
Commentationes Mathematicae Universitatis Carolinae

Gerald Beer; Anna Di Concilio
A generalization of boundedly compact metric spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 32 (1991), No. 2, 361--367

Persistent URL: http://dml.cz/dmlcz/116977

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/116977
http://project.dml.cz


Comment.Math.Univ.Carolin. 32,2 (1991)361–367 361

A generalization of boundedly compact metric spaces

Gerald Beer∗, Anna Di Concilio∗∗

Abstract. A metric space 〈X, d〉 is called a UC space provided each continuous function
on X into a metric target space is uniformly continuous. We introduce a class of metric
spaces that play, relative to the boundedly compact metric spaces, the same role that UC
spaces play relative to the compact metric spaces.

Keywords: UC space, boundedly UC space, boundedly compact space, Atsuji space, uni-
form continuity on bounded setbounded sets, topology of uniform convergence on bounded
setbounded sets, Attouch–Wets topology
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1. Introduction.

Many of the basic properties of compact metric spaces actually characterize
a larger class of metric spaces, usually called UC spaces or Atsuji spaces. For
example, a metric space X is a UC space provided any of the following equivalent
conditions hold: (1) for each metric space Y , each continuous function from X to Y
is uniformly continuous; (2) each open cover of X has a Lebesgue number; (3) each
pair of disjoint closed subsets of X lie a positive distance apart. But there are many
other intriguing characterizations, and these spaces have received a great deal of
attention over the past forty years [MP], [At1], [Na], [Le], [Wa], [To], [Ra], [Hu],
[Be1–3], [BHPV]. Recently, UC spaces have been studied in the context of stability
of optimization problems by Revalski and Zhivkov [RZ]. Most of the characteristic
properties of UC spaces are uniform/proximity properties, and it is appropriate to
study them in this more general framework (see, eg., [At2], [DCN]). We will not
work at this level of generality here.
It is natural to ask if there is a class of metric spaces that plays, relative to

boundedly compact metric spaces, a role parallel to that played by the UC spaces
for compact metric spaces. It is the aim of this note to display this class, which we
call the boundedly UC spaces, in various ways.

2. Preliminaries.

Let 〈X, d〉 be a metric space. We denote the nonempty closed subsets of X by
CL(X), and the set of its accumulation points by X ′. Following [Be1], we call
a sequence 〈xn〉 of isolated points in X with distinct terms a paired sequence of
isolated points provided limn→∞ d(x2n−1, x2n) = 0.
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If A is a nonempty subset of X and x ∈ X , we shall write d(x, A) for inf{d(x, a) :
a ∈ A}. The ε-parallel body of A is defined by the formula Sε[A] = {x ∈
X : d(x, A) < ε}. We say that nonempty subsets A1 and A2 of X are uni-
formly separated provided for some ε > 0, we have Sε[A1] ∩ Sε[A2] = ∅; put
differently, the sets A1 and A2 are a positive distance apart. If A1 and A2 are
nonempty subsets of X , we define the excess [CV] of A1 over A2 by the formula
e(A1, A2) = sup{d(x, A2) : x ∈ A1}. Hausdorff distance can then be defined on
CL(X) by the formula Hd(A1, A2) = max{e(A1, A2), e(A2, A1)}.
A metric space 〈X, d〉 is called boundedly compact provided each closed and

bounded subset of X is compact. The following terminology is thus appropriate:

Definition. A metric space 〈X, d〉 is called boundedly UC (or boundedly Atsuji)
provided each closed and bounded subset of X is UC.

3. Characterizations of boundedly UC spaces.

Theorem 3.1. Let 〈X, d〉 be a metric space. The following are equivalent:

(1) X is boundedly UC;
(2) For each metric space Y and for each continuous function f from X to Y ,

f is uniformly continuous on bounded subsets of X ;
(3) Each continuous real valued function on X is uniformly continuous on

bounded subsets of X ;
(4) Each bounded continuous real valued function on X is uniformly continuous
on bounded subsets of X ;

(5) Whenever A and B are disjoint nonempty closed subsets of X with B
bounded, then A and B can be uniformly separated;

(6) Whenever A and B are disjoint nonempty closed and bounded subsets of
X , then A and B can be uniformly separated;

(7) X ′ is boundedly compact, and each bounded paired sequence of isolated

points has a cluster point;

(8) Whenever 〈xn〉 is a bounded sequence in X with limn→∞ d(xn, {xn}
c) = 0,

then 〈xn〉 has a cluster point;
(9) Whenever B is a closed and bounded subset of X and {Vi : i ∈ I} is
a collection of open subsets of X with B ⊂ ∪Vi, then there exists δ > 0 such
that each subset of X of diameter less than δ which meets B lies entirely
within some Vi.

