where the inclusions are continuous and denses.It should be noted that by the construction of F ,f�0; �1g 2 F , Z �(x0)[j�j2+ j�0j2]d�+ Z �0;�(x0) jr��j2d� <1 ;that means if f�0; �1g 2 F then(5:6) �j�(x0); �0j�(x0) 2 L2(�(x0)) and r��j�0;�(x0) 2 (L2(�0;�(x0)))n ;as well,(5:7) �j�0;�(x0) 2 L2(0; T ;H1(�0;�(x0))) :



48 M. M. CAVALCANTIThe proof of the above regularities are given in the appendix.We then consider the backward problem(5:8) �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(�(t) 0)0 +A(t) = 0 in Q@�@�A = �

�

�

�

��1[��+ @@t(�0)] on �(x0)��1���(x0)� on �0;�(x0) = 0 on �1�(0) = �0 �0(0) = �1 on 
 : (T ) =  0(T ) = 0 in 
 ;where � is the unique solution of problem (5.1) with initial data f�0; �1g 2 F .We observe that the operator @@t is well de�ned on �(x0) taking into account(5.6) and considering the following meanning: 8w 2 H1(0; T ;L2(�(x0))),(5:9) � @@t (�0); w � [H1(0;T ;L2(�(x0)))]0;H1(0;T ;L2(�(x0))) = � Z T0 Z �(x0) �0w0d�dt :It is important to note that this operator is not taken in the distributional sense.On the other hand, from (5.7) we obtain(5:10) ��0;�(x0)� 2 L2(0; T ; [H1(�0;�(x0))]0) :The solution  of (5.8) is de�ned by the transposition method, that will beprecised later. Let f�0; �1g 2 F and f 2 L1(0; T;H1(
)), and let � : Q ! R theunique solution of(5:11) �

�

�

�

�

�

�

�

(�(t)�0)0 +A(t)� = f in Q@�@�A = 0 on �0� = 0; on �1�(0) = �0 �0(0) = �1 on 
 :Multiplying (5.11) by  and integrating by parts, we obtain formally
Z Q f dxdt = � Z 
 �(0)�0(0) (0)dx+ Z 
 �(0)�(0) 0(0)dx+ Z � �(t) @ @�A �d�0 :(5.12)Replacing @ @�A by its value in (5.8) we get from (4.13) and (5.9)

Z �0 �(t) @ @�A �d� = � Z �(x0)(�� + �0�0)d�� Z �0;�(x0)r�� � r��d� :Observing this expression we de�ne the functional(5:13) L(�0; �1; f) = � Z �(x0)(�� + �0�0)d�� Z �0;�(x0)r�� � r��d� :



EXACT CONTROLLABILITY OF THE WAVE EQUATION 49Thus, from (5.12) and (5.13) we obtain formally that(5:14) Z Q f dxdt+ Z 
 �(0)�0(0) (0)dx� Z 
 �(0)�(0) 0(0)dx = L(�0; �1; f) :Considering Theorem 3.1 and the construction of F , we have that the functionalgiven by (5.13) is continuous, that is,L 2 F 0 � [L1(0; T ;V )]0:Indeed, �rst of all we note that the solution � of (5.11) veri�es � = �1 + �2,where �1 and �2 are, respectively, the solutions of the following problems:
�

�

�

�

�

�

�

�

(�(t)�01) +A(t)�1 = 0 in Q@�1@�A = 0 on �0�1 = 0 on �1�1(0) = �0; �01(0) = �1 in 
 :and
�

�

�

�

�

�

�

�

(�(t)�02) +A(t)�2 = f in Q@�2@�A = 0 on �0�2 = 0 on �1�2(0) = �02(0) = 0 in 
 :Besides, from (5:13) we can write for all f�0; �1g 2 D(A) � V and i = 1; 2 :(5:16) L(�0; �1; f) = 2
Xi=1  

Z �(x0) (��i + �0�i) d�+ Z �0;�(x0)r��r��id�!and therefore from (5.2) and (5.16) we obtain:(5.17) jL(�0; �1; f)j� C1kf�0; �1gkF 2
Xi=1 (

