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THE CONTACT SYSTEM ON THE (m, `)-JET SPACES

J. MUÑOZ, F. J. MURIEL, AND J. RODŔIGUEZ

Abstract. This paper is a continuation of [8], where we give a construction

of the canonical Pfaff system Ω(M `
m) on the space of (m, `)-velocities of a

smooth manifold M . Here we show that the characteristic system of Ω(M `
m)

agrees with the Lie algebra of Aut( `
m), the structure group of the principal

fibre bundle M̌ `
m −→ J `m(M), hence it is projectable to an irreducible contact

system on the space of (m,`)-jets (= `-th order contact elements of dimension

m) of M . Furthermore, we translate to the language of Weil bundles the
structure form of jet fibre bundles defined by Goldschmidt and Sternberg in

[2].

1. The characteristic system of Ω(M`
m)

It is well known that Aut(R`m) is a Lie group whose Lie algebra is isomorphic to
Der(R`m,R`m) (see [4, 5]); we are going to prove this result in a form which we will
need later.

The elements of Aut(R`m) are, in particular, linear automorphisms of R `m; there-
fore if ξ̄ is the infinitesimal generator of a 1-parameter subgroup {τt} of Aut(R`m),
we can associate to it the linear map ξ fromR`m into itself which applies each vector
P ∈ R`m into the element

ξP = − lim
t→0

τtP − P
t

= −ξ̄P I ,(1.1)

where I : R`m −→ R`m is the identity, which we understand as a vector valued
function.

The mapping which assigns to each ξ̄ the linear map ξ defined by (1.1) is an
injective homomorphism of Lie algebras between the Lie algebra of Aut(R`m) and
the set of linear endomorphisms of R`m, endowed with a Lie algebra structure by
the commutator. Since {τt} is a group of automorphisms of R `m as an R-algebra,
and not only as a vector space, ξ is a derivation, as one can check easily, hence
equation (1.1) establishes an injective mapping from the Lie algebra of Aut(R`m)
into DerR(R`m,R`m); but the dimensions of Aut(R`m) and DerR(R`m,R`m) agree, and
therefore the map ξ 7−→ ξ̄ is an isomorphism.
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We can summarize the former discussion as follows:

Proposition 1.1. There is a canonical isomorphism between the Lie algebra of
Aut(R`m) and DerR(R`m,R`m); the image of a tangent vector field ξ̄ on R`m, in-
finitesimal generator of a 1-parameter subgroup of automorphisms of R`m, is the
R-derivation ξ from R `

m into itself defined by (1.1).

The group Aut(R`m) acts on M`
m by composition; let {τt} be a 1-parameter

subgroup of Aut(R`m), {τ ′t} the 1-parameter group of automorphisms of M `
m at-

tached to it and ξ′ the infinitesimal generator of {τ ′t}. For each p`m ∈M `
m and each

f ∈ C∞ (M ) we have:

ξ′p`mf = lim
t→0

f(τ ′tp`m)− f(p`m)
t

= lim
t→0

τt(f(p`m))− f(p`m)
t

= −ξ(f(p`m)) .(1.2)

In particular, if p`m is proper (regular), ξ′ vanishes at p`m only when ξ = 0, hence
the Lie algebra of tangent vector fields in M`

m associated to the action of Aut(R`m)
is isomorphic to DerR(R`m,R`m).

Theorem 1.2. In the open subset M̌ `
m of regular points of M`

m the characteristic
system of the Pfaff system Ω(M`

m) is the module of tangent vector fields generated
by the Lie algebra of the group Aut(R`m) acting in M`

m. Therefore, in M̌ `
m this

characteristic system is regular with rank m
(
m+`
m

)
−m.

