Časopis pro pěstování matematiky

Jan Kučera; Ivo Vrkoč
Note on stability of a control system

Časopis pro pěstování matematiky, Vol. 93 (1968), No. 4, 472--479

Persistent URL: http://dml.cz/dmlcz/117638

Terms of use:

© Institute of Mathematics AS CR, 1968

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

NOTE ON STABILITY OF A CONTROL SYSTEM

Jan Kučera, Ivo Vrkoč, Praha

(Received August 25, 1967)

It is well known (see [2]) that the systems of homogeneous linear ordinary differential equations have following two properties. The uniform asymptotic stability of origin is equivalent to the exponential asymptotic stability and the stability of origin is equivalent to the boundedness of every solution. In this paper we will show that under some assumptions the same can be extended on a control system

$$
\begin{equation*}
\dot{x}=f(x, u), \quad u \in \mathscr{U} \tag{1}
\end{equation*}
$$

Here we mean by \mathscr{U} the set of all measurable functions $u:\langle 0, \infty) \rightarrow U$, where U is a subset of an Euclidean space R^{m}. We use the usual notation denoting a norm, resp. an inner product, in Euclidean space R^{m} by $\|$.$\| , resp. (., .). We say that (1) has$ a solution $x(t)$ if there is a function $u \in \mathscr{U}$ such that $x(t)$ solve the equation $\dot{x}(t)=$ $=f(x(t), u(t))$ in the sense of Carathéodory (see [1]). We will denote such solution by $x(t, u)$.

Let us start with some definitions. We say that zero-solution of (1) is stable if for each $\varepsilon>0$ there is such $\delta>0$ that every solution $x(t, u), u \in \mathscr{U}$, of (1) fulfils the implication $\|x(0, u)\| \leqq \delta \Rightarrow\|x(t, u)\| \leqq \varepsilon$ for every $t>0$. We say that zero-solution of (1) is exponentially asymptotic stable if it exists such $T>0$ that for every $\delta>0$, $u \in \mathscr{U}$ the solution $x(t, u)$ of (1) fulfils the implication

$$
\left\|x\left(t_{0}, u\right)\right\| \leqq \delta \Rightarrow\|x(t, u)\| \leqq \frac{1}{2} \delta \quad \text { for every } \quad t \geqq t_{0}+T
$$

We repeate one result from [3]: Let $U \subset R^{m}$ be compact and $f(x, u): R^{n} \times U \rightarrow$ $\rightarrow R^{n}$ fulfil the following assumptions:

1) f is continuous in (x, u) on $R^{n} \times U$.
2) $f(x, U)=\{f(x, u) ; u \in U\}$ is convex for every $x \in R^{n}$.
3) $f(x, U)$ is upper-semicontinuous on R^{n}.
4) It exists such constant C that for every $x \in R^{n}$ and every $y \in f(x, U)$ it holds $(x, y) \leqq C\left(1+\|x\|^{2}\right)$.

Then for every compact $A \subset R^{n}$ the set of all solutions of (1) starting in A and defined on a finite interval is compact in the topology of the uniform convergence.

Lemma 1. Let $U \subset R^{m}$ be compact and $f(x, u): R^{n} \times U \rightarrow R^{n}$ fulfil the following assumptions:

1) f is continuous in x on R^{n} uniformly on U and continuous in u on U for every fixed $x \in R^{n}$.
2) $f(x, U)$ is convex for every $x \in R^{n}$.
3) f is homogeneous of degree one in x for every $u \in U$.
4) the solution $x(t, u)$ of (1) converges to zero as $t \rightarrow \infty$ for every $u \in \mathscr{U}$ and every initial condition.

