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BOUNDED SOLUTIONS AND ASYMPTOTIC

STABILITY OF NONLINEAR DIFFERENCE

EQUATIONS IN THE COMPLEX PLANE

EUGENIA N. PETROPOULOU* AND PANAYIOTIS D. SIAFARIKAS

An existence and uniqueness theorem for solutions in the Banach space
l1 of a nonlinear difference equation is given. The constructive character of the proof
of the theorem predicts local asymptotic stability and gives information about the
size of the region of attraction near equilibrium points.

1. Introduction

We consider the m-th order non-linear difference equation of the form

f(n + m) +
m∑
p=1

(αp + βp(n))f(n +m − p) =
N∑
i=1

ci(n)f(n + qi1)f(n + qi2)

+
M∑
j=1

dj(n)f(n + qj3)f(n + qj4)f(n + qj5)(1.1)

where m,N,M are positive integers, qi1, qi2, i = 1, . . . , N, qj3, qj4, qj5, j =
1, . . . ,M are non-negative integers, αp, p = 1, . . . ,m in general complex numbers,
with the initial conditions

(1.2) f(p) = up, p = 1, . . . ,m

Under suitable assumptions on the sequences βp(n),p = 1, . . . ,m, ci(n), i =
1, . . . , N , dj(n), j = 1, . . . ,M and the roots of the polynomial rm + α1r

m−1 +
· · ·+ αm = 0, we prove that there exists a unique solution of (1.1), (1.2) in the
Banach space l1 of all bounded complex sequences f(n) which satisfy the condition∑∞
n=1 |f(n)| < +∞. For the motivation of seeking solutions of nonlinear difference
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equations in l1 see [3]. More general nonlinearities concerning the right-hand side
of equation (1.1) are considered in a forthcoming paper.

The method used is a functional analytic method based on a method which is
developed by E. K. Ifantis in [3]. Using this method, equation (1.1) is reduced
equivalently to an operator equation of the form

(1.3) f = Q(f) + ξ1 = φ(f) ,

where ξ1 is a fixed element in an abstract Banach space H1 depending on the initial
conditions f(p) = up, p = 1, . . . ,m and Q a non-linear operator which is defined
on H1. Under suitable assumptions on the sequences ci(n), i = 1, . . . , N , dj(n),
j = 1, . . . ,M , it is shown that the non-linear operator φ : B(0, R0) → B(0, R0),
where B(0, R0) is an open ball centered at the origin of H1, is a holomorphic
map in B(0, R0), i.e. its Fréchet derivative exists at every point in the open ball
B(0, R0) in H1 and φ(B(0, R0) ⊂ B(0, R0). For holomorphic maps the following
result of Earle and Hamilton [2] holds:

If f : X → X is holomorphic and f(X) lies strictly inside X, then f has a unique
fixed point in X, where X is a bounded, connected and open subset of a Banach
space E.

By saying that a subset X′ of X lies strictly inside X we mean that there exists
a ε1 > 0 such that ‖x′ − y‖ > ε1 for all x′ ∈ X′ and y ∈ E −X.

Using the above it is proved that the equation (1.3) has a unique fixed point in
the space H1. This means equivalently that the initial value problem (1.1), (1.2)
has a unique solution in the space l1.

The above result establishes local asymptotic stability and gives information
about the size of the region of attraction near equilibrium points. Moreover, we
can see in particular cases how the size of the region of attraction depends on the
parameters of equation (1.1) and the initial conditions (1.2). Also, it is of some
interest to note that we can actually obtain in some cases an explicit upper bound
for the solution f(n) of equation (1.1) which satisfies the initial conditions (1.2).

In some cases we can also find the radius of convergence of the power series
f(z) =

∑∞
n=1 f(n)zn−1. This power series corresponding to f(n) is called generat-

ing function and it may be a formal solution of a differential or integral equation.
In Section 2, equation (1.1) together with the initial conditions (1.2) is reduced

to an operator equation of the form (1.3). In Section 3 a theorem is proved for
the existence and uniqueness of solutions in l1 of the initial value problem (1.1),
(1.2). The proof of the theorem is based on two lemmas. In the first lemma
we give the abstract forms of the right-hand side (nonlinear) part of the difference
equation (1.1) defined on H1, and in the second lemma we prove that the nonlinear
operators which are the abstract forms presented in the first lemma are Fréchet
differentiable in H1. Moreover we find the Fréchet derivative for each one of them.
These two lemmas together with the results of Section 2 and the Earle-Hamilton
fixed point theorem give Theorem 3.1. Finally in Section 4 we apply the theorem
for some nonlinear difference equations which can be deduced from equation (1.1).
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2. The abstract form of nonlinear difference equations

In the followingH is used to denote an abstract separable Hilbert space with the
orthonormal basis en, n = 1, 2, 3, . . . . We use the symbols (·, ·) and ‖ · ‖ to denote
scalar product and norm in H respectively. By H1 we mean the Banach space
consisting of those elements f in H which satisfy the condition

∑∞
n=1 |(f, en)| <

+∞. The norm in H1 is denoted by ‖f‖1 =
∑∞
n=1 |(f, en)|. By f(n) we mean an

element of the Banach space l1 and by f =
∑∞
n=1 f(n)en we mean that element in

H1 generated by f(n) ∈ l1. The norm in l1 is denoted by ‖f(n)‖l1 =
∑∞
n=1 |f(n)|.