Proof. First we will show that each vector field ξ′ of the Lie algebra of Aut(R`m)
acting in M `

m belongs to the characteristic system of Ω(M`
m). It suffices to prove

that ξ′ annihilates Ω(M `
m) and that this Pfaff system is invariant under the action

of Aut(R`m).
Let p`m ∈ M̌ `

m and let ξ′ belong to the Lie algebra generated in M`
m by the

action of Aut(R`m); then from equation (1.2) follows that ξ ′p`mf = −ξ(f(p`m)) for

each f ∈ C∞ (M ), where ξ ∈ DerR(R`m,R`m), hence ξ′
p`−1
m
f = ξ(p`m)f , where ξ ∈

DerR(R`m,R`−1
m ) is the composition of −ξ with the canonical projection R`m −→

R`−1
m . By Corollary 4.3 of [8], ξ ′ annihilates Ω(M `

m).
Next we show the invariance of Ω(M`

m) under Aut(R`m).
Let σ ∈ Aut(R`m); if f ∈ C∞ (M ) and p`m ∈ M `

m, then for each m-index α we
have σ∗(fα) = (σ ◦ f)α, where in the right side σ ◦ f is considered as a mapping
from M `

m into R`m. On the other hand, since σ is an R-linear endomorphism of
R`m, the real components of σ ◦ f are a linear span, with real coefficients, of the
real components of f . From this fact follows that, if D̄p`m ∈ Tp`mM

`
m is the tangent

vector attached to the derivation Dp`m ∈ Tp`mM
`
m by the canonical isomorphism

between these two spaces, then

σ∗D̄p`m = σ ◦Dp`m ,

that is to say, σ∗Dp`m = σ◦Dp`m when σ∗ is considered as a morphism from Tp`mM
`
m

into Tσ(p`m)M
`
m.
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Let ω be an (m + 1)–form on M ; in the notations of [8] we have:

〈(σ∗ω̂)p`m , Dp`m
〉 = 〈ω̂σ(p`m), σ∗

(
Dp`m

)
〉

= ωσ̄(p`−1
m )

(
ξ1(σ(p`m)), . . . , ξm(σ(p`m)), σ̄ ◦Dp`−1

m

)
,

where σ̄ : R`−1
m −→ R`−1

m is the canonical factorization of σ, operating on M`−1
m .

For each ξ ∈ DerR
(
R`m,R`−1

m

)
, ξ = σ̄−1 ◦ ξ ◦ σ is another derivation from R`m

into R`−1
m and furthermore ξ(σ(p`m)) = σ̄ ◦ ξ(p`m), hence we have:

〈(σ∗ω̂)p`m , Dp`m
〉 = ωσ̄(p`−1

m )
(
σ̄ ◦ ξ1(p`m), . . . , σ̄ ◦ ξm(p`m), σ̄ ◦Dp`−1

m

)
= σ̄

(
ωp`−1

m

(
ξ1(p`m), . . . , ξm(p`m), Dp`−1

m

))
.

But, if {ξ1, . . . , ξm} is a basis of the R`−1
m -module DerR

(
R`m,R`−1

m

)
, {ξ1, . . . , ξm} is

another basis, hence σ∗ (ω̂) = σ̄ ◦ (uω̂), where u is an invertible element of R`−1
m ;

then the real components of σ∗(ω̂) are linear spans, with real coefficients, of those
of ω̂, and hence they belong to Ω

(
M `
m

)
.

The former discussion shows that the Lie algebra generated in M`
m by Aut

(
R`m
)

is contained in the characteristic system of Ω
(
M `
m

)
. Let us show finally that the

C∞
(
M̌ `
m

)
-module of vector fields on M̌ `

m generated by this Lie algebra is the full
characteristic system of Ω(M`

m). According to a classical theorem of Elie Cartan,
given a manifold Z solution of a Pfaff system Ω and a vector field belonging to the
characteristic system of Ω which is not tangent to Z at a point P , we can find a
solution manifold of Ω containing a neighbourhood of P in Z and whose dimension
is equal to dimZ + 1. In particular, each tangent vector at P which is the value
at P of a vector field belonging to the characteristic system of Ω must be tangent
to every locally maximal solution of Ω containing P . If we apply this result to our
case and take into account the assertion of Theorem 4.5 of [8], it is sufficient to
show that for each p`m ∈ M̌ `

m there are m-dimensional submanifolds W1, . . . ,Wk of
M whose manifolds of (m, `)-velocities Wi