Then zero-solution of (1) is stable.
Proof. If zero-solution of (1) is not stable then it exists $\varepsilon>0$ and there are solutions x_{k} of (1) and $t_{k}>0$ such that $\left\|x_{k}(0)\right\|<1 / k,\left\|x_{k}\left(t_{k}\right)\right\|>\varepsilon, k=1,2, \ldots$ For every $k \geqq k_{0}, k_{0}=[1+1 / \varepsilon]$, we can choose $t_{k 1}, t_{k 2} \in\left(0, t_{k}\right\rangle$ such that $\left\|x_{k}\left(t_{k 1}\right)\right\|=1 / k$, $\left\|x_{k}\left(t_{k 2}\right)\right\|=\varepsilon, 1 / k<\left\|x_{k}(t)\right\|<\varepsilon, t \in\left(t_{k 1}, t_{k 2}\right)$. Let us put $T_{k}=t_{k 2}-t_{k 1}, y_{k}(t)=$ $=k . x_{k}\left(t+t_{k 1}\right), k \geqq k_{0}$. Then the functions $y_{k}, k \geqq k_{0}$, solve (1) and satisfy $\left\|y_{k}(0)\right\|=1,\left\|y_{k}\left(T_{k}\right)\right\|=k \varepsilon, 1<\left\|y_{k}(t)\right\|<k \varepsilon, t \in\left(0, T_{k}\right), k \geqq k_{0}$. It holds $\lim _{k \rightarrow \infty} T_{k}=$ $=+\infty$. In fact, if we put $M=\sup \{\|f(x, u)\| ;\|x\| \leqq 1, u \in U\}$, then for every solution x of (1) we have $\mathrm{d}\|x\| / \mathrm{d} t \leqq\|\mathrm{~d} x / \mathrm{d} t\|=\|f(x, u)\| \leqq M\|x\|$. Hence $\|x(t)\| \leqq$ $\leqq\|x(0)\| \exp (M t)$ and at last

$$
\begin{equation*}
k \varepsilon=\left\|y_{k}\left(T_{k}\right)\right\| \leqq \exp \left(M T_{k}\right), \quad k \geqq k_{0} . \tag{2}
\end{equation*}
$$

We see that $y_{k}, k \geqq k_{0}$, together with their first derivatives are uniformly bounded on every finite subinterval of $\langle 0, \infty)$. Therefore there is a subsequence z_{1}, z_{2}, \ldots, which is locally uniformly convergent on $\langle 0, \infty$) to a continuous function z. Evidently $\|z(t)\| \geqq 1$ for every $t \geqq 0$. As f fulfils all assumptions of the mentioned theorem from [3] the function z is a solution of (1). We have got a contradiction and the proof is complete.

Theorem A. Let the assumptions of Lemma 1 are fulfilled. Then zero-solution of the equation (1) is exponentially asymptotic stable.

Proof. We have to find such $T>0$ that for every $\delta>0$ and every solution x of (1) it holds

$$
\begin{equation*}
\left\|x\left(t_{0}\right)\right\| \leqq \delta \Rightarrow\|x(t)\| \leqq \frac{1}{2} \delta, \quad \text { for every } t \geqq t_{0}+T \tag{4}
\end{equation*}
$$

Let δ be fixed. According to lemma 1 zero-solution of (1) is stable and therefore there is such $\eta>0$ that for every solution x of (1) it holds

$$
\begin{equation*}
\|x(t)\| \leqq \eta \Rightarrow\|x(\tau)\| \leqq \frac{1}{2} \delta, \quad \tau \geqq t . \tag{5}
\end{equation*}
$$

Denote by $T(z, u)$, where $\|z\| \leqq \delta, u \in \mathscr{U}$, the minimum of such $\tau \geqq 0$ that $x(0, u)=$ $=z,\|x(\tau, u)\|=\eta$, where $x(t, u)$ is a solution of (1) corresponding to u. Since $\lim _{t \rightarrow \infty} x(t, u)=0$, the set of those τ is nonempty and $T(z, u)<+\infty$ for every z, u.

To prove (4) it suffices to show that $\sup T(z, u)<+\infty$. Let it be not true. Then there are sequences $T_{k} \rightarrow \infty, x_{k}(t), k=1,2, \ldots$, of solutions of (1) such that

$$
\left\|x_{k}(0)\right\| \leqq \delta,\left\|x_{k}(t)\right\|>\eta \quad \text { for } \quad t \in\left\langle 0, T_{k}\right\rangle, \quad k=1,2, \ldots
$$

Similarly as in the proof of Lemma 1 it can be shown that there is a subsequence z_{k}, of $x_{k}, k=1,2, \ldots$, which is uniformly convergent on every finite subinterval of $\langle 0, \infty)$ to a solution z of (1). Furthermore, $\|z(t)\| \geqq \eta$ fo every $t \geqq 0$. We have got a contradiction.

