Archivum Mathematicum

Hani A. Khashan; H. Al-Ezeh
Conditions under which $R(x)$ and $R\langle x\rangle$ are almost \mathbf{Q}-rings

Archivum Mathematicum, Vol. 43 (2007), No. 4, 231--236

Persistent URL: http://dml.cz/dmlcz/108067

Terms of use:

© Masaryk University, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

CONDITIONS UNDER WHICH $R(x)$ AND $R\langle x\rangle$ ARE ALMOST Q-RINGS

H. A. Khashan and H. Al-Ezeh

Abstract

All rings considered in this paper are assumed to be commutative with identities. A ring R is a Q-ring if every ideal of R is a finite product of primary ideals. An almost Q-ring is a ring whose localization at every prime ideal is a Q-ring. In this paper, we first prove that the statements, R is an almost $Z P I$-ring and $R[x]$ is an almost Q-ring are equivalent for any ring R. Then we prove that under the condition that every prime ideal of $R(x)$ is an extension of a prime ideal of R, the ring R is a (an almost) Q-ring if and only if $R(x)$ is so. Finally, we justify a condition under which $R(x)$ is an almost Q-ring if and only if $R\langle x\rangle$ is an almost Q-ring.

1. Introduction

Let R be a ring and let $f \in R[x]$. Then $C(f)$ denotes the ideal of R generated by the coefficients of f. If $S=\{f \in R[x]: C(f)=R\}$ and $W=\{f \in R[x]$: f is monic $\}$, then S and W are regular multiplicatively closed subsets of $R[x]$ and the rings $S^{-1} R[x]$ and $W^{-1} R[x]$ are denoted by $R(x)$ and $R\langle x\rangle$ respectively. Some basic properties and related Theorems of $R(x)$ and $R\langle x\rangle$ can be found in [2].

Recall that a ring R is called a Laskerian ring if every ideal of R is a finite intersection of primary ideals. A ring R is a Q-ring if every ideal of R is a finite product of primary ideals. This class of rings has come as a generalization of an important class of rings called the $Z P I$-rings that are defined as rings in which every ideal is a product of prime ideals. Equivalently, a ring R is a Q-ring if and only if R is Laskerian and every non maximal prime ideal of R is finitely generated and locally principal, see [1]. If the localization R_{P} of a $\operatorname{ring} R$ is a Q-ring for every prime ideal P of R, then R is called an almost Q-ring. The classes of Q-rings and almost Q-rings were studied in detail in [1] and [5].

One of the main results appeared in [1] is that a ring R is a $Z P I$-ring if and only if $R[x]$ is a Q-ring. In this paper, we first generalized this result to almost Q-rings and then we have tried to find a condition under which a ring R is a (an

[^0]almost) Q-ring if and only if $R(x)$ is a (an almost) Q-ring. We have investigated that this is true if every prime ideal of $R(x)$ is an extension of a prime ideal of R. Those rings that satisfy this property are said to satisfy the property $(*)$, see [2]. We gave some examples of such rings and in order to achieve our result, we proved that the localization of a ring that satisfies the property $(*)$ at every prime ideal satisfies the property ($*$) as well.

Finally, we proved that under the condition that a ring R is one dimensional reduced ring, $R(x)$ is an almost Q-ring if and only if $R\langle x\rangle$ is so.

The following Lemma will be needed in the proof of the next main Theorem. It can be proved by using [7, Theorem 3.16].
Lemma 1.1. Let R be any ring and let Q be a prime ideal of $R[x]$, then $R[x]_{Q} \cong$ $R_{P}[x]_{Q R_{P}[x]}$ where $P=Q \cap R$.

By [4, Theorem 14.1], each maximal ideal of $R(x)$ is of the form $M R(x)$ where M is a maximal ideal of R and $R(x)_{M R(x)} \cong R_{M}(x) \cong R[x]_{M[x]}$. Hence, $R(x)$ is an almost $Z P I$-ring if and only if $R_{M}(x)$ is a $Z P I$ - ring for each maximal ideal M of R.

Theorem 1.2. Let R be a ring. The following are equivalent
(1) R is an almost ZPI-ring.
(2) $R(x)$ is an almost ZPI-ring.
(3) $R[x]$ is an almost Q-ring.