`
m (1 ≤ i ≤ k) contain p`m and such that

∩ki=1Tp`mWi
`
m is equal to the value at p`m of the Lie algebra of Aut(R`m) acting in

M `
m.
Let us take local coordinates y1, . . . , yn ∈ C∞ (M ) in a neighbourhood U of

p = p0
m such that

yi(p`m) = xi (i = 1, . . . ,m)

ym+j(p`m) = 0 (j = 1, . . . , n−m)

Consider the m-dimensional manifolds W0, . . . ,Wm, contained in U , defined by the
equations

W0 : {ym+1 = 0, . . . , yn = 0}
Wi : {ym+1 = y`+1

i , ym+2 = 0, . . . , yn = 0} (i = 1, . . . ,m)
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From Proposition 3.4 of [8] follows that ∩mi=0Tp`mWi
`
m is the set of derivations

η1(x)
(

∂

∂y1

)
p`m

+ · · ·+ ηm(x)
(

∂

∂ym

)
p`m

, where η1, . . . , ηm ∈ m(R`m) ,

that, as one can deduce easily from proposition 1.1, agrees with the value at p`m of
the Lie algebra of Aut(R`m) acting in M `

m.

2. The contact system on J `m(M )

The canonical projection M̌ `
m −→ J `m(M ) allows to consider the exterior differ-

ential forms in J `m(M ) as forms in M̌ `
m; we will use this fact in the sequel.

Definition 2.1. We will call contact system in J `
m(M ), and denote by Ω(J `m(M )),

the intersection of the contact system Ω(M̌ `
m) with E1(J `m(M )) = module of smooth

1-forms on J `m(M ).

Theorem 2.2. The contact system Ω(J `m(M )) is regular with rank (n−m)
(
`+m−1
m

)
.

When considered as a subset of E1(M̌ `
m), it spans the contact system Ω(M̌ `

m). Fur-
thermore, Ω(J `m(M )) is irreducible.

Proof. The second assertion is a consequence of the first one and Proposition 4.2
of [8]. Then, Theorem 1.2 says that the characteristic system of Ω(M̌ `

m) is vertical
for the projection M̌ `

m −→ J `m(M ), and therefore Ω(J `m(M )) is irreducible.
It remains to compute the rank of Ω(J `m(M )); we will do it in each open subset

from a covering of J `m(M ). Using the notations from [7], let us consider an open
subset U of M with coordinates y1, . . . , yn and the open subset U`m of U `m of regular
points with respect to R[y1, . . . , ym]; let us denote its image in J `m(M ) by J `

m
(U ),

endowed with the local coordinates {yi0, Ym+j,β}. Let Y`m be the image of the
section η : J `

m
(U ) −→ U`m which associates to p`m the point p`m defined by the

equations

yi(p`m) = yi(p) + xi (1 ≤ i ≤ m)

ym+j(p`m) =
∑
|α|≤`

1
α!
Ym+j,α(p`m)xα (1 ≤ j ≤ n−m)

Y`m is a closed submanifold of U `m, and η : J `
m

(U ) −→ Y`m is a diffeomorphism
which defines a local trivialization over J `

m
(U ) of the principal fibre bundle M̌ `

m −→
J `m(M ). Since Aut(R`m) is at the same time the structure group of this bundle and
the group whose Lie algebra generates the characteristic system of Ω(M̌ `

m), from
the classical theory of Elie Cartan about the reduction of a Pfaff system to the ring
of first integrals of its characteristic system follows that η∗ : E1(Y`m) −→ E1(J `m(U )
applies the specialization of Ω(M̌ `

m) to Y`m into Ω(J `m(M )) = E1(J `m(M ))∩Ω(M̌ `
m).