Proof: (1) ⇒ (2). Let f : X → Y be continuous, and let B be a nonempty
bounded subset of X . Since clB is UC, f | clB is uniformly continuous so that
f | B is uniformly continuous.

(2)⇒ (3). This is trivial.
(3)⇒ (4) This is trivial.
(4)⇒ (5). Let f be a Urysohn function separating A and B, say f(A) = 1 and

f(B) = 0. The restriction of f to S1[B] is uniformly continuous; so, there exists
δ < 1 such that if d(x1, x2) < δ and {x1, x2} ⊂ S1[B], then |f(x1) − f(x2)| < 1.
This implies that Sδ/2[B]∩Sδ/2[A] = ∅. Else, if x were in the intersection, we could
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choose b ∈ B and a ∈ A with d(a, b) < δ. Since also a ∈ S1[B], we would have
|f(b)− f(a)| < 1, a contradiction.
(5)⇒ (6). This is trivial.
(6) ⇒ (7). Let B be a closed and bounded subset of X ′. Suppose B is non-

compact. Then there exists a sequence 〈bn〉 of distinct terms in B with no cluster
point. We can find a positive sequence 〈εn〉 such that for each n, εn < 1/n and
{Sεn [bn] : n ∈ Z+} is a disjoint family. For each n choose xn in Sεn [bn] − {bn}.
Then {xn : n ∈ Z+} and {bn : n ∈ Z+} are disjoint closed bounded sets that cannot
be uniformly separated, violating (6). Thus B must be compact. Each bounded se-
quence 〈xn〉 of paired isolated points must have a cluster point, else {x2n : n ∈ Z+}
and {x2n−1 : n ∈ Z+} cannot be uniformly separated.
(7)⇒ (8). Let 〈xn〉 be a bounded sequence as specified in (8). Choose a sequence

〈yn〉 such that for each n, xn 6= yn and lim d(xn, yn) = 0. Let 〈zn〉 be the sequence
x1, y1, x2, y2, . . . . If 〈zn〉 has a constant subsequence, we are done, so we may pass
to the case that all terms are distinct. Now 〈zn〉 will either have a subsequence in
X ′ or a tail that is a sequence of paired isolated points. Thus, (8) follows from (7).
(8) ⇒ (9). Suppose no such number δ exists. For each n ∈ Z+ choose bn ∈ B

and a subset En of X of diameter less than 1/n containing bn such that En sits
in no single member of {Vi : i ∈ I}. Since no En can be a singleton, we see that
limn→∞ d(bn, {bn}c) = 0. By (8), this means that 〈bn〉 has a cluster point b which
lies in B, for B is closed. But for some i ∈ I, we have b ∈ Vi, and since Vi is open,
we conclude that Vi contains En for a sufficiently large integer n, a contradiction.
(9)⇒ (1). Condition (9) guarantees, in particular, that each open cover (in the

relative topology) of a closed and bounded subset B of X has a Lebesgue number.
This implies that B, in its relative topology, is a UC space. �

Evidently, the metric for a boundedly UC space 〈X, d〉 is a complete metric, for
if 〈xn〉 were a Cauchy sequence with distinct terms in X lacking a cluster point,
then the condition (8) in Theorem 3.1 would fail for this sequence. It is interesting
to note that the complete metric spaces themselves are just the totally boundedly
UC spaces, i.e., those spaces for which each closed and totally bounded subset is
UC. To see this, first suppose 〈X, d〉 is complete, and let B be a closed and totally
bounded subset ofX . If A1 and A2 are closed subsets of B that cannot be uniformly
separated, then for each n ∈ Z+, we can find xn ∈ A1 with d(xn, A2) < 1/n. But
by total boundedness of A1, 〈xn〉 has a Cauchy subsequence which by completeness
converges to some point of A1 ∩ A2. Thus, the two sets are not disjoint.
Conversely, suppose 〈X, d〉 is totally boundedly UC but not complete. Let 〈xn〉

be a Cauchy sequence in X with distinct terms without a cluster point. Then
{xn : n ∈ Z+} is a totally bounded subset of X with two disjoint closed subsets
that cannot be uniformly separated, namely {x2n : n ∈ Z+} and {x2n−1 : n ∈ Z+}.
This violates totally boundedly UC-ness of X .
It is well-known that a metrizable space admits a UC metric if and only if its set

of accumulation points X ′ is compact [Ra]. We now show that a metrizable space
admits a boundedly UC metric if and only if X ′ is locally compact and separable.

