
Časopis pro pěstování matematiky

Ladislav Nebeský
On upper embeddability of complementary graphs

Časopis pro pěstování matematiky, Vol. 108 (1983), No. 2, 214--217

Persistent URL: http://dml.cz/dmlcz/108415

Terms of use:
© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/108415
http://project.dml.cz


Časopis pro pěstování matematiky, roč. 108 (1983). Praha 

ON UPPER EMBEDDABILITY OF COMPLEMENTARY GRAPHS 

LADISLAV NEBESKY, Praha 

(Received April 8, 1982) 

In this note, by a graph we shall mean a finite undirected graph with no loop or 
multiple edge. We shall prove that for every graph G, either G or its complement is 
upper embeddable. 

The study of 2-cell embeddings of connected graphs in closed surfaces belongs to 
very fruitful branches of the graph theory (see books [7] and [10], or also Chapter 5 
in [l] and surveys [6] and [9]). If there exists a 2-cell embedding of a connected 
graph G in the nonorientable closed surface of genus n, then n ^ \E(G)\ — \V{G)\ + 
+ 1, where V(G) and E(G) denote the vertex set of G and the edge set of G, respective
ly. If there exists a 2-cell embedding of a connected graph G in the orientable closed 
surface of genus n, then n ^ [(|F(G)| - |V(G)| + l)/2]. Ringel [8] proved that for 
every connected graph G, theie exists a 2-cell embedding of G in the nonorientable 
closed surface of genus |F(G)| — |V(G)| + 1. That theorem has not a direct analogue 
for orientable closed surfaces. A graph G is said to be upper embeddable if it is con
nected and there exists a 2-cell embedding of G in the orientable closed surface 
ofgenus[(|£(G)|-|V(G)| + l)/2]. 

The following theorem gives two characterizations of upper embeddable graphs. 
Let if be a graph; we denote by c(H) the number of components of H; moreover, 
we denote by b(H) the number of components F of H with the property that |F(F)| = 
s |V(F)| (mod 2). 

Theorem 0. Let G be a connected graph. The following statements are equivalent: 
(1) G is upper embeddable; 

(2) there exists a spanning tree T of G with the property that at most one com

ponent of G — E(T) has an odd number of edges; 

(3) for every A s £(G), b(G - A) + c(G - A) - 2 ^ |A|. 

The equivalence ( l ) o ( 2 ) was proved independently in [2], [3], and [11]. The 
equivalence (2) o (3) was proved in [4]. (Note that Theorem 0 is true even for pseudo-
graphs.) 

In the present note we wish to prove that for every graph G, either G or its com
plement is upper embeddable. We shall first prove three lemmas. 
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Lemma 1. Let G be a connected graph. Assume that there exists A _ E(G) such 
that b(G - A) + c(G - A) - 2 > \A\. Then b(G - A) = 2. 

Proof. Since G is connected, | A | = c(G — A) — I. The desired result follows. 

If G is a graph and v e V(G), then degG v denotes the degree of v in G. 

Lemma 2. Let G be a connected graph with p = 1 vertices. Assume that there 
exists v e V(G) such that degG v = p — 2. Then G is upper embeddable. 

Proof. Assume that G is not upper embeddable. As follows from the equivalence 
(1) o(3), there exists A c E(G) such that b(G - A) + c(G - A) - 2 > |A | . Ac
cording to Lemma 1, b(G — A) = 2. Let F denote the component of G — A with the 
property that v e V(F). Obviously, |A | = |V(G) - V(F)| - 1. Since at least b(G - A) 
components of G — A contain cycles, 

|V(G) - V(F)| - 1 = (c(G - A) - 1) + 2(b(G - /I) - 1) - 1 = 

= b(G - A) + c(G - A) - 2 + (b(G - A) - 2) = 

= b(G - A) + c(G - A) - 2 , 

which is a contradiction. Thus the lemma is proved. 

Let G be a graph. If Ut and U2 are nonempty disjoint subsets of V(G) such that 
V(G) = Uj u U2 and \U^\ = 3 = |U2|, then we shall say that { l / u U2} is a y-parti-
tion of G. If {Ul5 U2} is a y-partition of G, then we denote by E(G9 {Ul9 U2}) the set 
of edges e e E(G) with the property that one of the end-vertices of e belongs to Ul5 

and the other end-vertex belongs to U2. 