Proof. (1) \Rightarrow (3): Suppose that R is an almost $Z P I$-ring. Let \widehat{P} be a prime ideal of $R[x]$. Then $P=\widehat{P} \cap R$ is a prime ideal of R and so R_{P} is a ZPI-ring. By Lemma 1.1, $R[x]_{P} \cong R_{P}[x]_{P R_{P}[x]}$ and since R_{P} is a $Z P I$-ring, $R_{P}[x]$ is a Q-ring by [1, Theorem 14]. Hence, $R[x]_{P}$ is a ring of quotients of a Q-ring and so it is a Q-ring. Therefore, $R[x]$ is an almost Q-ring.
$(3) \Rightarrow(2):$ Suppose that $R[x]$ is an almost Q-ring. Let M be a maximal ideal of R and let \overparen{M} be a maximal ideal of $R[x]$ such that $M[x] \subset \overparen{M}$. Then $R[x] \widehat{M}$ is a Q-ring and hence any non maximal prime ideal of $R[x]_{\widehat{M}}$ is principal by [1, Lemma 5]. Since $M[x] \subset \overparen{M}, M[x]$ is a principal ideal of $R[x]_{M}$ and so $M[x]_{M[x]}$ is principal in $R[x]_{M[x]}$. Thus, all prime ideals of $R_{M}(x) \cong R[x]_{M[x]}$ are principal and so $R_{M}(x)$ is a PIR. Hence, $R_{M}(x)$ is a $Z P I$ - ring by [4, Theorem 18.8]. Since M was arbitrary, $R(x)$ is an almost $Z P I$-ring.
$(2) \Rightarrow(1)$: Suppose $R(x)$ is an almost $Z P I$-ring. Let P be a prime ideal of R. Then $P R(x)$ is a prime ideal of $R(x)$. Hence, $R_{P}(x) \cong R(x)_{P R(x)}$ is a $Z P I$-ring. Again by [4, Theorem 18.8], R_{P} is a ZPI-ring and so R is an almost ZPI-ring.

2. Rings that satisfy the property (*)

The definition of rings that satisfy the property (*) was appeared in [2] as follows: A ring R is said to satisfy the property $(*)$ if for each prime ideal P of $R[x]$ with $P \subseteq M R[x]$ for some maximal ideal M of R, we have $P=Q R[x]$ for some prime ideal Q of R.

In the following proposition, we can see one characterization of rings that satisfy the property $(*)$.

Proposition 2.1. A ring R satisfies the property $(*)$ if and only if every prime ideal of $R(x)$ is an extension of a prime ideal of R.
Proof. $\Rightarrow)$: Suppose that R satisfies the property (*). Let \widehat{P} be a prime ideal of $R(x)=S^{-1} R[x]$. Then $\widehat{P}=S^{-1} P$ where P is a prime ideal of $R[x]$ with $P \cap S=\phi$. Let $\left\{M_{\alpha}: \alpha \in \Lambda\right\}$ be the set of all maximal ideals of R. Then $S=R[x] \backslash \bigcup_{\alpha \in \Lambda} M_{\alpha}[x]$ by $\left[4\right.$, Theorem 14.1]. Hence, $P \subseteq \bigcup_{\alpha \in \Lambda} M_{\alpha}[x]$ and then $P \subseteq M_{\alpha}[x]$ for some $\alpha \in \Lambda$. By assumption, there exists a prime ideal Q of R such that $P=Q[x]$. Hence, \widehat{P} $=S^{-1} P=S^{-1} Q[x]=Q R(x)$.
$\Leftarrow)$: Conversely, suppose that any prime ideal of $R(x)$ is an extension of a prime ideal of R. Let P be a prime ideal of $R[x]$ with $P \subseteq M[x]$ for some maximal ideal M of R. Then $P \subseteq \bigcup_{\alpha \in \Lambda} M_{\alpha}[x]$ and so $P \cap\left(R[x] \backslash \bigcup_{\alpha \in \Lambda} M_{\alpha}[x]\right)=\emptyset$. Hence, $P \cap S=\emptyset$ and then $S^{-1} P$ is a prime ideal of $R(x)$. Thus, by assumption there exists a prime ideal Q of R such that $S^{-1} P=Q R(x)=Q\left(S^{-1} R[x]\right)=S^{-1} Q[x]$. Hence, $P=S^{-1} P \cap R[x]=S^{-1} Q[x] \cap R[x]=Q[x]$ as required.