Theorem 3.2. Let X be a metrizable space. Then X has a compatible metric d
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for which 〈X, d〉 is a boundedly UC space if and only if X ′ is locally compact and

separable.

Proof: If 〈X, d〉 is a boundedly UC space, then by Theorem 3.1, X ′ is boundedly
compact and is thus locally compact and separable. Conversely, if X ′ = ∅, then
the zero-one metric is compatible and X so metrized is actually UC. Otherwise,
X ′ is nonempty, locally compact and separable; so, by a result of Vaughan [Va],
X ′ admits a boundedly compact metric d′. Since X ′ is closed, by a theorem of
Hausdorff [Ha], d′ can be extended to a compatible metric d for X . Following [Be3],
we define another compatible metric ̺ on X as follows:

̺(x, y) =

{

0 if x = y

d(x, y) + max{d(x, X ′), d(y, X ′)} otherwise.

Notice that ̺ restricted to X ′ × X ′ is just d′, and a set is ̺-bounded if and only if
it is d-bounded. We claim that 〈X, ̺〉 is boundedly UC.
To see this, let A and B be disjoint closed and bounded subsets of X . Suppose

these sets are not uniformly separated with respect to ̺. Take sequences 〈an〉 in A
and 〈bn〉 inB such that for each n ∈ Z+, we have ̺(an, bn) < 1/n. Since an 6= bn, we
have ̺(an, X ′) < 1/n for each n, so that, for each n, we have ̺(an, X ′ ∩ clS̺

1 [A]) <

1/n. By the compactness of X ′ ∩ clS̺
1 [A], the sequence 〈an〉 must have a cluster

point, whence 〈bn〉 has the same cluster point. This contradicts A ∩ B = ∅. �

4. Boundedly UC spaces and the Attouch–Wets hyperspace topology.

Connections between UC spaces and the familiar Hausdorff metric hyperspace
topology have been examined in [Mi], [Be1], [BHPV]. Similar connections between
boundedly UC spaces and the weaker Attouch–Wets hyperspace topology [AW],
[AP], [Be5], [ALW], [BDC], [BL1], [Pe], [Ho] are outlined here. Indeed, it is the
interplay between uniform continuity on bounded sets and this topology exhibited
in [BDC] that motivated this note in the first place. Since some arguments are
parallel those in the Hausdorff metric case, we do not give all details.
As the Hausdorff metric topology on CL(X) is the topology of uniform conver-

gence of distance functionals for closed sets, the Attouch–Wets topology τAWd
is the

topology of uniform convergence of distance functionals for closed sets on bounded
subsets of X . One (metrizable) uniformity Ωd for the Attouch–Wets topology τAWd

has as its base all sets of the form

Vd[B; ε] = {(A1, A2) : sup
x∈B

|d(x, A1)− d(x, A2)| < ε},

where B is an arbitrary bounded subset of X , and ε > 0. Another (weaker) com-
patible uniformity Σd has as a base all sets of the form

Ud[B; ε] = {(A1, A2) : A1 ∩ B ⊂ Sε[A2] and A2 ∩ B ⊂ Sε[A1]},

where again B is a bounded subset of X , and ε > 0. For a proof that these two
uniformities determine the same topology, the reader may consult [Be4, Lemma 3.1]
or [AP, Proposition 2.1]. The main result of [BDC] says that compatible metrics d
and ̺ give rise to the same Attouch–Wets topologies if and only if they determine
the same bounded sets and the same set of functions that are uniformly continuous
on bounded sets.
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Theorem 4.1. Let 〈X, d〉 be a metric space, and let B be the family of d-bounded
subsets of X . The following are equivalent:

(1) 〈X, d〉 is boundedly UC;
(2) τAWd

is the finest topology on CL(X) among the Attouch–Wets topologies
determined by compatible metrics ̺ for X that determine the same bounded
sets B;

(3) For each compatible metric ̺ for X determining the same collection of

bounded sets B and for each B ∈ B, A → e̺(B, A) is a τAWd
-continuous

functional on CL(X);
(4) For each compatible metric ̺ for X determining the same collection of

bounded sets B and for each x ∈ X, A → ̺(x, A) is a τAWd
-continuous

functional on CL(X).