Lemma 2. Let us have functions $y_{k}:\langle 0, \infty) \rightarrow R^{n}, k=0,1, \ldots, s$. Then it holds

$$
\begin{equation*}
\liminf _{\left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right) \rightarrow 0}^{\lim \sup }\left\|y_{0}(t)+\sum_{k=1}^{s} \varepsilon_{k} y_{k}(t)\right\| \geqq \limsup _{t \rightarrow+\infty}\left\|y_{0}(t)\right\| \tag{6}
\end{equation*}
$$

Proof. Let there be such numbers $a_{k}, k=1,2, \ldots, s, a_{s}=1$, that

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty}\left\|\sum_{k=1}^{s} a_{k} y_{k}(t)\right\|<+\infty \tag{7}
\end{equation*}
$$

then

$$
\begin{gathered}
\liminf _{\left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right) \rightarrow 0} \limsup _{t \rightarrow+\infty}\left\|y_{0}(t)+\sum_{k=1}^{s} \varepsilon_{k} y_{k}(t)\right\| \geqq \\
\geqq \liminf _{\left(\varepsilon_{1}, \ldots, \varepsilon_{s}\right) \rightarrow 0} \lim \sup _{t \rightarrow+\infty}\left\|y_{0}+\sum_{k=1}^{s-1}\left(\varepsilon_{k}-a_{k} \varepsilon_{s}\right) y_{k}\right\|-\lim _{\varepsilon_{s} \rightarrow 0} \sup \lim _{t \rightarrow+\infty} \sup \left\|\varepsilon_{s} \sum_{k=1}^{s} a_{k} y_{k}\right\|= \\
=\liminf _{\left(\varepsilon_{1}, \ldots, \varepsilon_{s}-1\right) \rightarrow 0} \limsup _{t \rightarrow+\infty}\left\|y_{0}+\sum_{k=1}^{s-1} \varepsilon_{k} y_{k}\right\| .
\end{gathered}
$$

Thus it suffices to prove (6) under the assumption that for any nontrivial linear combination $\sum_{k=1}^{s} a_{k} y_{k}$ the inequality (7) is not valid. If (6) is not true then it exists a constant $C>0$ and a sequence $\left(\varepsilon_{i 1}, \ldots, \varepsilon_{i s}\right) \rightarrow 0$, as $i \rightarrow \infty$, such that

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty}\left\|y_{0}+\sum_{1}^{s} \varepsilon_{i k} y_{k}\right\|<C \tag{8}
\end{equation*}
$$

We can assume that the matrix

$$
A=\left(\begin{array}{c}
\varepsilon_{11}, \varepsilon_{12}, \ldots, \varepsilon_{1 s} \\
\varepsilon_{21}, \varepsilon_{22}, \ldots . \varepsilon_{2 s} \\
\ldots \ldots \ldots \ldots \\
\ldots \ldots \ldots . \\
\ldots \ldots \ldots .
\end{array}\right),
$$

has at least one regular ($s \times s$) submatrix. Otherwise, if the rank r of the matrix A is less then s, then there is a linearly dependent column of A. Let for example the s-column be a linear combination of remaining columns with coefficients a_{1}, \ldots, a_{s-1}. If we substitute the function y_{k} by $y_{k}+a_{k} y_{s}, k=1,2, \ldots, s-1$, and repeate this procedure $(s-r)$-times we get the former problem with the $((s-r) \times \infty)$ matrix $\left(\varepsilon_{i k}\right)$ of rank $s-r$.

Assuming that rank $A=s$, we can find a regular $(s \times s)$ submatrix

$$
\left(\begin{array}{c}
\varepsilon_{i_{1}}, \\
\ldots
\end{array}, \ldots, \varepsilon_{i_{1} s},\right.
$$

of A. As the rows of A converge to zero with increasing row-index there is a i_{s+1}-row in A such that matrix
is regular. According to (8) it exists $T>0$ such that the functions $y_{0}+\sum_{1}^{s} \varepsilon_{i j k} y_{k}$, $j=1,2, \ldots, s+1$, are bounded on $\langle T,+\infty)$ and, as B is regular, the functions y_{k}, $k=1,2, \ldots, s$, are bounded on $\langle T,+\infty)$, too. We have got a contradiction and Lemma 2 is proved.