Two examples of rings satisfying the property $(*)$ can be seen in the following proposition
Proposition 2.2. A zero dimensional ring and a one dimensional Noetherian domain are satisfying the property (*).
Proof. Suppose that R is a zero dimensional ring. Let \widehat{P} be a non zero prime ideal of $R(x)$. Since R is zero dimensional, $R(x)$ is also zero dimensional by [4, Theorem 17.3] and [7, Theorem 7.13]. Hence, \widehat{P} is a maximal ideal of $R(x)$ and so by [4, Theorem 14.1], $\widehat{P}=M R(x)$ for some maximal ideal M of R. Therefore, R satisfies the property (*) by Proposition 2.1. For one dimensional Noetherian domain, one can use [4, Corollary 17.5] to get a similar proof.

Recall that a ring R is called an arithmetical ring if each finitely generated ideal of R is locally principal. Equivalently, a ring R is arithmetical if and only if every ideal of $R(x)$ is of the form $\operatorname{IR}(x)$ for some ideal I of R. It follows that any arithmetical ring satisfies the property ($*$).
Proposition 2.3. Let R be a ring that satisfies the property (*). Then R_{P} satisfies the property $(*)$ for each prime ideal P of R.
Proof. Let P be a prime ideal of R and let \overparen{M} be any prime ideal of $R_{P}(x) \simeq$ $R(x)_{P R(x)}$. Then $\overparen{M}=M_{P R(x)}$ for some prime ideal M of $R(x)$ such that $M \subseteq$ $P R(x)$. Since R satisfies the property $(*), M=Q R(x)$ for some prime ideal Q of R. Hence, $\overparen{M}=Q R(x)_{P R(x)}=Q_{P} R_{P}(x)$ and Q_{P} is a prime ideal of R_{P} since $Q \subseteq P$. So, R_{P} satisfies the property ($*$) by Proposition 2.1.

Let R be a ring and let $X=\operatorname{spec}(R)$ denotes the set of all prime ideals of R. For each subset $L \subseteq R$, we let $V(L)=\{P \in \operatorname{spec}(R): L \subseteq P\}$. Then the collection $\tau=$ $\{V(L): L \subseteq R\}$ satisfies the axioms for closed sets in some topology on X which is called the prime spectral topology on X. Now, if $X=\operatorname{spec}(R)$ with the above topology is Noetherian (the closed subsets of X satisfy the $D C C$), we say that
R has a Noetherian spectrum. Equivalently, a ring R has a Noetherian spectrum if and only if it satisfies the $A C C$ for the radical ideals. If R has a Noetherian spectrum, then there are only finitely many prime ideals that are minimal over any ideal of R, see [8]. In [1], we can see that any Q-ring has a Noetherian spectrum.

Proposition 2.4. Let R be a ring that satisfies the property (*). Then R has a Noetherian spectrum if and only if $R(x)$ has a Noetherian spectrum.

Proof. $\Rightarrow)$: Suppose that R has a Noetherian spectrum. Then by [8, Theorem 2.5], $R[x]$ has a Noetherian spectrum and so the ring of quotients $R(x)$ of $R[x]$ has a Noetherian spectrum.
$\Leftarrow)$: Conversely, suppose that $R(x)$ has a Noetherian spectrum. Let $I_{1} \subseteq I_{2} \subseteq$ $I_{3} \subseteq \ldots$ be an ascending chain of radical ideals of R. The $I_{1} R(x) \subseteq I_{2} R(x) \subseteq$ $I_{3} R(x) \subseteq \ldots$ is an ascending chain of radical ideals of $R(x)$. Indeed, let I be an ideal of R such that $I=\operatorname{rad} I$ and let $P_{1} R(x), P_{2} R(x), \ldots, P_{n} R(x)$ be the set of all minimal prime ideals of $R(x)$ over $I R(x)$. Then clearly, $P_{1}, P_{2}, \ldots, P_{n}$ are the set of all minimal prime ideals of R over I. Hence, by [4, Theorem 14.1], we have $\operatorname{rad}(I R(x))=\bigcap_{i=1}^{n} P_{i} R(x)=\left(\bigcap_{i=1}^{n} P_{i}\right) R(x)=(\operatorname{rad} I) R(x)=I R(x)$. Since $R(x)$ has a Noetherian spectrum, there exists $m \in N$ such that $I_{m} R(x)=I_{m+1} R(x)=\ldots$ Hence, $I_{m}=I_{m+1}=\ldots$ and so R has a Noetherian spectrum.