Z �(x0) � j��ij2 + j�0�ij2 � d�+ Z �0;�(x0) jr��r��ij2d�) 1=2 :From (5.17) and Theorem 3.1 we have:(5:18) jL(�0; �1; f)j � C2 n kf�0; �1gk2F + kfk2L1(0;T ;V ) o 1=2 :By density arguments we conclude that inequality (5.18) is vality for all f�0; �1g;f�0; �1g 2 F which proves (5.15).It follows that there exists a unique triple f�0; �1;  g such thatf�(0)�1;��(0)�0g 2 F and  2 L1(0; T ;V 0) ;



50 M. M. CAVALCANTI(5.19) Z T0 h (t); f(t)iV 0;V + hf��(0)�1; �(0)�0g; f�0; �1giF 0;F= � "

Z �(x0)(�� + �0�0)d�+ Z �0;�(x0)r�(�) � r�(�)d�# :De�nition. The unique function  that satis�es (5.19) in named solution bytransposition of the problem (5.8).Now we state our main result of this Section, which is a consequence of Theorem3.2Theorem 5.1 The unique solution by transposition  of problem (5.8) has thefollowing regularity.  2 L1(0; T ;V 0) \W 1;1(0; T ; [D(A)]0) ;f 0(0);  (0)g 2 F 0 :In addition, the linear mapf�0; �1g 2 F 7! f�(0) 0(0);��(0) (0)g 2 F 0is continuous.Proof. For f 2 D(0; T ;D(A)) we haveL(0; 0; f 0) = � Z �(x0)(�� + �0�0)d�� Z �0;�(x0)r�(�) � r�(�)d� ;where(5:20) �

�

�

�

�

�

�

�

�

(�(t)�0)0 + A(t)� = f 0 in Q@�@�A = 0 on �0� = 0 on �1�(0) = �0(0) = 0 in 
and(5:21) �

�

�

�

�

�

�

�

�

(�(t)�0)0 +A(t)� = 0 in Q@�@�A = 0 on �0� = 0 on �1�(0) = �0 �0(0) = �1 in 
 :By de�nition of F, from Theorem 3.1 and taking into account the de�nition ofF (cf. Lions [14]) it follows that(5:22) jL(0; 0; f 0)j � C[ k�kL1(0;T ;D(A)) + k�0kL1(0;T ;V ) ] :Indeed, it is su�cient to prove (5.22) when the initial data f�0; �1g 2 D(A)�Vbecause by density arguments we conclude the same when f�0; �1g 2 F .



EXACT CONTROLLABILITY OF THE WAVE EQUATION 51We have by Schwarz inequality and Theorem 3.1:jL(0; 0; f 0)j �� C1 Z T0 "

Z �(x0) j�j2d� + Z �(x0) j�0j2d� + Z �0;�(x0) jr��j2d�# 1=2
"

Z �(x0) j�j2d� + Z �(x0) j�0j2d� + Z �0;�(x0) jr��j2d�# 1=2 �� kf�0; �1gkD(A)�V [ k�kL1(0;T ;D(A)) + k�0kL1(0;T ;V ) ]which concludes (5.22).On the other hand, from Theorem 3.2 we get(5:23) k�kL1(0;T ;D(A)) + k�0kL1(0;T ;V ) � CkfkL1(0;T ;D(A)) :which is the crucial point for control problems involving time-dependent coe�-cients.In fact, before we prove (5.23) we observe that in the right side of equation(5.20) we have f 0 while in the right side of (5.23) we have f . Besides, we note thatwhen the coe�cients do not depend on time, (see for example the most simplecase for the wave equation) it is not di�cult to obtain the above inequality usingTheorem 3.1 and the following standard argument:If ! is a solution to problem
�

�

�

�

�

�

�

�

�

!00 ��! = f in Q@!@� = 0 on �0! = 0 on �1!(0) = !0(0) = 0 in 
with f 2 D(0; T;D(A)), then � = !0 is the solution of
�

�

�

�

�

�

�

�

�

�00 ��� = f 0 in Q@�@� = 0 on �0� = 0 on �1�(0) = 0 �0(0) = 0 in 
 :But in our case, where we have time-dependent coe�cients, this argument failscompletely and we need to solve it in other way. From Theorem 3.2 we obtain:k�kL1(0;T ;L2(
)) � k1kfkL1(0;T ;D(A))kA�kL1(0;T ;L2(
)) � k2kfkL1(0;T ;D(A))which implies(5:24) k�kL1(0;T ;D(A)) � k3kfkL1(0;T ;D(A))