Thus, our problem is reduced to compute the rank of the specialization Ω(Y`m) of
Ω(M̌ `

m) to Y`m.
By definition of η, the points of Y`m are determined by the equations yi(p`m) =

yi0(p`m)+xi (i = 1, . . . ,m). If we take as a basis of the R`−1
m -module DerR(R`m,R`−1

m )
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the derivations ξk = ∂
∂xk

(k = 1, . . . ,m) it follows that ξk(p`m)yi = δki. Then, for
each tangent vector D̄p`m ∈ Tp`mY

`
m and each f ∈ C∞ (M ) we have:

(2.1) (m + 1)! (dy1 ∧ · · · ∧ dym ∧ df)
p`−1
m

ξ1(p`m), . . . , ξm(p`m),Dp`−1
m

= D
p`−1
m

f − ξ1(p`m)f ·Dp`−1
m

y1 − · · · − ξm(p`m)f ·Dp`−1
m

ym ,

where Dp`m ∈ Tp`mM
`
m is the derivation corresponding to the tangent vector D̄p`m .

Since D̄p`m is tangent to Y`m, then D̄p`myiα = 0 (1 ≤ i ≤ m; 1 ≤ |α| ≤ `), hence
Dp`−1

m
yi = D̄p`−1

m
yi0 ∈ R. On the other hand we have

ξi(p`m)f =
∑
|β|≤`−1

1
β!
fβ+εi

(
p`m
)
xβ (1 ≤ i ≤ m)

Dp`−1
m
f =

∑
|β|≤`−1

1
β!
D̄p`−1

m
fβx

β

and replacing in (2.1) we get:

(m + 1)! (dy1 ∧ · · · ∧ dym ∧ df)p`−1
m

(
ξ1(p`m), . . . , ξm(p`m), Dp`−1

m

)
=

∑
|β|≤`−1

1
β!

[
dp`−1

m
fβ −

m∑
i=1

fβ+εi

(
p`m
)
dp`−1

m
yi0

] (
D̄p`−1

m

)
xβ .

From the former calculus follows that, up to some factors, the real components of
the specialization to Y`m of the 1–form ω̂ in M̌ `

m with values in R`−1
m associated to

the (m + 1)–form ω = dy1 ∧ · · · ∧ dym ∧ df are the 1-forms

ωβ = dfβ −
m∑
i=1

fβ+εidyi0 (|β| ≤ ` − 1)

Replacing f by each one of the coordinates ym+1, . . . , yn we obtain (n−m)
(
m+`−1
m

)
1–forms on Y `m whose values at each point are linearly independent, hence the rank
of Ω

(
Y`m
)

is ≥ (n − m)
(
m+`−1
m

)
and, since it must be less than or equal to this

number (which is the rank of Ω
(
M̌ `
m

)
), we finish the proof.

Remark. If we use η∗ to pass the 1–forms

ωm+j,β = dym+j,β −
m

i=1

ym+j,β+εidyi0 (i ≤ j ≤ n −m; |β| ≤ `− 1)(2.2)

from Y `m to J `
m

(U ), we obtain in this open subset the following basis of the contact
system:

θm+j,β = dYm+j,β −
m

i=1

Ym+j,β+εidyi0 (i ≤ j ≤ n −m; |β| ≤ `− 1)(2.3)

Theorem 2.3. For each r ≥ 1, the specialization (by means of the Taylor immer-
sion) to J `+rm (M ) of the contact system in J rm

(
J `m(M )

)
, considered as a jet space

J rm of the manifold J `m(M ), is the contact system in J `+rm (M ).
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Proof. In the notations of [7], the local equations of the Taylor immersion
ϕ : J `+rm (M ) −→ J rm

(
J `m(M )

)
are:

yi00 = yi0 (1 ≤ i ≤ m)

Ym+j,α,β = Ym+j,α+β (1 ≤ j ≤ n−m; |α| ≤ `, |β| ≤ r)

According to the former remark, the contact system in J rm
(
J `m(M )

)
has the

local basis

Θm+j,α,β = dYm+j,α,β −
m∑
i=1

Ym+j,α,β+εidyi00 (|α| ≤ `, |β| ≤ r − 1)

and if we specialize these one-forms to J `+rm (M ) we obtain:

θm+j,α+β = ϕ∗ (Θm+j,α,β) = dYm+j,α+β −
m∑
i=1

Ym+j,α+β+εidyi0 ,

which span the contact system in the corresponding open subset of J`+rm (M ).
Let us denote by Ω