By using the above proposition, we can prove the following main theorem
Theorem 2.5. Let R be a ring that satisfies the property (*). Then R is a Q-ring if and only if $R(x)$ is a Q-ring.
Proof. \Rightarrow): Suppose that R is a Q-ring. Let \widehat{P} be any non maximal prime ideal of $R(x)$. Since R satisfies the property $(*)$, then $\widehat{P}=P R(x)$ where P is a non maximal prime ideal of R by Proposition 2.1. Since R is a Q-ring, then P is finitely generated and locally principal and hence $P R(x)$ is finitely generated and locally principal by [2, Theorem 2.2]. Since R has a Noetherian spectrum, then $R[x]$ and its ring of quotients $R(x)$ have a Noetherian spectrum. Since also any non maximal prime ideal of $R(x)$ is finitely generated, then $R(x)$ is Laskerian by [3, Corollary 2.3]. Therefore, $R(x)$ is a Q-ring.
$\Leftarrow)$: Suppose that $R(x)$ is a Q-ring. Then $R(x)$ has a Noetherian spectrum and so by Proposition 2.4, R has a Noetherian spectrum. If P is a non maximal prime ideal of R, then $P R(x)$ is a non maximal prime ideal of $R(x)$. So, $P R(x)$ is finitely generated and locally principal and then P is finitely generated and locally principal again by [2, Theorem 2.2]. Thus, R is Laskerian again by [3, Corollary 2.3] and each non maximal prime ideal of R is finitely generated and locally principal. Therefore, R is a Q-ring.

By using Proposition 2.3 and Theorem 2.5, we have
Theorem 2.6. Let R be a ring that satisfies the property (*). Then R is an almost Q-ring if and only if $R(x)$ is so.

Proof. $\Rightarrow)$: Suppose that R is an almost Q-ring. Let $P R(x)$ be a prime ideal of $R(x)$. Then $R(x)_{P R(x)} \simeq R_{P}(x)$. Since R_{P} satisfies the property (*) by Proposition 2.3 and R_{P} is a Q-ring, Then by Theorem $2.5, R_{P}(x)$ is a Q-ring. Hence, $R(x)$ is an almost Q-ring.
$\Leftarrow)$: Suppose that $R(x)$ is an almost Q-ring. Let P be a prime ideal of R. Then $P R(x)$ is a prime ideal of $R(x)$ and so $R(x)_{P R(x)}$ is a Q-ring. Therefore, $R_{P}(x)$ is a Q-ring. Again, since R_{P} satisfies the the property (*) and by using Theorem (2.5), we see that R_{P} is a Q-ring and so R is an almost Q-ring.

Remark 2.7. If a ring R is a zero dimensional ring, then $R(x)$ and $R\langle x\rangle$ are coincide, see (i.e. [4, Theorem 17.11]). Hence, in this case, the following are equivalent
(1) R is a (an almost) Q-ring.
(2) $R(x)$ is a (an almost) Q-ring.
(3) $R\langle x\rangle$ is a (an almost) Q-ring.

Finally, we show that if a ring R satisfies a certain condition, then $R(x)$ is an almost Q-ring if and only if $R\langle x\rangle$ is so. Recall that a ring R is said to be reduced if its nilradical is 0 , the zero ideal of R.

Theorem 2.8. Let R be a reduced one dimensional ring. Then $R(x)$ is an almost Q-ring if and only if $R\langle x\rangle$ is an almost Q-ring.