Lemma 2 enables us to weaken assumption 4 of Lemma 1 (and consequently also in Theorem A) in the case when the variable x enters linearly the right hand side of equation (1). We show this exactly in

Lemma 3. Let $U \subset R^{m}$ be compact, $V \subset U$, and $F(u): U \rightarrow R^{n^{2}}$ fulfil the following assumptions:

1) F is continuous on U.
2) $F(U)=\{F(u) ; u \in U\}$ is convex.
3) V is dense in U (in Euclidean topology).
4) For every measurable function $u:\langle 0, \infty) \rightarrow V$ and every initial condition the solution $x(t, u)$ of the equation

$$
\begin{equation*}
\dot{x}=F(u) x \tag{9}
\end{equation*}
$$

converges to zero as $t \rightarrow+\infty$.

Then 'every solution $x(t, u), u \in \mathscr{U}$, of the equation (9) converges to zero as $t \rightarrow+\infty$.

Praof. Let such $u \in \mathscr{U}$ and $x_{0} \in R^{n}$ exist that for the corresponding solution $x(t, u)$, $x(0, u)=x_{0}$, of (9) an inequality $\lim \sup \|x(t, u)\|>\sigma>0$, holds. Then there is $t_{1}>1$ such that $\left\|x\left(t_{1}, u\right)\right\|>\sigma$.

Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n} \in R^{n}$ be linearly independent. We denote by y_{q} the solution of (9), corresponding to u, for which $y_{q}\left(t_{1}\right)=\xi_{q}, q=1,2, \ldots, n$. If we put $y_{0}(t)=x(t, u)$, $t \in\langle 0, \infty)$ then according to Lemma 2 there is a neighborhood $G \subset R^{n}$ of $x\left(t_{1}, u\right)$ such that $\limsup _{t \rightarrow \infty}\|z(t)\|>\sigma$ for all solutions $z(t)$ of (9), corresponding to u and fulfilling the initial condition $z\left(t_{1}\right) \in G$.

We can choose a sequence of measurable functions $u_{k}:\left\langle 0, t_{1}\right\rangle \rightarrow V, k=1,2, \ldots$, $u_{k} \rightarrow u$ uniformly on $\left\langle 0, t_{1}\right\rangle$. Then the solutions $x\left(t, u_{k}\right), x\left(0, u_{k}\right)=x(0, u)$, of (9) converge uniformly on $\left\langle 0, t_{1}\right\rangle$ to $x(t, u)$.

In fact, if we denote $M=\sup \{\|F(u)\| ; u \in U\}$, then for $t \in\left\langle 0, t_{1}\right\rangle$ we can estimate

$$
\begin{gathered}
\left\|x\left(t, u_{k}\right)-x(t, u)\right\|=\left\|\int_{0}^{t}\left(F\left(u_{k}(t)\right) x\left(t, u_{k}\right)-F(u(t)) x(t, u)\right) \mathrm{d} t\right\| \leqq \\
\leqq\left\|\int_{0}^{t} F\left(u_{k}(t)\right)\left(x\left(t, u_{k}\right)-x(t, u)\right) \mathrm{d} t\right\|+\| \int_{0}^{t}\left(F\left(u_{k}(t)\right)-F(u(t)) x(t, u) \mathrm{d} t \| \leqq\right. \\
\left.\quad \leqq M \int_{0}^{t} \| x\left(t, u_{k}\right)-x(t, u)\right)\|\mathrm{d} t+\| \int_{0}^{t}\left(F\left(u_{k}(t)\right)-F(u(t))\right) x(t, u) \mathrm{d} t \|, \\
\left\|x\left(t, u_{k}\right)-x(t, u)\right\| \leqq\left(\exp M t_{1}\right) \sup _{\left.t \in<0, t_{1}\right\rangle}\left\|\int_{0}^{t}\left(F\left(u_{k}(t)\right)-F(u(t))\right) x(t, u) \mathrm{d} t\right\| .
\end{gathered}
$$

From the continuity of F immediately follows that

$$
\sup _{t \in\left\langle 0, t_{1}\right\rangle}\left\|\int_{0}^{t}\left(F\left(u_{k}(t)\right)-F(u(t))\right) x(t, u) \mathrm{d} t\right\| \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

Hence, there is an integer k_{0} such that $x\left(t_{1}, u_{k_{0}}\right) \in G$ and $\left\|x\left(t_{1}, u_{k_{0}}\right)\right\|>\sigma$. Now we define

$$
v_{1}(t)=\left\{\begin{array}{ll}
u_{k_{0}}(t), & t \in\left\langle 0, t_{1}\right\rangle \\
u(t), & t \in\left(t_{1}, \infty\right)
\end{array}\right\} .
$$

Then $\lim \sup \left\|x\left(t, v_{1}\right)\right\|>\sigma$, where $x\left(t, v_{1}\right)$ fulfils the initial condition $x\left(0, v_{1}\right)=$ $=x(0, u)$.