Finally by V we mean the shift operator on H

V : V en = en+1 , n = 1, 2, . . .

and by V ∗ its adjoint

V ∗ : V ∗en = en−1 , n = 2, 3, . . . , V ∗e1 = 0 .

One can easily prove that the function

φ : H1 → l1

which is defined as follows:

φ(f) = (f, en) = f(n)

is an isomorphism from H1 onto l1. We call f the abstract form of f(n).
In general, if G is a mapping in l1 and N is a mapping in H1, we call N (f) the

abstract form of G(f(n)) if

(2.1) G(f(n)) = (N (f), en)

It follows easily that V ∗f is the abstract form of f(n + 1), since

f(n + 1) = (f, en+1) = (V ∗f, en) ,

V f is the abstract form of f(n − 1), since

f(n − 1) = (f, en−1) = (V f, en)

and Bpf , p = 1, 2, . . . ,m are the abstract forms of βp(n)f(n), where Bp are the
diagonal operators

(2.2) Bpen = βp(n)en , n = 1, 2, . . . ,m

since βp(n)f(n) = βp(n)(f, en) = (f, β∗p(n)en) = (Bpf, en).
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It follows readily from the above that the abstract form of the left-hand side
(linear) part of (1.1) is

V ∗mf +
m∑
p=1

(αp + Bp)V ∗m−pf

because

(2.3)

f(n +m) +
m∑
p=1

(αp + βp(n))f(n + m− p)

=(V ∗mf +
m∑
p=1

(αp + Bp)V ∗m−pf, en) , n = 1, 2, . . .

From (2.1), taking into account (2.3), we obtain the abstract form of equation
(1.1):

V ∗mf +
m∑
p=1

(αp + Bp)V
∗m−pf =

N∑
i=1

Ni(f) +
M∑
j=1

Kj(f) ,

where the second part of this equation is the abstract form of the right-hand side
(nonlinear) part of (1.1) and the nonlinear operators Ni(f), 1 ≤ i ≤ N and Kj(f),
1 ≤ j ≤ M are defined in H1. Since V ∗V = I the above equation can be written
as follows:

(2.4)

V ∗(I − r1V )(I − r2V ) . . . (I − rmV )f +
m∑
p=1

BpV
∗m−pf

=
N∑
i=1

Ni(f) +
M∑
j=1

Kj(f)

where rp, p = 1, 2, . . .,m are the roots of the equation:

(2.5) rm + α1r
m−1 + · · ·+ αm = 0

and I is the identity operator, or

(2.6) V ∗mΓf =
N∑
i=1

Ni(f) +
M∑
j=1

Kj(f)

where

(2.7) Γ = (I − r1V )(I − r2V ) . . . (I − rmV ) + Vm
m∑
p=1

BpV
∗m−pf .

The operator Γ leaves invariant the space H1, i.e. for every x ∈ H1, Γx ∈ H1

and therefore equation (2.4) can be considered as an equation in H1 whenever Γ
is defined from H1 into H1 [3]. This means that f is a solution of (2.4) or (2.6)
in H1 if and only if {f(n)} is a solution of (1.1) in l1. Also the operator Γ has a
bounded inverse on H1 provided that |rp| < 1, p = 1, 2, . . . ,m [3].

Taking into account the above properties of the operator Γ it can be proved
similarly as in [3] the following theorem:
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Theorem 2.1. Assume that the roots rp, p = 1, 2, . . . ,m of the equation rm +
α1r

m−1 + · · · + αm = 0 satisfy the conditions |rp| < 1, p = 1, 2, . . .,m. Then
equation (1.1) in the space l1 together with the initial conditions

(2.8) f(1) = u1, f(2) = u2, . . . , f(m) = um

is equivalent to the following operator equation in H1:

(2.9) f = Γ−1u+ Γ−1Vm

 N∑
i=1

Ni(f) +
M∑
j=1

Kj(f)

 ,

where

(2.10)
u =u1e1 + (α1u1 + u2)e2 + . . .

+ (αm−1u1 + αm−2u2 + · · ·+ um)em .

Proof. Equation (2.6) can be written as follows:

(2.11) V ∗m(Γf −
N∑
i=1

V mNi(f) −
M∑
j=1

V mKj(f)) = 0

The null space of V ∗m is spanned by the elements e1, e2, . . . , em. Thus we obtain
from (2.11):

Γf −
N∑
i=1

VmNi(f) −
M∑
j=1

V mKj(f)) = c1e1 + c2e2 + · · ·+ cmem .

From (2.4) and (2.9) we find easily that:

c1 = u1, c2 = α1u1 + u2, . . . , cm = um + · · ·+ u2αm−2 + u1αm−1

and the theorem follows from the properties of the operator Γ. �

3. Existence and uniqueness theorem

In this Section we shall prove a theorem which predicts a unique solution of
the nonlinear difference equation (1.1) in l1, which satisfies the initial conditions
(1.2). The proof of the theorem is based on two lemmas. In the first lemma
we give the abstract forms of the right-hand side (nonlinear) part of the difference
equation (1.1) defined on H1, and on the second lemma we prove that the nonlinear
operators which are the abstract forms presented in the first lemma are Fréchet
differentiable in H1. Moreover we find the Fréchet derivative for each one of
them. Combining these two lemmas together with Theorem 2.1 and the fixed
point theorem of Earle and Hamilton [2] we obtain the following:
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Theorem 3.1. Assume that the complex sequences βp(n), ci(n) and dj(n), p =
1, . . . ,m, i = 1, . . . , N , j = 1, . . . ,M satisfy:

(3.1) lim
n→∞

βp(n) = 0 , sup
n
|ci(n)| ≤ γi, sup

n
|dj(n)| ≤ δj ,

and the roots of the equation rm + α1r
m−1 + · · ·+ αm = 0 satisfy the conditions

|rp| < 1, p = 1, 2, . . . ,m. Then there exist positive numbers R0 and P0 such that
for

(3.2) |u| = |u1|+ |α1u1 + u2|+ · · ·+ |αm−1u1 + αm−2u2 + · · ·+ um| < P0

the equation

(3.3) f(n +m) +
m∑
p=1

(αp + βp(n))f(n + m − p)

=
N∑
i=1

ci(n)f(n + qi1)f(n + qi2) +
M∑
j=1

dj(n)f(n + qj3)f(n + qj4)f(n + qj5)

together with the initial conditions

(3.4) f(1) = u1, f(2) = u2, . . . , f(m) = um

where αp, up are in general complex numbers, m,N,M are positive integers, qi1,
qi2, i = 1, . . . , N , qj3, qj4, qj5, j = 1, . . . ,M are non-negative integers,
has a unique solution f(n) in l1. Moreover

(3.5)
∞∑
n=1

|f(n)| < R0 .

Lemma 1. (i) Consider the diagonal operators Ci : H → H such that:

(3.6) Ci : Cien = ci(n)en , n = 1, 2, . . ., i = 1, .., N

and the nonlinear operators N′i , which are defined on H1 as follows:

(3.7) N ′i (f) = (f, en+qi1)(f, en+qi2)en = f(n + qi1)f(n + qi2)en,

1 ≤ i ≤ N . Then the nonlinear operators:

(3.8) Ni : Ni(f) = ci(n)N ′i (f) , i = 1, . . . , N

are defined in H1 and are the abstract forms of the operators:

(3.9) Gi : Gi(f(n + qi1), f(n+ qi2)) = ci(n)f(n + qi1)f(n + qi2) , i = 1, . . . , N

in l1.
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(ii) Consider the diagonal operators Dj : H → H, such that:

(3.10) Dj : Djen = dj(n)en , n = 1, 2, . . . , j = 1, ..,M

and the nonlinear operators K′j , which are defined on H1 as follows:

(3.11)
K′j(f) = (f, en+qj3)(f, en+qj4 )(f, en+qj5)en

= f(n + qj3)f(n + qj4)f(n + qj5)en ,

1 ≤ j ≤M . Then the nonlinear operators:

(3.12) Kj : Kj(f) = dj(n)Kj(f) , j = 1, . . . ,M

are defined in H1 and are the abstract forms of the operators:

(3.13)
Fj : Fj(f(n + qj3), f(n + qj4), f(n + qj5))

= dj(n)f(n + qj3)f(n + qj4)f(n + qj5) , j = 1, . . . ,M

in l1.

Proof. (i) From (3.7) we have:

(3.14)
‖N ′i(f)‖1 =

∞∑
r=1

|(N ′i(f), er)| =
∞∑
r=1

|(f, en+qi1)(f, en+qi2)(en, er)|

⇒ ‖N ′ik(f)‖1 = |(f, en+qi1)| · |(f, en+qi2)| ≤ ‖f‖21
Since ‖Ci‖1 = sup

n
|ci(n)| ≤ γi we obtain from (3.8) and (3.14):

(3.15) ‖Ni(f)‖1 ≤ γi‖f‖21 <∞ ,

since f ∈ H1. Thus the nonlinear operators (3.8) are defined in H1. Moreover we
see that

(Ni(f), en) = (ci(n)f(n + qi1)f(n + qi2)en, en)

⇒ (Ni(f), en) = ci(n)f(n + qi1)f(n + qi2) = Gi(f(n + qi1), f(n + qi2)) ,

which means that Ni are the abstract forms of Gi in l1.
(ii) Similarly from (3.11) we have:

(3.16) ‖K ′j(f)‖1 ≤ ‖f‖31
Since ‖Dj‖1 = sup

n
|dj(n)| ≤ δj we obtain from (3.12) and (3.16):

(3.17) ‖Kj(f)‖1 ≤ δtk‖f‖31 <∞ .

Thus the nonlinear operators (3.12) are defined in H1. Moreover we see that

(Kj(f), en) = (dj(n)f(n + qj3)f(n + qj4)f(n + qj5)en, en)

⇒ (Kj(f), en) = Fj(f(n + qj3), f(n + qj4), f(n + qj5)) ,

which means that Kj are the abstract forms of Fj. �
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Lemma 2. (i) The nonlinear operators (3.8) are Fréchet differentiable in H1 and
their Fréchet derivatives at the point f0 ∈ H1 are

(3.18) Ai(f0)f = ci(n)[(f, en+qi1)(f0, en+qi2) + (f0, en+qi1)(f, en+qi2)]en .

(ii) The nonlinear operators (3.12) are Fréchet differentiable in H1 and their
Fréchet derivatives at the point f0 ∈ H1 are

(3.19)

Aj(f0)f = dj(n)[(f, en+qj3)(f0, en+qj4)(f0, en+qj5)

+ (f0, en+qj3)(f, en+qj4 )(f0, en+qj5)

+ (f0, en+qj3)(f0, en+qj4)(f, en+qj5 )]en .