(
J `m(M )

)⊥ the distribution of tangent vector fields on J`m(M )
which annihilate the contact system. The vector fields

∂
(`)
i =

∂

∂yi0
+
n−m∑
j=1

∑
|β|≤`−1

Ym+j,β+εi

∂

∂Ym+j,β
(1 ≤ i ≤ m)

∂

∂Ym+j,α
(1 ≤ j ≤ n−m; |α| = `)

form a basis of this distribution in the open subset J `m(U ) and for each point

p`m ∈ J `m(U ) the derivations
(

∂
∂Ym+j,α

)
p`m

(1 ≤ j ≤ n −m; |α| = `) are a basis of

the vector space Qp`m
J `
m

(U ) (notations of [7]).
From the calculus in local coordinates for the prolongation of an ideal made in [7]

follows that the prolongation of an ideal I from C∞
(
J `−1
m (M )

)
to C∞

(
J `m(M )

)
is locally generated by I0 and ∂

(`)
i I0, i = 1, . . . ,m, with the notations used there.

Taking in account that the vector fields ∂
∂Ym+j,α

, (|α| = `) annihilate I0, we obtain
the following
Theorem 2.4. The prolongation of an ideal I from C∞

(
J `−1
m (M )

)
to C∞

(
J `m(M )

)
is the ideal locally generated by I0 and the sets D(I0), where D runs through the
module of tangent vector fields which annihilate the contact system Ω

(
J `m(M )

)
.

Remark. Let π : M −→ X be a fibre bundle, m = dimX, and denote by J`(X,M )
the fibre bundle of jets of local cross-sections of π. If s is a local cross-section of π
defined in a neighbourhood of x ∈ X and p` = j`xs, then the image of the tangent
linear map

(
j`s
)
∗ : TxX −→ Tp`J `(X,M ) annihilates Ω

(
J `(X,M )

)
p`

and, when
s varies without changing j`xs, the image of

(
j`s
)
∗ runs through the full space

Ω
(
J `(X,M )

)⊥
p`

. Therefore we can describe the contact system in the following
way: its value at each point p` ∈ J `(X,M ) is the set of 1-forms at p` which
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annihilate all the spaces
(
j`s
)
∗ (TxX), when s runs through the family of local

sections of π defined in a neighbourhood of x = π`
(
p`
)

such that j`xs = p`.

3. The contact 1–form on J `(X,M )

In this section we want to translate to our language the 1–form on J`(X,M )
and valued in the vertical tangent bundle V J `−1(X,M ) defined in [2, p. 206] by
Goldschmidt and Sternberg.

In [7] we show that the tangent space to J`m(M ) at a point p`m is isomorphic to

DerR
(
C∞ (M ) , C∞ (M )

/
p`m
) /

DerR
(
C∞ (M )

/
p`m , C∞ (M )

/
p`m
)

Let p` ∈ J `(X,M ) and x = π`(p`); let Dp` be a tangent vector to J`(X,M )
at p` and D ∈ DerR

(
C∞ (M ) , C∞ (M )

/
p`
)

be a derivation whose class modulo
DerR

(
C∞ (M )

/
p` , C∞ (M )

/
p`
)

is attached to Dp` by the above isomorphism; let
us denote by D̄ the projection of the derivationD to DerR(C∞ (M ) , C∞ (M )

/
p`−1).

The restriction of D̄ to C∞ (X) sends m`+1
x to zero, hence D̄ gives rise to a

derivation D̃ from C∞ (X)
/
m`+1
x into C∞ (X)

/
m`
x . If we identify C∞ (M )

/
p`

with C∞ (X)
/
m`+1
x , the specialization to C∞ (X) of the homomorphism p` :

C∞ (M ) −→ C∞ (M )
/
p` is the canonical factor map, hence the restriction of

D̄ to C∞ (X) factors as D̃ ◦ p`, and D̄ − D̃ ◦ p` is a C∞ (X)-derivation, that is to
say an element of Vp`−1J `−1(X,V ) which depends only on Dp` ; indeed, if D van-
ishes at p` then D̄ factorizes, via the quotient map p` : C∞ (M ) −→ C∞ (M )

