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CHARACTERIZATION OF EF-SUBCOMPACTIFICATION

ABDOLMAJID FATTAHI AND H. R. EBRAHIMI VISHKI

Abstract. For extending the notion of E-algebra, as defined in [2], we
present an example of an m-admissible algebra which is not an E - algebra.
Then we define E-subcompactification and EF-subcompactification to study
the universal E-subcompactification and the universal EF-subcompactifica-
tion from the function algebras point of view.

1. Introduction and preliminaries

A semigroup S is called right reductive if for each a, b ∈ S, the equality at=bt
for every t ∈ S, implies that a=b. For example, all right cancellative semigroups
and semigroups with a right identity, are right reductive.

For notation and terminology our ground reference is the extensive book of
Berglund et al.[1]. From now on S will be a semitopological semigroup. By a semi-

group compactification of S we mean a pair (ψ,X), whereX is a compact Hausdorff
right topological semigroup, and ψ : S −→ X is a continuous homomorphism with
dense image such that, for each s ∈ S, the mapping x−→ψ(s)x : X−→X is con-
tinuous. The C∗-algebra of all bounded complex-valued continuous functions on
S, will be denoted by C(S). For C(S) the left and right translations, Ls and Rt,
are defined for each s, t ∈ S by (Lsf)(t) = f(st) = (Rtf)(s), f ∈ C(S). A subset
F of C(S) is said to be left translation invariant, if for all s ∈ S, LsF ⊆ F . A left
translation invariant unital C∗-subalgebra F of C(S) is called m-admissible if the
function s−→Tµf(s) = µ(Lsf) is in F for all f ∈ F and µ ∈ SF (=the spectrum
of F). Then the product of µ, ν ∈ SF can be defined by µν = µ ◦ Tν and the
Gelfand topology on SF makes (ǫ, SF ) a semigroup compactification (called the
F -compactification) of S, where ǫ : S−→SF is the evaluation mapping.

Some m-admissible subalgebras of C(S) that we will need in the sequel are:
LMC := left multiplicatively continuous functions, D :=distal functions, MD

:=minimal distal functions, and SD :=strongly distal functions. We also write
GP for MD ∩ SD; and we define LZ := {f ∈ C(S); f(st) = f(s) for all s, t ∈ S}
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and RZ := {f ∈ C(S); f(st) = f(t) for all s, t ∈ S}.
For a discussion of the universal property of the corresponding compactifications
of these function algebras see [1] and also [4].

Let (ψ,X) be a compactification of S, then the mapping σ : S ×X−→X , defined
by σ(s, x) = ψ(s)x, is separately continuous and so (S,X, σ) is a flow. If ΣX

denotes the enveloping semigroup of the flow (S,X, σ) (i.e., the pointwise closure
of semigroup {σ(s, ·) : s ∈ S} in XX) and the mapping σX : S−→ΣX defined by
σX(s) = σ(s, ·) for all s ∈ S, then (σX ,ΣX) is a compactification of S (see [1;
1.6.5]).

One can easily verify that ΣX = {λx : x ∈ X}, where λx(y) = xy for each
y ∈ X . If we define the mapping θ : X −→ ΣX by θ(x) = λx, then θ is a
continuous homomorphism with the property that θ ◦ ψ = σX . So (σX ,ΣX) is a
factor of (ψ,X), that is (ψ,X) ≥ (σX ,ΣX). By definition, θ is one-to-one, if and
only if X is right reductive. So we get the next proposition, which is an extension
of the Lawson’s result [5; 2.4(ii)].

Proposition 1.1. Let (ψ,X) be a compactification of S. Then (σX ,ΣX) ∼=
(ψ,X), if and only if X is right reductive.

A compactification (ψ,X) is called reductive, if X is right reductive. For exam-
ple, the MD, GP and LZ-compactifications, are reductive.
In [2] an m-admissible subalgebra F of C(S) is defined as an E-algebra if there
is a compactification (ψ,X) such that (σX ,ΣX) ∼= (ǫ, SF). In this setting (ψ,X)
is called an EF -compactification of S. Clearly every reductive compactification is
an E-compactification but the converse is not, in general true; for example see [2;
2.2].

Now we present an example of m-admissible subalgebra of C(S) which is not an
E - algebra. For this purpose we need the following lemma.

Lemma 1.2. Let S be a factorizable semigroup, i.e. S = S2 (for instance, let S

be a regular semigroup, see [3]) and (ψ,X) be a compactification of S such that

xyz = yz for every x, y, z ∈ X. Then X is a right zero semigroup.

Proof. We show that yz = z for each y, z ∈ X . First suppose that z ∈ ψ(S).
So z = ψ(s) for some s ∈ S. Hence yz = yψ(s) = yψ(s1s2) = yψ(s1)ψ(s2) =

ψ(s1)ψ(s2) = ψ(s) = z. Now let y ∈ ψ(S) and z ∈ X = ψ(S). So y = ψ(t) for
some t ∈ S and there exist a sequence {ψ(tn)} in ψ(S) such that ψ(tn) → z. Since
ψ(S) ⊂ Λ(X), we have ψ(tn) = yψ(tn) → yz. Therefore yz = z.