Proof. (i) We shall first prove that the linear operators:

A′i(f0)f = [(f, en+qi1)(f0, en+qi2) + (f0, en+qi1)(f, en+qi2)]en

are the Fréchet derivatives of the nonlinear operators (3.7) at the point f0 ∈ H1.
Indeed, A′i are bounded operators for f0 ∈ H1, since:

‖A′i(f0)f‖1 =
∞∑
r=1

|(A′i(f0)f, er)|

=
∞∑
r=1

|([(f, en+qi1)(f0, en+qi2) + (f0, en+qi1)(f, en+qi2)]en, er)|

⇒ ‖A′i(f0)f‖1 ≤ |(f, en+qi1)| · |(f0, en+qi2)|+ |(f0, en+qi1)| · |(f, en+qi2)|

⇒ ‖A′i(f0)f‖1 ≤ 2‖f0‖1‖f‖1
and ‖f0‖1 <∞, since f0 ∈ H1. Also for f0 ∈ H1 and h ∈ H1, we have:

‖N ′i(f0 + h)−N ′i (f0)− A′i(f0)h‖1 =
∞∑
r=1

|(N ′i(f0 + h)−N ′i (f0)− A′i(f0)h, er)|

= |(f0 + h, en+qi1)(f0 + h, en+qi2)− (f0, en+qi1)(f0, en+qi2)

−(h, en+qi1)(f0, en+qi2)− (f0, en+qi1)(h, en+qi2)|

= |[f0(n+ qi1) + h(n + qi1)][f0(n+ qi2) + h(n+ qi2)]− f0(n+ qi1)f0(n+ qi2)

−h(n + qi1)f0(n + qi2)− f0(n+ qi1)h(n+ qi2)|

⇒ ‖N ′i (f0 + h) −N ′i (f0)− A′i(f0)h‖1 = |h(n+ qi1)| · |h(n+ qi2)|

⇒ ‖N ′i(f0 + h)−N ′i(f0) −A′i(f0)h‖1 = |(h, en+qi1)| · |(h, en+qi2)| ≤ ‖h‖21

⇒ ‖N
′
i (f0 + h)−N ′i (f0)− A′i(f0)h‖1

‖h‖1
≤ ‖h‖1→ 0
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for ‖h‖1 → 0. Thus the linear operators A′i(f0)f are the Fréchet derivatives of the
nonlinear operators (3.7) at the point f0 ∈ H1. Now we can prove that the linear
operators (3.18) are the Fréchet derivatives of the nonlinear operators (3.8) at the
point f0 ∈ H1. Indeed, the linear operators (3.18) are bounded, since:

‖Ai(f0)f‖1 ≤ |ci(n)| · ‖A′i(f0)f‖1 ≤ 2γi‖f0‖1‖f‖1 .

Also

‖Ni(f0 + h)−Ni(f0) −Ai(f0)h‖1 ≤ γi‖N ′i(f0 + h) −N ′i (f0)− A′i(f0)h‖1

⇒‖Ni(f0 + h)−Ni(f0)− Ai(f0)h‖1
‖h‖1

≤ γi‖h‖1 → 0

for ‖h‖1 → 0. Thus the linear operators (3.18) are the Fréchet derivatives of the
nonlinear operators (3.8) at the point f0 ∈ H1.

(ii) Similarly, we shall first prove that the linear operators:

A′j(f0)f = [(f, en+qj3)(f0, en+qj4)(f0, en+qj5)

+(f0, en+qj3)(f, en+qj4)(f0, en+qj5) + (f0, en+qj3)(f0, en+qj4)(f, en+qj5)]en

are the Fréchet derivatives of the nonlinear operators (3.11) at the point f0 ∈ H1.
Indeed, A′j are bounded operators for f0 ∈ H1, since:

‖A′j(f0)f‖1 ≤ 3‖f0‖21‖f‖1

and ‖f0‖1 <∞, since f0 ∈ H1. Also for f0 ∈ H1 and h ∈ H1, we have:

‖K′j(f0 + h)−K′j(f0) −A′j(f0)h‖1
‖h‖1

≤ 3‖f0‖21‖h‖1 + ‖h‖21 → 0

for ‖h‖1→ 0. Thus the linear operators A′j(f0)f are the Fréchet derivatives of the
nonlinear operators (3.11) at the point f0 ∈ H1. Now we can prove that the linear
operators (3.19) are the Fréchet derivatives of the nonlinear operators (3.12) at
the point f0 ∈ H1. Indeed, the linear operators (3.19) are bounded, since:

‖Aj(f0)f‖1 ≤ |dj(n)| · ‖A′j(f0)f‖1 ≤ 3δj‖f0‖1 · ‖f‖1 .

Also

‖Kj(f0 + h) −Kj(f0)− Aj(f0)h‖1 ≤ δi‖K′j(f0 + h)−K′j(f0)−A′j(f0)h‖1

⇒ ‖Kj(f0 + h) −Kj(f0)− Aj(f0)h‖1
‖h‖1

≤ δj(3‖f0‖1 · ‖h‖1 + ‖h‖21 → 0

for ‖h‖1 → 0. Thus the linear operators (3.19) are the Fréchet derivatives of the
nonlinear operators (3.12) at the point f0 ∈ H1. �
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Proof of Theorem 3.1. Consider the function:

(3.20) φ : φ(f) = Γ−1u+
N∑
i=1

Γ−1VmNi(f) +
M∑
j=1

Γ−1VmKj(f)

and assume that

(3.21) ‖Γ−1‖1 ≤ L .