52 M. M. CAVALCANTIIn addition k�0kL1(0;T ;L2(
)) � k4kfkL1(0;T ;D(A))kA1=2�0kL1(0;T ;L2(
)) � k5kfkL1(0;T ;D(A))and therefore(5:25) k�0kL1(0;T ;V ) � k6kfkL1(0;T ;D(A)) :From (5.24) and (5.25) we get (5.23). Combining (5.22) and (5.23) we obtainjL(0; 0; f 0)j � CkfkL1(0;T ;D(A)) 8 f 2 D(0; T ;D(A)) :which is su�cient to prove the desired regularity, that is,(5:26)  0 2 L1(0; T ; [D(A)]0) :In fact, let us de�neS(f) = �L(0; 0; f 0) 8 f 2 D(0; T ;D(A)) :Since D(0; T ;D(A)) is dense in L1(0; T ;D(A)), we can consider the uniquelinear continuous extension S of S, that is de�ned by(5:27) S(f) = S(f) = �L(0; 0; f) 8 f 2 D(0; T ;D(A)) ;and, consequently, it follows that(5:28) S 2 (L1(0; T ;D(A)))0 = L1(0; T ; [D(A)]0) :Now, given f = '� with ' 2 D(A) and � 2 D(0; T ), according to (5.13), (5.19),(5.27) and considering the fact that �0 = �1 = 0 we obtain,hS; '�i = hS; '�i = �L(0; 0; f 0)= � Z T0 h (t); f 0(t)idt = � Z T0 h (t); 'i�0(t)dt :So, by (5.28) it follows that
Z T0 hS(t); 'i�(t)dt = � Z T0 h (t); 'i�0(t)dt ;which implies that

*

Z T0 S(t)�(t)dt; '+ = * � Z T0  (t)�0(t)dt; '+ 8' 2 D(A) :Therefore S =  0 in D0(0; T ; [D(A)]0), and (5.26) is then proved.One observes that if in (5.19), we consider f = '(��0)0 + �A('�); � = '� with' 2 D(A3=2); � 2 D(0; T ) and �0 = �1 = 0, we have(� 0)0 +A(t) = 0 in L1(0; T ; [D(A 32 )]0) ;



EXACT CONTROLLABILITY OF THE WAVE EQUATION 53Since �(t) � �0 > 0, it follows that(5:29)  00 2 L1(0; T ; [D(A 32 )]0) :Then, from (5:19), (5:26) and (5:29) we obtain 2 Cs(0; T; V ) \C0([0; T ]; [D(A)]0)and  0 2 Cs(0; T; [D(A)]0) \C0([0; T ]; [D(A 32 )]0) ;(see for example J.L.Lions and E.Magenes [15], V.1, Lemma 8.1) which makes  (0)and  0(0) meaningful.Using the regularity of  , considering f = '(��0)0+ �A('�) and � = '� where' 2 D(A3=2); � 2 C2(0; T )3, we obtain from (5:19) with �0 = �1 = 0, (0) = �0 and  0(0) = �1 :Finally, by considering f = 0 in (5:19) we conclude thatkf�(0) 0(0);��(0) (0)gkF 0 � Ckf�0; �1gkF 8 f�0; �1g 2 F :This ends the proof. �6. HUM and Exact ControllabilityLet us de�ne the linear operator � : F ! F 0 by(6:1) �f�0; �1g = f�(0) 0(0);��(0) (0)g ;that is continuous in view of Theorem 5.1.Considering f = 0; �0 = �0 and �1 = �1 in (5.13) and (5.14), we haveh�f�0; �1g; f�0; �1giF 0;F =hf�(0) 0(0);��(0) (0)g; f�0; �1gi= Z �(x0)(j�j2 + j�0j2)d�+ Z �0;�(x0) jr�(�)j2d�that is, h�f�0; �1g; f�0; �1giF 0;F = kf�0; �1gk2F :This implies immediatly that � is injective and self-adjoint. Then � is a isomor-phism fromF to F 0. Therefore, given fy1;�y0g 2 F 0 then f�(0)y1;��(0)y0g 2 F 0and consequently there exists a unique f�0; �1g 2 F such that(6:2) �f�0; �1g = f�(0)y1;��(0)y0g :From (6.1), and (6.2) we have(6:3)  0(0) = y1 and  (0) = y0 :3First we get, for instance, �(t) = (T � t)2t and secondly we can consider �(t) = (T � t)2.