Now suppose that y ∈ X = ψ(S) and z ∈ X . Then there exists a sequence
{ψ(sn)} in ψ(S) such that ψ(sn) → y. Since X is right topological, ψ(sn)z → yz.
But ψ(sn)z = z for all n, and so yz = z for every y, z ∈ X , as claimed. �

Example 1.3. If S is a factorizable semigroup, then RZ is not an E-algebra.
Indeed, let (ψ,X) be a compactification of S such that (σX ,ΣX) ∼= (ǫ, SRZ), then
ΣX must be a right zero semigroup. It is easy to see that ΣX is a right zero
semigroup if and only if xyz = yz for every x, y, z ∈ X . Now by Lemma 1.2 X is
a right zero semigroup and so ΣX is a trivial semigroup.
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2. E-subcompactification

In this section we extend the notion of EF -compactification (see [2]), to EF -
subcompactification.

Definition 2.1. Let (ψ,X) be a compactification of S. We say that a compact-
ification (φ, Y ) is an E-subcompactification of (ψ,X) if (σY ,ΣY ) is a factor of
(ψ,X), (in symbol, (σY ,ΣY ) ≤ (ψ,X)).

Trivially, every compactification of S is an E-subcompactification of itself. Now
we are going to construct the universal E-subcompactification of S.

Lemma 2.2. Let (φ, Y ) be the subdirect product of the family {(φi, Yi) : i ∈ I} of

compactifications of S. Then (σY ,ΣY ) is isomorphic to the subdirect product of

the family {(σYi
,ΣYi

) : i ∈ I} (i.e., ∨(σYi
,ΣYi

) ∼= (σY ,ΣY )).

Proof. By [1; 3.2.5], for each i ∈ I, there exists a homomorphism pi of (φ, Y )
onto (φi, Yi). So, by [1; 1.6.7], for each i ∈ I, there exists a unique continuous
homomorphism πi of (σY ,ΣY ) onto (σYi

,ΣYi
) such that

πi(ζ)
(

pi(y)
)

= pi

(

ζ(y)
)

y ∈ Y, ζ ∈ ΣY .

Suppose that ζ1, ζ2 ∈ ΣY . If πi(ζ1) = πi(ζ2) for all i ∈ I, then

pi

(

ζ1(y)
)

=
(

πi(ζ1)
)(

pi(y)
)

=
(

πi(ζ2)
)(

pi(y)
)

= pi

(

ζ2(y)
)

,

for all y ∈ Y and i ∈ I. Thus ζ1 = ζ2. Therefore the family {πi : i ∈ I} separates
the points of ΣY . Now the conclusion follows from [1; 3.2.5]. �

Theorem 2.3. Every compactification (ψ,X) of S has the universal E-subcom-

pactification.

Proof. Let (ψ,X) be a compactification of S. Suppose {(φi, Yi) : i ∈ I} is a
family of E-subcompactifications of (ψ,X), and (φ, Y ) is the subdirect product of
this family. We show that (φ, Y ) is an E-subcompactification of (ψ,X), and so it
is the universal E-subcompactification of (ψ,X). To see this, for each i ∈ I, we
have (σYi

,ΣYi
) ≤ (ψ,X). So, by the subdirect product property and the previous

lemma we have, (σY ,ΣY ) ∼= ∨(σYi
,ΣYi

) ≤ (ψ,X). This means that (φ, Y ) is an
E-subcompactification of (ψ,X). �

Definition 2.4. Let F be an m-admissible subalgebra of C(S). The compactifica-
tion (ψ,X) of S is called an EF -subcompactification of S if (σX ,ΣX) ≤ (ǫ, SF).

Now we are going to prove the next theorem which is an extension of [2; 2.6].

Theorem 2.5. Every m- admissible subalgebra F of C(S) has the universal EF-

subcompactification.

Proof. Set
GF := {f ∈ LMC : Tνf ∈ F for all ν ∈ SLMC} .

It is easy to verify that GF is an m-admissible subalgebra of C(S) containing F .
By definition of GF we can define the mapping θ : SF −→ ΣSGF by θ(µ) = λµ̃,
where µ̃ is an extension of µ to SGF . Clearly θ is continuous and θ ◦ ǫ = σSGF .
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Thus (ǫ, SF ) ≥ (σSGF ,ΣSGF ). So GF is an EF -subcompactification of S. Finally,
if (ψ,X) is an EF -subcompactification of S and f ∈ ψ∗

(

C(X)
)

(where ψ∗ is

the adjoint of ψ), then by [2; 2.5.], Tµf ∈ σ∗
X

(

C(ΣX)
)

⊂ F for all µ ∈ SLMC .

Therefore ψ∗
(

C(X)
)

⊂ GF and (ψ,X) ≤ (ǫ, SGF ). �
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