By Lemma 1 we have from (3.15) and (3.17):

(3.22) ‖φ(f)‖1 ≤ L(|u|+ γi‖f‖21 + δj‖f‖31) .

Let ‖f‖1 ≤ R̄, where R̄ can be as large as we want but not infinite. Then for
‖f‖1 ≤ R ≤ R̄ we have from (3.22):

(3.23) ‖φ(f)‖1 ≤ L(|u|+ γiR
2 + δjR

3) .

By hypothesis R is very large so there exists R1 ∈ [0, R̄] such that

LR1(γi + δjR1) > 1 .

Thus the function

(3.24) P (R) = 1− LR(γi + δjR)

has a first zero R2 between 0 and R1 since: P (0) = 1 > 0 and

P (R1) = 1− LR1(γi + δjR1) < 0 .

So the continuous function

(3.25) P1(R) = L−1RP (R)

satisfies P1(0) = P1(R2) = 0 and therefore attains a maximum at a point R0 : 0 <
R0 < R2. Now for every ε > 0, R = R0 and

(3.26) |u| ≤ P1(R0)− ε

L

we find from (3.23):

(3.27) ‖φ(f)‖1 ≤ R0 − ε < R0

for ‖f‖1 < R0. This means that for

(3.28) |u| < P1(R0) = P0
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φ is a holomorphic map fromB(0, R0) strictly inside B(0, R0). Indeed, it is obvious
that φ(B(0, R0)) ⊂ B(0, R0) and φ(B(0, R0)) lies strictly inside B(0, R0), since if
k ∈ H1 − B(0, R0) ⇒ ‖k‖1 ≥ R0 and g ∈ φ(B(0, R0)), i.e. there exists an
f ∈ B(0, R0)⇒ ‖f‖1 < R0 such that φ(f) = g, then we find easily that ‖g−k‖1 ≥
ε > ε

2 = ε1. Thus applying the fixed point theorem of Earle and Hamilton [2]
we find that equation φ(f) = f has a unique fixed point in H1. This means
equivalently that the initial value problem (3.3), (3.4) has a unique solution in l1.

�
Remark 3.1. Theorem 3.1 predicts local asymptotic stability. However, it is not
a purely local result. The proof of the theorem has a constructive character and
gives some information about the size of the region of attraction. This is something
that one cannot obtain with the classical methods of linearisation [4]. Moreover,
we can see in particular cases how the size of the above region depends on the
parameters of the equation. Note that the region of attraction may be so small
relative to a given application that practically the centre of this region could be
considered as unstable. Also an equilibrium point of a difference equation could
be unstable, but a very small neighborhood of it could be an attractor and thus
from a practical point of view, it could be considered as stable [4].

Remark 3.2. The solution that is established by Theorem 3.1 is an element of l1
and thus lim

n→∞
f(n) = 0. Also from (3.5) we obtain:

|f(n)| ≤
∞∑
n=1

|f(n)| < R0 ⇒ |f(n)| < R0 .

This means that the solution that is predicted by Theorem 3.1 is a bounded
solution of the initial value problem (3.3), (3.4) and R0 is an upper bound of
it.

Remark 3.3. Theorem 3.1 predicts a unique solution {f(n)} of (3.3) in l1. This
means that lim

n→∞
f(n) = 0. Thus zero is a locally asymptotically stable equilibrium

point of equation (3.3) with region of attraction given by (3.2). In the case where
equation (3.3) has nonzero equilibrium points (%), we set:

(3.29) f(n) = g(n) + %

and we apply Theorem 3.1 to the new equation which results from equation (3.3)
after the transformation (3.29). If Theorem 3.1 can be applied to this trans-
formed equation, then this equation has a unique solution in l1, i.e. g(n) ∈
l1 ⇒ lim

n→∞
g(n) = 0 and zero is a locally asymptotically stable equilibrium point

with region of attraction given by (3.2). As a consequence, equation (3.3) has a
unique solution, not in l1, but in the space {%} + l1. Also lim

n→∞
f(n) = % and

thus % is a locally asymptotically stable equilibrium point. Its region of attrac-
tion results from the region of attraction for the zero equilibrium point of the
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transformed equation using (3.29). Finally the upper bound of f(n) is given by
|f(n)| < R0 + |%|

Remark 3.4. Theorem 3.1 holds also in the case where n = 0, 1, 2, . . . . In this
case the orthonormal basis of H consists of the elements e0, e1, e2, . . . and the shift
operator and its adjoint are defined as follows:

V : V en = en+1 , n = 0, 1, 2, . . .

V ∗ : V ∗en = en−1 , n ≥ 1 , V ∗e0 = 0 .

Also the solution f(n) ∈ l1 of the nonlinear difference equation (3.3) does not
satisfy conditions (3.4) anymore, but instead satisfy the following conditions:

f(0) = u0, f(1) = u1, f(2) = u2, . . . , f(m − 1) = um−1 .

Finally the relationship (3.2) should be replaced by the following:

|u| = |u0|+ |α1u0 + u1|+ · · ·+ |αm−1u0 + αm−2u1 + · · ·+ um−1| < P0 ,

where u = u0e0 + (α1u0 + u1)e1 + · · ·+ (αm−1u0 + αm−2u1 + · · ·+ um−1)em−1.