Proof. $\Leftarrow)$: Suppose that $R\langle x\rangle$ is an almost Q-ring. Since $R(x)$ is a ring of quotients of $R\langle x\rangle$ and clearly the ring of quotients of an almost Q-ring is again an almost Q-ring, then the result follows.
$\Rightarrow)$: Suppose that $R(x)$ is an almost Q-ring. Let \widehat{P} be a prime ideal of $R\langle x\rangle$. Then $\widehat{P}=W^{-1} Q$ where Q is a prime ideal of $R[x]$ such that $Q \cap W=\phi$. Now, $R\langle x\rangle_{\widehat{P}}=\left(W^{-1} R[x]\right)_{W^{-1} Q} \simeq R[x]_{Q}$. Hence, it is enough to show that $R[x]_{Q}$ is a Q-ring for each prime ideal Q of $R[x]$ with $Q \cap W=\emptyset$. Take an arbitrary chain $P_{0} \subsetneq P_{1}$ of prime ideals of R. Then P_{0} is minimal and P_{1} is a maximal ideal of R since $\operatorname{dim} R=1$. We look for the prime ideals in $R[x]$ that contract to P_{0} or P_{1}. First, we have the prime ideals $P_{0}[x]$ and $P_{1}[x]$ for which we see that $R[x]_{P_{i}[x]} \simeq R_{P_{i}}(x)$ is a Q-ring for $i=1,2$.

If Q_{1} is any other prime ideal of $R[x]$ such that $Q_{1} \cap R=P_{1}$, then Q_{1} is a maximal ideal of $R[x]$ since P_{1} is a maximal ideal of $R, P_{1}[x] \subsetneq Q_{1}$ and there is no chain of three distinct prime ideals of $R[x]$ with the same contraction in R, see [7, Corollary 7.12]. By Theorem 28 in [6], Q_{1} contains a monic polynomial and so need not be considered. It remains to consider the prime ideals of $R[x]$ that contract to P_{0}. Let Q_{0} be a prime ideal of $R[x]$ such that $Q_{0} \cap R=P_{0}$. Then $Q_{0} \cap\left(R \backslash P_{0}\right)=\phi$ in $R[x]$ and so $\left(R \backslash P_{0}\right)^{-1} Q_{0}$ is a prime ideal in $\left(R \backslash P_{0}\right)^{-1} R[x]=R_{P_{0}}[x]$. Hence, we have, $R[x]_{Q_{0}} \simeq\left(\left(R \backslash P_{0}\right)^{-1} R[x]\right)_{\left(R \backslash P_{0}\right)^{-1} Q_{0}} \simeq\left(R_{P_{0}}[x]\right)_{\left(R \backslash P_{0}\right)^{-1} Q_{0}}$. Since P_{0} is minimal and R is reduced, then $R_{P_{0}}$ is a field, see [6]. Hence, $R_{P_{0}}[x]$ is a PID and so it is a Q-ring. Thus, $R[x]_{Q_{0}}$ is a ring of quotients of a Q-ring and then it is a Q-ring. Hence, for each prime ideal Q of $R[x]$ such that $Q \cap W=\phi, R[x]_{Q}$ is a Q-ring and it follows that $R\langle x\rangle$ is an almost Q-ring.

References

[1] Anderson, D. D., Mahaney, L. A., Commutative rings in which every ideal is a product of primary ideals, J. Algebra 106 (1987), 528-535.
[2] Anderson, D. D., Anderson, D. F., Markanda, R., The rings $R(x)$ and $R\langle x\rangle$, J. Algebra 95 (1985), 96-115.
[3] Heinzer, W., David, L., The Laskerian property in commutative rings, J. Algebra 72 (1981), 101-114.
[4] Huckaba, J. A., Commutative rings with zero divisors, Marcel Dekker, INC. New York and Basel, 1988.
[5] Jayaram, C., Almost Q-rings, Arch. Math. (Brno) 40 (2004), 249-257.
[6] Kaplansky, I., Commutative Rings, Allyn and Bacon, Boston 1970.
[7] Larsen, M., McCarthy, P., Multiplicative theory of ideals, Academic Press, New York and London 1971.
[8] Ohm, J., Pendleton, R. L., Rings with Noetherian spectrum, Duke Math. J. 35 (1968), 631640.

H. A. Khashan
Department of Mathematics, Al al-Bayt University
Al-Mafraq 130095, Jordan
E-mail: hakhashan@yahoo.com
H. Al-Ezeh
Department of Mathematics, University of Jordan
Amman 11942, Jordan

[^0]: 2000 Mathematics Subject Classification: 13A15.
 Key words and phrases: Q-rings, almost Q-rings, the rings $R(x)$ and $R\langle x\rangle$.
 Received July 10, 2006, revised August 15, 2007.