Further, we find a number $t_{2}>\max \left(2, t_{1}\right)$ such that $\left\|x\left(t_{2}, v_{1}\right)\right\|>\sigma$ and repeate the previous procedure. Thus we construct sequences t_{k} and $v_{k}:\langle 0, \infty) \rightarrow U$,
$k=1,2, \ldots, t_{k}>\max \left(k, t_{k-1}\right), v_{k}$ mapping $\left\langle 0, t_{k}\right\rangle$ into V, coinciding with v_{k-1} on $\left\langle 0, t_{k-1}\right\rangle$ and with u on $\left(t_{k}, \infty\right)$ so that an inequality $\left\|x\left(t_{k}, v_{k}\right)\right\|>\sigma$ holds for solutions $x\left(t, v_{k}\right)$ of $(9), x\left(0, v_{k}\right)=x(0, u), k=1,2, \ldots$

Let us define $v(t)=v_{k}(t), t \in\left\langle t_{k-1}, t_{k}\right), t_{0}=0, k=1,2, \ldots$ Then $v:\langle 0, \infty) \rightarrow V$ is measurable and inequalitities $\left\|x\left(t_{k}, v\right)\right\|>\sigma, k=1,2, \ldots$, hold for the solution $x(t, v)$ of (9). which fulfils the condition $x(0, v)=x(0, u)$. That contradicts assumption 4.

Theorem B. Let $U \subset R^{m}$ be an arbitrary set and $F: U \rightarrow R^{n^{2}}$ be such matrixfunction that for every $u \in \mathscr{U}$ and every initial condition $x_{0} \in R^{n}$ the solution $x(t, u), x(0, u)=x_{0}$, of equation (9) exists and is bounded on the interval $\langle 0, \infty)$.

Then zero-solution of equation (9) is stable.
Proof. If the solution $x \equiv 0$ of (8) is not stable then there are $u_{k} \in \mathscr{U}, t_{k}>0$, $k=1,2, \ldots$, such that $\left\|x\left(0, u_{k}\right)\right\| \leqq 1, k=1,2, \ldots$, and $\limsup _{k \rightarrow \infty}\left\|x\left(t_{k}, u_{k}\right)\right\|=\infty$. We keep the functions $u_{k}, k=1,2, \ldots$, fixed to the end of the proof.

Denote by P the set of all $x \in R^{n}$ for which there are sequences $\vartheta_{k}, \tau_{k}, k=1,2, \ldots$, such that $x\left(0, u_{k}\left(t+\tau_{k}\right)\right)=x, k=1,2, \ldots$ and $\lim \sup \left\|x\left(\vartheta_{k}, u_{k}\left(t+\tau_{k}\right)\right)\right\|=+\infty$. We prove at first three auxiliary propositions.

Proposition A. $P \neq \emptyset$.
Really, for each $\tau \geqq 0, k=1,2, \ldots$ denote by $Y_{k, \tau}$ the fundamental matrix-solution of (9), where $u(t)=u_{k}(t+\tau), \quad t \in\langle 0, \infty)$, for which $Y_{k, \tau}(\tau)=E$ (unit-matrix). Let e_{i} be the i-column of $E, i=1,2, \ldots, n$. Then we can write $x\left(0, u_{k}\right)=\sum_{i=1}^{n} a_{k i} e_{i}$, $k=1,2, \ldots$ As $\left\|x\left(0, u_{k}\right)\right\| \leqq 1$, we have $\sum_{i=1}^{n}\left|a_{k i}\right| \leqq n, k=1,2, \ldots$ and

$$
\begin{gathered}
\limsup _{k \rightarrow \infty}\left\|x\left(t_{k}, u_{k}\right)\right\|=\limsup _{k \rightarrow \infty}\left\|Y_{k, 0}\left(t_{k}\right) x\left(0, u_{k}\right)\right\|= \\
=\underset{k \rightarrow \infty}{\lim \sup }\left\|\sum_{i=1}^{n} a_{k i} Y_{k, 0}\left(t_{k}\right) e_{i}\right\| \leqq n \sum_{i=1}^{n} \limsup _{k \rightarrow \infty}\left\|Y_{k, 0}\left(t_{k}\right) e_{i}\right\| .
\end{gathered}
$$