4. Examples

1) Consider the difference equation:

(4.1) f(n + 1) + α(n)f(n) = d(n)f(n + 2)f(n + 1)f(n) ,

where lim
n→∞

α(n) = α, |α| < 1, sup
n
|d(n)| ≤ δ and α(n), d(n) are in general complex-

valued sequences, α is in general a complex number and δ is a real positive number.
First, we shall show that zero is a locally asymptotically stable equilibrium point

of equation (4.1). Moreover we shall find a region of attraction for it, a bound
for the solution of equation (4.1) and the radius of convergence for the generating
function f(z).

Equation (4.1) can be written as follows:

(4.2) f(n + 1) + αf(n) + [α(n)− α]f(n) = d(n)f(n + 2)f(n + 1)f(n) .

This equation results from equation (3.3) for:

m = 1, α1 = α, β1(n) = α(n)− α, ci(n) ≡ 0, γi ≡ 0 ,

M = 1, d1(n) = d(n), δ1 = δ, q13 = 2, q14 = 1, q15 = 0 .

In this case the operator Γ has the form

Γ = I + αV + V D1 , where D1en = [α(n)− α]en
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and let ‖Γ−1‖1 ≤ L. Also P (R) = 1 − LδR2 and P1(R) = R
L − δR

3. It follows
easily that the region of attraction predicted by Theorem 3.1 is given by:

(4.3) |f(0)| < 2

3L
√

3δL
.

Thus zero is a locally asymptotically stable equilibrium point of equation (4.1)
with region of attraction given by (4.3). Also f(n) is bounded and in particular
the following holds:

(4.4) |f(n)| < 1√
3δL

.

Finally from equation (4.1) we have:

f(n + 1)
f(n)

+ α(n) = d(n)f(n + 2)f(n + 1) .

The solution {f(n)} predicted by Theorem 3.1 is an element of l1 and so
lim
n→∞

f(n) = 0. Thus

lim
n→∞

f(n + 1)
f(n)

= −α .

This means that for every solution {f(n)} starting at a point given by (4.3),
the generating analytic function f(z) =

∑∞
n=1 f(n)zn−1 converges absolutely for

|z| < 1
|α| .

If α(n) = α, |α| < 1, α complex and d(n) = d, d complex, then the equilibrium
point zero is a locally asymptotically stable equilibrium point of equation (4.1)
with region of attraction given by:

(4.5) |f(0)| < 2

3|α|
√

3|α| · |d|
,

an upper bound of f(n) is 1√
3|α|·|d|

, i.e.

(4.6) |f(n)| < 1√
3|α| · |d|

and the corresponding generating analytic function f(z) =
∑∞
n=1 f(n)zn−1 con-

verges absolutely for |z| < 1
|α| .

Let us consider now the case where

α(n) = α , d(n) = d ,

α, d real numbers. Then equation (4.1) can be written as follows:

(4.7) f(n + 1) + αf(n) = df(n + 2)f(n + 1)f(n) .
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The nonzero real equilibrium points (%) of equation (4.7) are:

(4.8) %1 =

√
1 + α

d
, %2 = −

√
1 + α

d
, (1 + α)d > 0 .

In the following we shall show that %1, %2 are locally asymptotically stable
equilibrium points of (4.7). Moreover we shall find a region of attraction for each
one of them, a bound of the solution of equation (4.1) and the radius of convergence
for the corresponding generating analytic function. We set f(n) = g(n) + % and
equation (4.7) becomes:

(4.9)

g(n + 2) +
α

1 + α
g(n + 1) +

1
1 + α

g(n)

=− d

1 + α
g(n + 2)g(n + 1)g(n) − d%

1 + α
g(n + 2)g(n+ 1)

− d%

1 + α
g(n + 2)g(n) − d%

1 + α
g(n + 1)g(n) .

We shall consider the following three cases for the values of α and d:
i) 0 < α < 2 + 2

√
2, d > 0,

ii) α ≥ 2 + 2
√

2, d > 0,
iii) α < −1, d < 0.
In the first case the operator Γ has the form

Γ = (I − r1V )(I − r2V ) ,

where r1,2 = −α±i
√

4+4α−α2

2(1+α) and |r1,2| = 1√
1+α

< 1. In this case L = (1− 1√
1+α

)−2.
As before we find:

P (R) = 1− LR(3

√
d

1 + α
+

Rd

1 + α
) ,

P1(R) = L−1R(1− LR(3

√
d

1 + α
+

Rd

1 + α
) .

Thus point zero in each case (% = %1, % = %2) is locally asymptotically stable
equilibrium points of equation (4.9) with region of attraction given by:

|g(0)|+
∣∣∣∣ α

1 + α
g(0) − g(1)

∣∣∣∣ < 10 + 8α− 4
√

1 + α

3(1 + α)

√
4(1 + α)

3d
+

1
3d
− 2
√

1 + α

3d

−3

√
1 + α

d
− 1√

d
√

1 + α
+ 2 .(4.10)

Also {g(n)} is bounded and in particular the following holds:

(4.11) |g(n)| <

√
4(1 + α)

3d
+

1
3d
− 2
√

1 + α

3d
−
√

1 + α

d
.
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Thus the equilibrium points %1, %2 are locally asymptotically stable with regions
of attraction given respectively by:

(4.12)

∣∣∣∣∣f(0) −
√

1 + α

d

∣∣∣∣∣+

∣∣∣∣∣ α

1 + α
f(0) + f(1) − 2α+ 1√

d(1 + α)

∣∣∣∣∣
<− 3

√
1 + α

d
− 1√

d
√

1 + α
+ 2

+
10 + 8α− 4

√
1 + α

3(1 + α)

√
4(1 + α)

3d
+

1
3d
− 2
√

1 + α

3d
.

and

(4.13)

∣∣∣∣∣f(0) +

√
1 + α

d

∣∣∣∣∣+

∣∣∣∣∣ α

1 + α
f(0) + f(1) +

2α+ 1√
d(1 + α)

∣∣∣∣∣
<− 3

√
1 + α

d
− 1√

d
√

1 + α
+ 2

+
10 + 8α− 4

√
1 + α

3(1 + α)

√
4(1 + α)

3d
+

1
3d
− 2
√

1 + α

3d
.

