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THE JET PROLONGATIONS OF 2-FIBRED MANIFOLDS
AND THE FLOW OPERATOR

Włodzimierz M. Mikulski

Abstract. Let r, s, m, n, q be natural numbers such that s ≥ r. We prove
that any 2-FMm,n,q-natural operator A : T2-proj  TJ(s,r) transforming
2-projectable vector fields V on (m,n, q)-dimensional 2-fibred manifolds Y →
X →M into vector fields A(V ) on the (s, r)-jet prolongation bundle J(s,r)Y
is a constant multiple of the flow operator J (s,r).

All manifolds and maps are assumed to be of class C∞. Manifolds are assumed
to be finite dimensional and without boundaries.

The category of all manifolds and maps is denoted by Mf . The category of all
fibred manifolds (surjective submersions X →M between manifolds) and fibred
maps is denoted by FM. The category of all fibred manifolds with m-dimensional
bases and n-dimensional fibres and their fibred embeddings is denoted by FMm,n.
The category of 2-fibred manifold (pairs of surjective submersions Y → X →M
between manifolds) and their 2-fibred maps is denoted by 2-FM. The category of
all fibred manifolds Y → X →M such that X →M is an FMm,n-object and their
2-fibred maps covering FMm,n-maps is denoted by 2-FMm,n. The category of all
fibred manifolds Y → X →M such that X →M is an FMm,n-object and Y → X
is an FMm+n,q-object and their 2-fibred embeddings is denoted by 2-FMm,n,q.
The standard 2-FMm,n,q-object is denoted by Rm,n,q = (Rm × Rn × Rq →
Rm ×Rn → Rm). The usual coordinates on Rm,n,q are denoted by x1, . . . , xm,
y1, . . . , yn, z1, . . . , zq.

Taking into consideration some idea from [1] one can generalize the concept
of jets as follows. Let r and s be integers such that s ≥ r. Let Y → X → M be
a 2-FMm,n-object. Sections σ1, σ2 : X → Y of Y → X have the same (s, r)-jet
j

(s,r)
x σ1 = j

(s,r)
x σ2 at x ∈ X iff

js−rx

(
Jrσ1 | Xp0(x)

)
= js−rx

(
Jrσ2 | Xp0(x)

)
,

where Jrσi : X → JrY is the r-jet map Jrσi(x) = jrxσi, x ∈ X, and Xp0(x) is the
fibre of X →M through x. Equivalently j(s,r)

x σ1 = j
(s,r)
x σ2 iff (in some and then

in every 2-FMm,n-coordinates) D(α,β)σ1(x) = D(α,β)σ2(x) for all α ∈
(
N∪ {0}

)m
and β ∈

(
N ∪ {0}

)n with |α| ≤ r and |α| + |β| ≤ s, where D(α,β) denotes the
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iterated partial derivative corresponding to (α, β). Thus we have the so called
(s, r)-jets prolongation bundle

J (s,r)Y =
{
j(s,r)
x σ | σ : X → Y is a section of Y → X, x ∈ X

}
.

Given a 2-FMm,n-map f : Y1 → Y2 of two 2-FMm,n-objects covering FMm,n-
-map f : X1 → X2 we have the induced map J (s,r)f : J (s,r)Y1 → J (s,r)Y2 given
by J (s,r)f(j(s,r)

x σ) = j
(s,r)
f(x) (f ◦ σ ◦ f−1), j(s,r)

x σ ∈ J (s,r)Y1. The correspondence
J (s,r) : 2-FMm,n → FM is a (fiber product preserving) bundle functor.

Let Y → X → M be an 2-FMm,n,q-object. A vector field V on Y is called
2-projectable if there exist (unique) vector fields V1 on X and V0 on M such that V
is related with V1 and V1 is related with V0 (with respect to the 2-fibred manifold
projections). Equivalently, the flow ExptV of V is formed by (local) 2-FMm,n,q-
-isomorphisms. Thus we can apply functor J (s,r) to ExptV and obtain new flow
J (s,r)(ExptV) on J (s,r)Y . Consequently we obtain vector field J (s,r)V on J (s,r)Y .
The corresponding 2-FMm,n,q-natural operator J (s,r) : T2-proj  TJ (s,r) is called
the flow operator (of J (s,r)).

The main result of the present note is the following classification theorem.