That implies $e_{i} \in P$ at least for one of indices $1,2, \ldots, n$. Proposition A is proved.
Now, let P_{1}, resp. P_{2}, be the set of those $e_{i}, i=1,2, \ldots, n$, which do, resp. do not, belong into P. By renumeration let $e_{1}, \ldots, e_{q} \in P_{1}, e_{q+1}, \ldots, e_{n} \in P_{2}$ (P_{2} may be empty). If there exist such $\alpha_{i} \in R, i=1,2, \ldots, q$, that $\sum_{i=1}^{q} \alpha_{i} e_{i} \notin P$, then we take the point e_{r}, where $r=\max \left\{i=1, \ldots, q ; \alpha_{i} \neq 0\right\}$, out of ${ }^{i=1} P_{1}$ and put the point $\sum_{i=1}^{n} \alpha_{i} e_{i}$ into P_{2}.

We repeate this procedure as many times as all notrivial linear combinations of elements from P_{1} belong into P. Let finally, again with a renumeration if necessary,
the points which remain in P_{1} be e_{1}, \ldots, e_{s}. We denote the linear hull of P_{2} by L and choose an orthonormal basis $e_{s+1}^{\prime}, \ldots, e_{n}^{\prime}$ in L.

Proposition B. $L \cup P=R^{n}$.
Evidently $e_{1}, \ldots, e_{s}, e_{s+1}^{\prime}, \ldots, e_{n}^{\prime}$ form a basis of R^{n}. Let us take $x \in R^{n}-L$, then $x=y+z$, where $y=\sum_{i=1}^{s} a_{i} e_{i}, \sum_{i=1}^{s}\left|a_{i}\right| \neq 0, z \in L$. It holds $\sup \left\{\left\|Y_{k, \tau}(t) z\right\| ; t, \tau \geqq 0\right.$, $k=1,2, \ldots\}<+\infty$ and there are sequences $k_{r}, \vartheta_{r}, \tau_{r}, r=1,2, \ldots$, such that $\lim _{r \rightarrow \infty}\left\|Y_{k_{r}, \tau_{r}}\left(\vartheta_{r}\right) y\right\|=+\infty$. Hence

$$
\lim _{r \rightarrow \infty}\left\|Y_{k_{r}, \tau_{r}}\left(\vartheta_{r}\right) x\right\| \geqq \lim _{r \rightarrow \infty}\left\|Y_{k_{r}, \tau_{r}}\left(\vartheta_{r}\right) y\right\|-\sup _{r=1,2, \ldots}\left\|Y_{k_{r}, \tau_{r}}\left(\vartheta_{r}\right) z\right\|=+\infty .
$$

This implies $x \in P$ and Proposition B is proved.
Propesition C. For every $x \in P$ there are sequences $k_{r}, T_{r}, \tau_{r}, r=1,2, \ldots$, such that $x\left(0, u_{k_{r}}\left(t+\tau_{r}\right)\right)=x, \lim _{r \rightarrow \infty}\left\|x\left(T_{r}, u_{k_{r}}\left(t+\tau_{r}\right)\right)\right\|=+\infty$ and $x\left(T_{r}, u_{k_{r}}\left(t+\tau_{r}\right)\right) \in P$ for $r=1,2, \ldots$

To prove that we fix $x \in P$ and take corresponding sequences $\vartheta_{k}, \tau_{k}, k=1,2, \ldots$, which occur in the definition of P. If such sequence $k_{r}, r=1,2, \ldots$, exists that $x\left(\vartheta_{k_{r}}, u_{k_{r}}\left(t+\tau_{k_{r}}\right)\right) \in P, r=1,2, \ldots$, then there is nothing to be proved. Thus we assume the existence of such index k_{0} that for every $k \geqq k_{0}$ we have $x\left(\vartheta_{k}, u_{k}\left(t+\tau_{k}\right)\right) \in$ $\in L$.