Also {f(n)} is bounded and in particular the following holds:

(4.14) |f(n)| <

√
4(1 + α)

3d
+

1
3d
− 2
√

1 + α

3d
.

In the second case the operator Γ has the form

Γ = (I − r1V )(I − r2V ) ,

where r1 = −α+
√
α2−4α−4

2(1+α) < 0, r2 = −α−
√
α2−4α−4

2(1+α) < 0 and |r1,2| < 1. In this case

L = 1+α
2 . As before we find:

P (R) = 1− 3R
√
d(1 + α)
2

− dR2

2
,

P1(R) =
2R

1 + α
− 3
√
dR2

√
1 + α

− dR3

1 + α
.

Thus point zero in each case (% = %1, % = %2) is locally asymptotically stable
equilibrium point of equation (4.9) with region of attraction given by:

(4.15) |g(0)|+
∣∣∣∣ α

1 + α
g(0)− g(1)

∣∣∣∣ < 2√
d

[
(α + 5

3 )
3
2

1 + α
− 5α+ 8√

1 + α

]
.
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Also {g(n)} is bounded and in particular the following holds:

(4.16) |g(n)| <

√
α+ 5

3 −
√
α+ 1

√
d

.

Thus the equilibrium points %1, %2 are locally asymptotically stable with regions
of attraction given respectively by:∣∣∣∣∣f(0) −

√
1 + α

d

∣∣∣∣∣+

∣∣∣∣∣ α

1 + α
f(0) + f(1) − 2α+ 1√

d(1 + α)

∣∣∣∣∣
<

2√
d

[
(α+ 5

3 )
3
2

1 + α
− 5α+ 8√

1 + α

]
.(4.17)

and ∣∣∣∣∣f(0) +

√
1 + α

d

∣∣∣∣∣+

∣∣∣∣∣ α

1 + α
f(0) + f(1) +

2α+ 1√
d(1 + α)

∣∣∣∣∣
<

2√
d

[
(α+ 5

3 )
3
2

1 + α
− 5α+ 8√

1 + α

]
.(4.18)

Also {f(n)} is bounded and in particular the following holds:

(4.19) |f(n)| <

√
α+ 5

3√
d

.

In the third case the operator Γ has the form

Γ = (I − r1V )(I − r2V ) ,

where r1 = −α+
√
α2−4α−4

2(1+α) > 0, r2 = −α−
√
α2−4α−4

2(1+α) > 0 and |r1,2| < 1. In this case

L = 1
2 . As before we find:

P (R) = 1− 3R
2

√
d

1 + α
− dR2

2(1 + α)
,

P1(R) = 2R− 3

√
d

1 + α
R2 − dR3

1 + α
.

Thus point zero in each case (% = %1, % = %2) is locally asymptotically stable
equilibrium point of equation (4.9) with region of attraction given by:

(4.20) |g(0)|+
∣∣∣∣ α

1 + α
g(0) − g(1)

∣∣∣∣ < 10
√

15− 36
9

√
1 + α

d
.
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Also {g(n)} is bounded and in particular the following holds:

(4.21) |g(n)| <
√

15− 3
3

√
1 + α

d
.

Thus the equilibrium points %1, %2 are locally asymptotically stable with regions
of attraction given respectively by:∣∣∣∣∣f(0) −

√
1 + α

d

∣∣∣∣∣+

∣∣∣∣∣ α

1 + α
f(0) + f(1) − 2α+ 1√

d(1 + α)

∣∣∣∣∣
<

10
√

15− 36
9

√
1 + α

d
.(4.22)

and ∣∣∣∣∣f(0) +

√
1 + α

d

∣∣∣∣∣+

∣∣∣∣∣ α

1 + α
f(0) + f(1) +

2α+ 1√
d(1 + α)

∣∣∣∣∣
<

10
√

15− 36
9

√
1 + α

d
.(4.23)

Also {f(n)} is bounded and in particular the following holds:

(4.24) |f(n)| <
√

15
3

√
1 + α

d
.

Finally from equation (4.8) we have (for all these cases):

(4.25)
f(n + 1)
f(n)

+ α = df(n + 2)f(n + 1) .

The solution {g(n)} of equation (4.9) which is predicted by Theorem 3.1 is an
element of l1 and so lim

n→∞
g(n) = 0. Thus lim

n→∞
f(n) = % and f(n) is not an

element of l1 but it is an element of the space of bounded complex sequences. So
from (4.25) we have:

lim
n→∞

f(n + 1)
f(n)

= −α + d
1 + α

d
= 1 .

This means that for every solution {f(n)} starting at a point given by (4.12),
(4.13) or (4.17), (4.18) or (4.22), (4.23), depending on the values of α and d,
the corresponding generating analytic function f(z) =

∑∞
n=1 f(n)zn−1 converges

absolutely for |z| < 1.