Theorem 1. Let r, s, m, n, q be natural numbers such that s ≥ r. Any 2-FMm,n,q-
-natural operator A : T2-proj  TJ (s,r) is a constant multiple of the flow operator
J (s,r).

Thus Theorem 1 extends the result from [2] on 2-fibred manifolds. More precisely,
in [2] it is proved that any FMm,n-natural operator A lifting projectable vector
fields V from fibred manifolds Y →M to vector fields A(V ) on JrY is a constant
multiple of the flow operator.

In the proof of Theorem 1 we will use the method from [4] (a Weil algebra
technique). We start with the proof of the following lemma. Let A : T2-proj  TJ (s,r)

be a natural operator in question.

Lemma 1. The natural operator A is determined by the restriction A
(
∂
∂x1

)
|(

J (s,r)(Rm,n,q)
)

(0,0), where (0, 0) ∈ Rm ×Rn.

Proof. The assertion is an immediate consequence of the naturality and regularity
of A and the fact that any 2-projectable vector field which is not (Y →M)-vertical
is related with ∂

∂x1 by an 2-FMm,n,q-map. �

Now we prove

Lemma 2. Let A be the operator. Let π : J (s,r)Y → X be the projection. Then
there exists the unique real number c and the unique π-vertical operator V : T2-proj  
TJ (s,r) with V(0) = 0 such that A = cJ (s,r) + V.

Proof. Define C = Tπ ◦A
(
∂
∂x1

)
:
(
J (s,r)(Rm,n,q)

)
(0,0) → T(0,0)(Rm ×Rn). Using

the invariance of A with respect to 2-FMm,n,q-maps

(x1, . . . , xm, y1, . . . , yn, τz1, . . . , τzq)
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for τ > 0 and putting t→ 0 we get that C
(
j

(s,r)
(0,0)(σ)

)
= C

(
j

(s,r)
(0,0)(0)

)
, where 0 is the

zero section. Then using the invariance of A with respect to

(x1, τx2, . . . , τxm, τy1, . . . , τyn, τz1, . . . , τzq)

for τ > 0 and putting t → 0 we get that C
(
j

(s,r)
(0,0)(0)

)
= c ∂

∂x1 |0 for some c ∈ R.
We put V = A− cJ (s,r). Then V is of vertical type because of Lemma 1. Clearly,
A = cJ (s,r) + V.

It remains to show that V(0) = 0. Clearly, the flow of V(0) is a family of natural
automorphisms J (s,r) → J (s,r). Since the 2-FMm,n,q-orbit of j(s,r)

(0,0)(0) is the whole(
J (s,r)(Rm,n,q)

)
(0,0) (any element j(s,r)

(0,0)σ ∈
(
J (s,r)(Rm,n,q)

)
(0,0) is transformed by

2-FMm,n,q-map (
x, y, z − σ(x, y)

)
into j(s,r)

(0,0)(0)), then any natural automorphism E : J (s,r) → J (s,r) is determined by
E
(
j

(s,r)
(0,0)(0)

)
. Then using the invariance of E with respect to

(τx1, . . . , τxm, τy1, . . . , τyn, τz1, . . . , τzq)

for τ > 0 and putting τ → 0 we get E
(
j

(s,r)
(0,0)(0)

)
= j

(s,r)
(0,0)(0). Then E = id and then

V(0) = 0. �

Define a bundle functor F : Mf → FM by

FN =
(
J (s,r)(Rm ×Rn ×N)

)
(0,0) , Ff =

(
J (s,r)(idRm × idRn ×f)

)
(0,0) .

Lemma 3. The bundle functor F : Mf → FM is product preserving.

Proof. It is clear. �

Let B = FR be the Weil algebra corresponding to F .

Lemma 4. We have B = Dsm+n/B, where Dsm+n = Js(0,0)(Rm+n,R) and B =〈
js(0,0)(x1), . . . , js(0,0)(xm)

〉r+1 is the (r + 1)-power of the ideal
〈
js(0,0)(x1), . . . ,

js(0,0)(xm)
〉
, generated by the elements as indicate.