Proof: (1)⇒ (2). This is immediate from Theorem 3.1 of [BDC] and Theorem 3.1
above.
(2)⇒ (3). By Theorem 5.4 of [BL2], the supremum of all Attouch–Wets topolo-

gies corresponding to all compatible metrics ̺ that determine the same bounded
subsets as a given metric d is the weakest topology on CL(X) such that each func-
tional A → e̺(B, A) is continuous. Thus, if τAWd

is maximal, it coincides with this
topology.
(3)⇒ (4). ̺(x, A) = e̺({x}, A).
(4)⇒ (1). By Theorem 5.1 of [BL2], the weakest topology τ on CL(X) such that

each functional of the form A → ̺(x, A) is continuous, has as a subbase all sets of
the form

{F ∈ CL(X) : F ∩ V 6= ∅} (V open in X),

{F ∈ CL(X) : F ∩ B = ∅} (B ∈ B).

In particular, given B ∈ B and A a closed subset of X with A ∩ B = ∅, the set
{F ∈ CL(X) : F ∩ B = ∅} contains some τAWd

-neighborhood A of A. In view of
our second presentation of τAWd

as a uniform topology, we may assume A to be of
the form

A = {F ∈ CL(X) : F ∩ B0 ⊂ Sε[A] and A ∩ B0 ⊂ Sε[F ]},

where B0 ∈ B and ε is positive. We claim Sε[A] ∩ B = ∅. If not, take b ∈ B with
d(b, A) < ε. Then A ∪ {b} ∈ A, whereas A∪ {b} /∈ {F ∈ CL(X) : F ∩B = ∅}. This
contradicts the choice of A. Thus, A and B can be uniformly separated, so that
〈X, d〉 is boundedly UC. �

One of the more intriguing characterizations of UC spaces involves function
spaces. Let 〈X, dX 〉 and 〈Y, dY 〉 be metric spaces, and equip X × Y with a met-
ric ̺ compatible with the product uniformity, e.g., the box metric. We may then
speak of the Hausdorff metric topology for CL(X × Y ) in an unambiguous way,
since uniformly equivalent metrics determine the same hyperspace. Identifying el-
ements of the set C(X, Y ) of continuous functions from X to Y with their graphs,
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we may speak of the Hausdorff metric topology τH̺
for C(X, Y ). Now let τu be

the topology of uniform convergence on C(X, Y ). With no assumptions we always
have τu ⊃ τH̺

on C(X, Y ). Equality of the two topologies is characterized as

follows [Be1, Theorem 1]:

Theorem. Let 〈X, dX〉 be a metric space. The following are equivalent:

(1) 〈X, dX 〉 is a UC space;
(2) For all metric spaces Y, τu = τH̺

on C(X, Y );

(3) τu = τH̺
on C(X, R).

For boundedly UC spaces, it is natural to look at the (metrizable) topology
of uniform convergence on bounded sets τub in lieu of the topology of uniform
convergence, and the Attouch–Wets topology τAW̺

in lieu of the Hausdorff metric

topology τH̺
. Assertion (a) of Theorem 4.1 of [BDC] shows that τAW̺

⊂ τub

on C(X, Y ) always, but the example preceding shows that the reverse inclusion
fails even if X is compact and Y = R. To get an analog of the theorem stated
immediately above, we must require boundedness of dY .

Theorem 4.2. Let 〈X, dX〉 be a metric space. The following are equivalent:

(1) 〈X, dX 〉 is a boundedly UC space;
(2) For all bounded metric spaces Y, τub = τAW̺

on C(X, Y );

(3) τub = τAW̺
on C(X, [0, 1]).

Proof: (1)⇒ (2). This follows from assertions (a) and (b) together in Theorem 4.1
of [BDC].
(2)⇒ (3). This is trivial.
(3) ⇒ (1). This is established using the construction in the proof of (c) ⇒ (a)

in Theorem 1 of [Be1], using in turn condition 7 of Theorem 3.1, characterizing
boundedly UC spaces, and the lemma preceding the proof of Theorem 1 of [Be1].

�

We refer the reader to a recent paper of Holá [Ho] for further results on the
space 〈C(X, Y ), τAW̺

〉. We mention in closing that the constructive approximation
of real functions in Hausdorff distance has been a fundamental research area of
the Bulgarian Academy of Sciences over the past 30 years (see, e.g., [Se]). Little
has been done in this area for the relatively new Attouch–Wets convergence, which
seems more appropriate for functions defined on unbounded intervals that are not
periodic.
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