Let us put $t_{k}=\inf \left\{\vartheta ; \tau \in\left\langle\vartheta, \vartheta_{k}\right\rangle \Rightarrow x\left(\tau, u\left(t+\tau_{k}\right)\right) \in L\right\}, k \geqq k_{0}$. Evidently $x\left(t_{k}, u_{k}\left(t+\tau_{k}\right)\right) \in L, k \geqq k_{0}$, and we can write $x\left(t_{k}, u_{k}\left(t+\tau_{k}\right)\right)=\sum_{i=s+1}^{n} a_{k i} e_{i}^{\prime}, k \geqq k_{0}$. Denote $M=\sup \left\{\left\|Y_{k, \tau}(t) e_{i}^{\prime}\right\| ; t, \tau \geqq 0, k \geqq k_{0}, i=s+1, \ldots, n\right\}$, then for $k \geqq k_{0}$ we have

$$
\begin{gathered}
\left\|x\left(\vartheta_{k}, u_{k}\left(t+\tau_{k}\right)\right)\right\|=\left\|Y_{k, t_{k}+\tau_{k}}\left(\vartheta_{k}-t_{k}\right) x\left(t_{k}, u_{k}\left(t+\tau_{k}\right)\right)\right\|= \\
=\left\|Y_{k, t_{k}+\tau_{k}}\left(\vartheta_{k}-t_{k}\right) \sum_{i=s+1} a_{k i} e_{i}^{\prime}\right\| \leqq M \sum_{i=s+1}^{n}\left|a_{k i}\right| \leqq n M\left\|x\left(t_{k}, u_{k}\left(t+\tau_{k}\right)\right)\right\| .
\end{gathered}
$$

Hence $\limsup _{k \rightarrow \infty}\left\|x\left(t_{k}, u_{k}\left(t+\tau_{k}\right)\right)\right\|=+\infty$.
Now we can choose $T_{k}<t_{k}, k \geqq k_{0}$, so that

$$
x\left(T_{k}, u_{k}\left(t+\tau_{k}\right)\right) \in P, \quad\left\|x\left(T_{k}, u_{k}\left(t+\tau_{k}\right)\right)\right\|>\left\|x\left(t_{k}, u_{k}\left(t+\tau_{k}\right)\right)\right\|-\frac{1}{k}
$$

Proposition C is proved.
To complete the proof of Theorem B we take $x \in P$. Then according to Proposition C there exist an integer k_{1} and positive numbers T_{1}, τ_{1} such that

$$
x\left(0, u_{k_{1}}\left(t+\tau_{1}\right)\right)=x, \quad x\left(T_{1}, u_{k_{1}}\left(t+\tau_{1}\right)\right) \in P, \quad\left\|x\left(T_{1}, u_{k_{1}}\left(t+\tau_{1}\right)\right)\right\|>1
$$

As $x\left(T_{1}, u_{k_{1}}\left(t+\tau_{1}\right)\right) \in P$ there exist again an integer k_{2} and positive numbers T_{2}, τ_{2} such that

$$
x\left(0, u_{k_{2}}\left(t+\tau_{2}\right)\right)=x\left(T_{1}, u_{k_{1}}\left(t+\tau_{1}\right)\right), \quad x\left(T_{2}, u_{k_{2}}\left(t+\tau_{2}\right)\right) \in P
$$

$\left\|x\left(T_{2}, u_{k_{2}}\left(t+\tau_{2}\right)\right)\right\|>2$. Similarly we construct sequences $k_{r}, T_{r}, \tau_{r}, r=1,2, \ldots$
If we now put $u(t)=u_{k_{r}}\left(t-\sum_{q=1}^{r-1} T_{q}+\tau_{r}\right)$, for $t \in\left\langle\sum_{q=1}^{r-1} T_{q}, \sum_{q=1}^{r} T_{q}\right)$, then the solution $x(t, u)$ of equation (9), fulfilling the initial condition $x(0, u)=x$, is not bounded and the proof is complete.

References

[1] E. A. Coddington, L. Levinson: Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955.
[2] S. Lefschetz: Differential Equations, Geometric Theory, Interscience Publishers, New York 1957.
[3] N. Kikuchi: Control problems of contingent equations, Publ. RIMS, Kyoto, Ser. A, 3 (1967), 85-99.
[4] N. Kikuchi: On some fundamental theorems of contingent equations in connection with the control problems, Publ. RIMS, Kyoto, Ser. A, 3 (1967), 177-201.
[5] L. Cesari: Existence theorems for weak and usual optimal solutions in Lagrange problems. Part I, Trans. Amer. Math. Soc., Vol. 124, No 3, Septemier 1966, 369-412.
[6] T. Ważen'ski: On an optimal problem, Proc. of the Conference Equadiff, Prague September 1962, 229-242.

Authors' address: Praha 1, Žitná 25 (Matematický ústav ČSAV).