Lemma 3. Let G be a connected graph with p = 1 vertices. Then 

(i) if for every y-partition {Ul9 U2} of G, |F(G, {Ul9 U2})\ = 4, then G is upper 

embeddable; 

(ii) if p = 8 and for every y-partition {Ul9 U2} of G, |F(G, {Ul5 U2})| = 2, 
then G is upper embeddable. 

Proof. Assume that G is not upper embeddable. According to the equivalence 
( l ) o ( 3 ) , there exists A £ E(G) such that b(G - A) + c(G - A) - 2 > \A\. As 
follows from Lemma 1, c(G — A) = b(G — A) = 2. Since G is connected, there 
exists A' <= A such that b(G - ^ ' ) = c(G - 4 ' ) and 2(c(G - A') - l) > |-4'|. 
Since b(G — A') = c(G — A')9 every component of G — ^4' contains at least thiee 
vertices. Hence, for every component F of G — A'9 {V(F), V(G) — V(F)} is a y-
partition of G. 

If (i) holds, then |A ' | = 2c(G — A')9 which is a contradiction. If (ii) holds, then 
c(G — A') = 2, and thus |A ' | ^ 2, which is a contradiction, too. Hence, the lemma is 
proved. 
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Remark . The statement (i) of Lemma 3 is an immediate consequence of the fol
lowing theorem which is due to Payan and Xuong [5]: Every cyclically 4-edge con
nected graph is upper embeddable. 

If G is a gr^ph, then we denote by G the complement of G. We shall now prove the 
main result of this note. 

Theorem 1. If G is a graph, then either G or G is upper embeddable. 

Proof. Let G be a graph with p = 1 vertices. According to Theorem 2.5 in [1], 
either G or G is connected. Without loos of generality we shall assume that G is con
nected. 

Assume that G is not upper embeddable. We distinguish two cases: 

Ca$e 1. Assume that G is disconnected and it has a component with at most two 
vertices. Then G contains a vertex of degree = p — 2. According to Lemma 2, G is 
upper embeddable. 

Case 2. Assume that either (a) G is disconnected and every component of G 
contains at least three vertices, or (b) G is connected. It follows from the assumption 
(a) (if G is disconnected) or from Lemma 3 (if G is connected) that there exists a y-
partition [Wl9 W2} of G such that J£(G, [Wl9 W2})\ = 3, and if p = 8, then 
|£(G, {Wl9 W2})\ = 1. We wish to show that G is upper embeddable. On the contrary, 
we shall assume that G is not upper embeddable. Since G is connected, it follows 
from Lemma 3 that there exists a y-partition {Ul9 U2} of G such that 
|£(G, {Ul9 U2})\ = 3, and if p = 8, then |£(G, {Ul9 U2})\ = 1. Denote r = 
= |£(G, {Ul9 U2}) u £(G, {Wl9 W2})\. Since £(G, {Ul9 U2}) n £(G, {Wl9 W2}\ = 0, 
it holds that 

r = 69 and if p = 8 , then r = 2 . 

Denote ptj = \Ut n JVJ for i9j = 1, 2. Obviously, pn + pi2 = 3 = p1} + p2j for 
i,7 = 1, 2. Let v and i/ be arbitrary distinct vertices of G; if either ve Ux n Wi9 

v'eU2nW29 or veU1nW29 v'eU2nWl9 then vv' e £(G, {Ul9 U2}) u 
u £(G, {H^, W2}). Theiefore, 

P11P22 + P12P21 = r. 

Without loss of generality we shall assume that plx = min {p0-; i, j = 1, 2}. 
If P n — 0, then p 1 2 ^ 3 = p2l9 and thus r ^ 9, which is a contradiction. If 

Pn = 2> then r = 8, which is a contradiction, too. Let plx = 1. Then P12 ^ 2 ^ 
_ p21. If either P12 = 3 or p 2 1 = 3, then r ^ 7, which is a contradiction. Let 
p12 = 2 = p21. Then r _̂  5. This implies that p = 9. Thus p22 ^ 4. Therefore 
r _ 8, which is a contradiction. 

This means that G is upper embeddable, which completes the proof. 
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