Remark 4.1. The method used in this paper does not give us any information
in the case where −1 < α ≤ 0, as in this case the operator Γ has the form
Γ = (I − r1V )(I − r2V ) and both r1, r2 are in modulus greater than 1.
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Remark 4.2. From (4.3), (4.5), (4.12), (4.13), (4.17), (4.18), (4.22) and (4.23)
we see how each region of attraction depends on the parameters α and d of the
equation.

Remark 4.3. From equation (4.1) for α(n) = A and d(n) = 1 we obtain the
following difference equation:

f(n + 2)f(n + 1)f(n) = Af(n) + f(n + 1) .

In the case when this difference equation has positive solutions with positive initial
conditions it is known [5] that its positive equilibrium point is globally asymptot-
ically stable for A ∈ (0,∞).

2) Consider the difference equation:

(4.26) g(n+ 3)g(n+ 2)g(n+ 1) + g(n + 3)g(n) = g(n + 2) + g(n+ 1)g(n),

n = 0, 1, . . .

The three equilibrium points (%) of equation (4.26) are:

%1 = 0, %2 = 1, %3 = −1 .

We shall show that the three equilibrium points of equation (4.26) are locally
asymptotically stable. Moreover we shall find a region of attraction for each one
of them and a bound of the solution of equation (4.26).

We set g(n) = f(n) + % into equation (4.26) and we obtain, after some manip-
ulation:

(4.27)

(%2 + %)f(n + 3) + (%2 − 1)f(n + 2) + (%2 − %)f(n + 1)

= − f(n + 3)f(n + 2)f(n + 1)− %f(n + 3)f(n+ 2)

− %f(n + 3)f(n + 1)− %f(n + 2)f(n + 1)

− f(n + 3)f(n) + f(n + 1)f(n) .

For the equilibrium point %1 = 0 equation (4.27) becomes:

(4.28) f(n + 2) = f(n + 3)f(n + 2)f(n + 1) + f(n + 3)f(n) − f(n + 1)f(n) .

This equation results from equation (3.3) for:

m = 2, α1 = α2 = 0, β1(n) = β2(n) = 0 ,

N = 2, c1(n) = 1, c2(n) = −1, q11 = 3, q12 = q22 = 0, q21 = 1, γ1 = γ2 = 1

M = 1, d1(n) = 1, q13 = 3, q14 = 2, q15 = 1, δ1 = 1 .

In this case the operator Γ has the form:
Γ = I2 = I and ‖Γ−1‖1 = 1 = L.
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Also P (R) = 1− 2R−R2 and P1(R) = R− 2R2 − R3.
It follows easily that the attraction region of the equilibrium point zero of

equation (4.27), predicted by Theorem 3.1 is given by:

(4.29) |f(0)|+ |f(1)| < 0.11261179

Thus %1 = 0 is a locally asymtotically stable equilibrium point of equation
(4.26) and its region of attraction is given by:

(4.30) |g(0)|+ |g(1)| < 0.11261179

Also {f(n)} and thus {g(n)} is bounded and in particular the following holds:

(4.31) |g(n)| = |f(n)| < 0.215250437

For the equilibrium point %2 = 1 equation (4.27) becomes:

(4.32)

f(n + 3) =− 1
2
f(n + 3)f(n + 2)f(n + 1)− 1

2
f(n + 3)f(n + 2)

− 1
2
f(n + 3)f(n + 1)− 1

2
f(n + 2)f(n + 1)

− 1
2
f(n + 3)f(n) +

1
2
f(n + 1)f(n) .

In a similar way it follows easily that the attraction region of the equilibrium
point zero of equation (4.32), predicted by Theorem 3.1 is given by:

(4.33) |f(0)|+ |f(1)|+ |f(2)| < 0.096322046

Thus %2 = 1 is a locally asymtotically stable equilibrium point of equation
(4.26) and its region of attraction is given by:

(4.34) |g(0)− 1|+ |g(1)− 1|+ |g(2)− 1| < 0.096322046

Also {f(n)} and thus {g(n)} is bounded and in particular the following holds:

(4.35) |g(n)| = |f(n) + 1| ≤ |f(n)|+ 1 < 1.189254787

For the equilibrium point %3 = −1 equation (4.27) becomes:

(4.36)

f(n + 1) =− 1
2
f(n + 3)f(n + 2)f(n + 1) +

1
2
f(n + 3)f(n + 2)

+
1
2
f(n + 3)f(n + 1) +

1
2
f(n + 2)f(n + 1)

− 1
2
f(n + 3)f(n) +

1
2
f(n + 1)f(n) .
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In a similar way it follows easily that the attraction region of the equilibrium
point zero of equation (4.36), predicted by Theorem 3.1 is given by:

(4.37) |f(0)| < 0.096322046

Thus %3 = −1 is a locally asymtotically stable equilibrium point of equation
(4.26) and its region of attraction is given by:

(4.38) |g(0) + 1| < 0.096322046

Also {f(n)} and thus {g(n)} is bounded and in particular the following holds:

(4.39) |g(n)| = |f(n) − 1| ≤ |f(n)|+ 1 < 1.189254787

Remark 4.4. In the case when equation (4.26) has positive solutions with positive
initial conditions, it is proved recently in [1] that its positive equilibrium point is
globally asymptotically stable.
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