Proof. It is a simple observation. �

We have the obvious action H : Gsm,n ×B → B,

H
(
js(0,0)ψ, [js(0,0)γ]

)
=
[
js(0,0)(γ ◦ ψ−1)

]
for any FM,m,n-map ψ :

(
Rm×Rn, (0, 0)

)
→
(
Rm×Rn, (0, 0)

)
and γ : Rm+n →

R. This action is by algebra automorphisms.

Lemma 5. For any derivation D ∈ Der(B) we have the implication: if

H
(
js(0,0)(τ id)

)
◦D ◦H

(
js(0,0)(τ−1 id)

)
→ 0 as τ → 0 then D = 0 .

Proof. Let D ∈ Der(B) be such that

H
(
js(0,0)(τ id)

)
◦D ◦H

(
js(0,0)(τ−1 id)

)
→ 0 as τ → 0 .
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For i = 1, . . . ,m and j = 1, . . . , n write D
(
[js(0,0)(xi)]

)
=
∑
aiαβ

[
js(0,0)(xαyβ)

]
and

D
(
[js(0,0)(yj)]

)
=
∑
bjαβ
[
js(0,0)(xαyβ)

]
for some (unique) real numbers aiαβ and bjαβ ,

where the sums are over all α ∈
(
N ∪ {0}

)m and β ∈
(
N ∪ {0}

)n with |α| ≤ r and
|α|+ |β| ≤ s. We have

H
(
js(0,0)(τ id)

)
◦D◦H

(
js(0,0)(τ−1 id)

) (
[js(0,0)(xi)]

)
=
∑
aiαβ

1
τ |α|+|β|−1

[
js(0,0)(xαyβ)

]
.

Then from the assumption on D it follows that aiαβ = 0 if (α, β) 6=
(
(0), (0)

)
.

Similarly, bjαβ = 0 if (α, β) 6=
(
(0), (0)

)
. Then D

(
[js(0,0)(xi)]

)
= ai(0)(0)

[
js(0,0)(1)

]
and

D
(
[js(0,0)(yj)]

)
= bj(0)(0)

[
js(0,0)(1)

]
for i = 1, . . . ,m and j = 1, . . . , n. Then (since[

js(0,0)((xi)r+1)
]

= 0 and D is a differentiation) we have

0 = D
(
[js(0,0)((xi)r+1)]

)
= (r + 1)

[
js(0,0)((xi)r)

]
D
(
[js(0,0)(xi)]

)
= (r + 1)ai(0)(0)

[
js(0,0)((xi)r)

]
.

Then ai(0)(0) = 0 as
[
js(0,0)((xi)r)

]
6= 0. Similarly, bj(0)(0) = 0. Then D = 0 because

the
[
js(0,0)(xi)

]
and [js(0,0)(yj)] generate the algebra B. �

Proof of Theorem 1. Operator V from Lemma 2 defines (by the restriction)
Mfq-natural vector fields Ṽt = V

(
t ∂
∂x1

)
|FN on FN for any t ∈ R. Clearly, V is

determined by Ṽ1. By Lemma 2, Ṽ0 = 0. By [2], Ṽt = op(Dt) for some Dt ∈ Der(B).
Then using the invariance of V with respect to

(τx1, . . . , τxm, τy1, . . . , τyn, z1, . . . , zq)

for τ 6= 0 and putting τ → 0 we obtain that

H
(
js(0,0)(τ id)

)
◦Dt ◦H

(
js(0,0)(τ−1 id)

)
→ 0 as τ → 0 .

Then Dt = 0 because of Lemma 5. Then V = 0, and then A = cJ (s,r) as well. �

Remark 1. There is another (non-equivalent) generalization of jets. Let s ≥ r. Let
Y → X → M be a 2-fibred manifold. By [2], sections σ1, σ2 : X → Y of Y → X
have the same r, s-jets jr,sx σ1 = jr,sx σ2 at x ∈ X iff

jrxσ1 = jrxσ2 and jsx
(
σ1 | Xpo(x)

)
= jsx

(
σ2 | Xpo(x)

)
,

where Xpo(x) is the fiber of X →M through x. Consequently we have the correspon-
ding bundle Jr,sY and the corresponding (fiber product preserving) bundle functor
Jr,s : 2-FMm,n → FM. In [3], we proved that any 2-FMm,n,q-natural operator
A : T2-proj  TJr,s is a constant multiple of the flow operator J r,s corresponding
to Jr,s (we used quite different method than the one in [4] or in the present note).
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