54 M. M. CAVALCANTINow we are going to �nish the proof of Theorem 2.1. Since fy1;�y0g 2 L2(
)�V 0, then taking into account the chainD(A) � V ,! F ,! V � L2(
) ,! L2(
)� L2(
),! V 0 � L2(
) ,! F 0 ,!D(A)0 � V 0 ;we obtain fy1;�y0g 2 F 0 and therefore in this case we conclude (6.3).De�ning in (2.1) the controlsv0 = ��1 � �� + @@t (�0)� on �(x0)and v1 = ��1��0;�(x0)� on �0;�(x0) ;from (6:3), the uniqueness of the problems (2:1) and
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(�(t) 0)0 + A(t) = 0 in Q@ @�A = �

�

�

�

v0 on �(x0)v1 on �0;�(x0) = 0 on �1 (0) = y0  0(0) = y1 in 
 (T ) =  0(T ) = 0 in 
 ;we �nally conclude that y(T ) = y0(T ) = 0 :Thus Theorem 2.1 is proved. �7. AppendixSince D(A) � V is dense in F , there exists f�0�; �1�g 2 D(A) � V such that(7:1) lim�!1f�0�; �1�g = f�0; �1g in Fand therefore, considering the inverse inequality,(7:2) lim�!1f�0�; �1�g = f�0; �1g in V � L2(
) :According to Theorem 3.1, for each � 2 N there exists �� 2 C0[0; T ];D(A)) \C1([0; T ];V ) which is the solution of (3:1) with initial data f�0�; �1�g 2 D(A) � Vand f 2 L1(0; T ;V ). Thus, from the linearity of (3.1) we have,jj�� � ��jjC0([0;T ];V ) + jj�0� � �0�jjC0([0;T ];L2(
)) �� C � jj�0� � �0�jj+ j�0� � �0�j�which implies that the unique solution � : Q! R of (3.1) satis�es(7:3) lim�!1�� = � in C0([0; T ];V ) and lim�!1�0� = �0 in C0([0; T ];L2(
)) :



EXACT CONTROLLABILITY OF THE WAVE EQUATION 55On the other hand, from (5.2) we obtain,(7:4) �

�

�

�

� �0� � �0�; �1� � �1� 	
�

�

�

�

2� == (

Z �(x0) � j�� � ��j2 + j�0� � �0�j2 � d�+ Z �0;�(x0) jr��� �r���j2d�) :From the convergence in (7.1) we conclude that the right hand side of (7.4)converges to zero when � and � goes to in�nity. So, (��) ; (�0�) and (r���) are,respectively, sequences of Cauchy in L2(�(x0)); L2(�(x0)) and L2(�0;�(x0)), whichproves (5.6).To prove (5.7) we need the following result.Lemma. 8R > 0; 9C > 0 such thatjjf�0; �1gjj � Cjjf�0; �1gjj�; 8f�0; �1g 2 D(A) � Vsatisfying jj f�0; �1gjj� � R:Proof. Consider � �0; �1 	 2 D(A)�V such that �

�

�

�

� �0; �1 	
�

�

�

� � � R. So f�0; �1g isdi�erent from f0; 0g and, consequently, it is su�cient to prove that: 8R > 0; 9C >0 such that(7:5) 1C � jjf�0; �1gjj�8f�0; �1g 2 D(A) � Vwith jjf�0; �1gjjD(A)�V = 1 and jjf�0; �1gjj� � R :Let us suppose it does not happen, that is, there exists R0 > 0 such that8C > 0 9f�0C; �1Cg 2 D(A) � V with jjf�0C; �1CgjjD(A)�V = 1; jjf�0C; �1Cgjj� � R0and jjf�0C; �1Cgjj� < 1C .In the particular case when C = 1R0 it follows that R0 � jjf�0R0; �1R0gjj� < R0which is a contradiction. So, (7.5) is proved and consequently the lemma.Let us consider initially f�0; �1g 2 D(A) � V and suppose � is the strongsolution of (5.1). Then, � 2 C0([0; T ];D(A))\C1([0; T ];V ) and therefore,�j� 2 C0([0; T ];H3=2(�)) � C0([0; T ];H1(�)) :Thus, from Theorem 3.1 we obtain:(7:6) jj�j�0;�(x0)jjL2(0;T ;H1(�0;�(x0))) � kjjf�0; �1gjjD(A)�V :Consider, now, f�0; �1g 2 F and � the weak solution of (5.1). If f�0; �1g =f0; 0g then � = 0 and the regularity in (5.7) follows imediately. Let us considerf�0; �1g di�erent from f0; 0g. Since D(A)�V is dense in F there exists f�0�; �1�g �D(A) � V such that(7:7) lim�!1f�0�; �1�g = f�0; �1g in F :De�ning R0 = 12 jj�0; �1gjjF ; there exist f�0�; �1�g subsequence of f�0�; �1�g suchthat jjf�0�; �1�g � f�0; �1gjjF < R0; 8� 2N. Therefore,(7:8) jjf�0�; �1�gjjF = jjf�0�; �1�gjj� � R0 :



56 M. M. CAVALCANTIThus, from (7.8) and the above Lema 9C = C � jjf�0; �1gjjF � > 0 such that(7:9) jjf�0�; �1�gjjD(A)�V � Cjjf�0�; �1�gjj�; 8� 2N :Let f��g be the sequence of strong solutions of (5.1) with initial data f�0�; �1�g.Then, from (7.6) and (7.9) there exists C1 = C1 � jjf�0; �1gjjF � > 0 such that(7:10) jj��j�0;�(x0)jjL2(0;T ;H1(�0;�(x0))) � C1jjf�0�; �1�gjj� :But, from (7.7) we obtain,(7:11) jjf�0�; �1�gjjF = jjf�0�; �1�gjj� � L; 8� 2N :So, from (7.10) and (7.11) we conclude thatjj��j�0;�(x0)jjL2(0;T ;H1(�0;�(x0))) � M ; 8� 2 N :Then, there exists a subsequence that we will denote by the same notation f��gsuch that,(7:12) ��j�0;�(x0) * � in L2(0; T ;H1(�0;�(x0))) when � goes to in�nity.On the other hand, from (7.3) we have,(7:13) lim�!1��j�0;�(x0) = �j�0;�(x0) in L2(0; T ;H1=2(�0;�(x0)))and from (7.12) and (7.13) results � = � which proves (5.7).References[1] Bardos, C., Cheng, C., Control and stabilization for the wave equation, part III : domainwith moving boundary, Siam J. Control and Optim., 19 (1981), 123-138.[2] Bardos, C., Lebeau, G., Rauch, J., Sharp su�cient conditions for the observation, control,and stabilization of waves from the boundary, Siam J. Control and Optim., 30, N.5 (1992),1024-1065.[3] Cioranescu, D., Donato, P., Zuazua, E., Exact Boundary Controllability for the wave equa-tion in domains with small holes, J. Math. Pures Appl. 71 (1992), 343-357.[4] Coron, J.M., Contrôlabilit�e exacte fronti�ere de l' �equacion d' Euler des uides parfaisincompressibles bidimensionnels, C.R.A.S. Paris, 317 (1993) S.I, 271-276.[5] Fuentes Apolaya R., Exact Controllability for temporally wave equation, PortugaliaeMath.,(1994), 475-488.[6] Grisvard, P., Contrôlabilit�e exacte des solutions de l'�equacion des ondes en pr�esence desingularit�es, J. Math. pure et appl., 68 (1989), 215-259.[7] Komornik, V., Contrôlabilit�e exacte en un temps minimal, C.R.A.S. Paris, 304 (1987),223-235.[8] Komornik, V., Exact Controllability in short time for wave equation, Ann. Inst. HenriPoincar�e, 6 (1989), 153-164.[9] Lagnese, J., Control of wave processes with distributed controls supported on a subregion,Siam J. Control and Optmin. 21 (1983), 68-85.[10] Lagnese, J., Boundary Patch control of the wave equation in some non-star complemetedregions, J. Math. Anal. 77 (1980) 364-380.
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