/
p` ,

as D̃ ◦ p`, and D̄ − D̃ ◦ p` = 0.
Thus we have defined a mapping

ω
(`)

p`
: Tp`J `(X,M ) −→ Vp`−1J `−1(X,M )

Dp` 7−→ D̄ − D̃ ◦ p`

which we call the contact 1–form on J `(X,M ) and agrees with the one defined
by Goldschmidt and Sternberg in [2]. Note that ω(`) depends on the fibration
π : M −→ X whereas the contact system on J`m(V ) does not. We are going to
study the relationship between these two constructions.

The following result shows that the kernel of ω(`) does not depend on the fibration
π : M −→ X.

Proposition 3.1. The value of ω(`) at each point p` ∈ J `(X,V ) is the epimor-
phism ω

(`)

p`
: Tp`J `(X,M ) −→ Vp`−1J `−1(X,V ) which for the vertical vectors is the

natural projection and whose kernel is the set of classes of derivations from C∞ (M )
into C∞ (M )

/
p` which send p` to p`−1

/
p` .

Proof. The first statement is immediate. On the other hand, ker ω(`)

p`
is the set

of classes of derivations D from C∞ (M ) into C∞ (M )
/
p` such that D̄ = D̃ ◦ p`,

that is to say, D̄ sends p` to zero or, what is the same, D applies p` into p`−1
/
p` .

Conversely, if D sends p` to p`−1
/
p` , then D̄ − D̃ ◦ p` annihilates p`; since it

annihilates C∞ (X) too, it must vanish, because C∞ (X) + p` = C∞ (M ).
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Let p`m ∈ M̌ `
m; from Corollary 4.3 of [8] follows that Dp`m

∈ Tp`mM̌
`
m annihilates

the contact system Ω(M̌ `
m) if and only if its projection to Tp`−1

m
M̌ `−1
m has the form

Dp`−1
m

= ξ ◦ p`m, for some ξ ∈ DerR(R`m,R`−1
m ).

If ker p`m = p`, through the isomorphisms

C∞ (M )
/
p` ≈ R`m and C∞ (M )

/
p`−1 ≈ R`−1

m

defined by p`m and p`−1
m , respectively, Dp`m corresponds to a derivationD : C∞ (M )→

C∞ (M )
/
p` whose projection D̄ annihilates p`. Conversely, if a derivation D from

C∞ (M ) into C∞ (M )
/
p` applies p` into p`−1

/
p` , D̄ factorizes as a derivation

D̃ : C∞ (M )
/
p` −→ C∞ (M )

/
p`−1 . If we take p`m ∈ M̌ `

m such that ker p`m = p`,
we have that D is identified with a derivation Dp`m ∈ Tp`mM̌

`
m and its projection,

D̄, with Dp`−1
m

= ξ ◦p`m, where ξ ∈ DerR(R`m,R`−1
m ) is the derivation induced by D̃.

Summarizing:

Corollary 3.2. In the open subset J `(X,M ) of J `m(M ) the annihilator subspace
of the contact system Ω(J `m(V )) agrees with the kernel of ω(`).

Remark. Let U be an open subset of M coordinated by functions y1, . . . , yn which
identify it with an open subset U′×U ′′; in the notations of [7], in J `(U ′, U ) we have
local coordinates yi, Ym+j,α (1 ≤ i ≤ m, 1 ≤ j ≤ n −m, |α| ≤ `). The expression
of ω(`) in these coordinates is as follows:

ω(`) =
n−m∑
j=1

∑
|β|≤`−1

θm+j,β ⊗
∂

∂Ym+j,β
,

where the θm+j,β are the 1-forms given by (2.3), because the coordinate forms of
ω(`) have the same annihilator subspace than the contact system and both sides of
the above equality agree when they are applied to vertical vectors.

Since ω(`)
p`

is the natural projection for vertical vectors, Qp`J `(X,V ) is contained

in ker ω(`)
p`

.

If the projection onto Tx(X) of Dp` ∈ ker ω(`)
p`

is a vector Dx 6= 0, the class of

D̄ = D̃ ◦ p` depends only on Dx and p`.
In fact, let Y , Y ′ be derivations from C∞(X)/m`+1

x into C∞(X)
/
m`
x such that

Yx = Y ′x; then the image of Y − Y ′ is contained in mx

/
m`
x , like (Y − Y ′) ◦ p`,

hence (Y − Y ′) ◦ p` determines a derivation from C∞(X)
/
m`
x into C∞(X)

/
m`
x ,

and consequently the derivations Y ◦ p`, Y ′ ◦ p` from C∞ (M ) into C∞(X)
/
m`
x

have the same class modulo DerR
(
C∞(X)

/
m`
x , C

∞(X)
/
m`
x

)
.

Let us denote by Yx◦p` ∈ Tp`−1J `−1(X,V ) the vector representing the derivation
Y ◦ p`; it is easy to show that Yx ◦ p` is the composition of p`, understood as
an epimorphism from C∞(J `−1(X,M )) into C∞ (X)

/
m2
x , and Yx thought as a

derivation from C∞ (X)
/
m2
x into R.

Let p`m ∈ M̌ `
m such that ker p`m = p`; from Proposition 3.5 of [8] follows that

Der(R`m,R`−1
m ) ≈ Tx`−1

m
X̌`−1
m , where x`m is the specialization of p`m to C∞ (X),
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hence the projection of the morphism p`m∗ : Der(R`m,R`−1
m ) −→ Tp`−1

m
M̌ `−1
m to the

jet space is the linear map

p`∗ : TxX −→ Tp`−1J `−1(X,V )

Yx −→ p`∗(Yx) = Yx ◦ p`

If p̄` ∈ J `(X,V ) verifies that p̄`−1 = p`−1, then p̄` − p` is a derivation from
C∞ (M ) into m`

x

/
m`+1
x which vanish if and only if Y ◦ (p̄` − p`) = 0 for each Y ∈

DerR(C∞ (X)
/
m`+1
x , C∞ (X)

/
m`
x ); that is to say, p` is completely determined by

the couple (p`−1, p`∗).
The following result is a reformulation of Theorem 4.5 of [8].

Proposition 3.3. Let F be a local cross-section of J `(X,M ) −→ X over an open
subset W ⊂ X; if the contact form ω(`) vanishes over F (W ), then there is a section
s : W −→M of π : V −→ X such that j`s = F .

Proof. We apply induction on `; if ` = 1 and F : W −→ J 1(X,V ) is a local section,
taking s = π1 ◦F we obtain a local section of π : M −→ X. For each x ∈ W , F (x)
and j1

xs have the same projection s(x) ∈M ; but j1xs is the composition of the map
s∗ : C∞ (M ) −→ C∞ (W ) and the quotient modulo m2

x, and for each Yx ∈ Tx(X)
we have s∗(Yx) = Yx ◦ j1

xs, where in the right side Yx is considered as a derivation
from C∞ (X)

/
m2
x into R.

If we assume that the specialization of ω(1) to F (W ) vanishes, then ω(1)(F∗Yx) =
0 for each Yx ∈ TxW , hence

π1
∗(F∗Yx) = s∗(Yx) = Yx ◦ j1

xs = Yx ◦ F (x)

and j1
xs = F (x).

Now suppose that the statement is proved up to `− 1; since F (W ) is a solution
of ω(`), π`−1

` ◦ F (W ) is a solution of ω(`−1) and by the induction hypothesis there
is a section s such that j`−1s = π`−1

` ◦F ; then j`−1
x s = π`−1

` (F (x)) for each x ∈ W ,
and since ω(`)(F∗Yx) = 0 by hypothesis for each Yx ∈ TxW , we have

(π`−1
` )∗(F∗(Yx)) = (j`−1s)∗(Yx) = Yx ◦ j`xs = Yx ◦ F (x) ,

and therefore F (x) = j`xs.
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Différentielle, C.N.R.S. (1953), 111–117.
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