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Časopis pro pěstování matematiky, rol. 101 (1976), Praha 

ON THE DENSITY OF THE DILATIONS AND TRANSLATES 
OF FUNCTION IN Lt 

CHARLES KAHANE, Nashville 

(Received February 28, 1975) 

A well known theorem of WIENER [2] asserts that linear combinations of the trans
lates fc(£ 4- t) of a fixed function k(£) in Lt are dense in Lu provided that the Fourier 
transform of fc never vanishes on the real axis. Suppose that in addition to the 
translates of fc we also allow dilations: 

(1) fc^-^ + f] (<5>0) 

and then ask, for which fc's is the span of this set of functions dense in Lx ? Clearly, 
the span will be dense if fc is the characteristic function of an interval — this just 
amounts to the fact that the class of step functions vanishing outside of a finite 
interval is dense in Lv More generally we have the following result. 

Theorem. The necessary and sufficient condition for the set of functions (l) 
to have a dense span in Lx is that J k(£) d£ 4= 0. 

Proof. The necessity follows from the observation that if J fc(£) d£ = 0, then the 
integral of any linear combination of the functions (1) will also be zero: 

f t «; W K + Q) d* « ( f ajdj) (*({) d£ = 0 . 

Consequently, it would be impossible to approximate any function / in Lx with 
a non-vanishing integral by such combinations of the functions (1). 

To prove the sufficiency we employ a well-known criterion, based on the Hahn-
-Banach theorem, for denseness of the span of a set of elements 5^ in anormed linear 
space X (cf. [1], p. 65); namely that the only bounded linear functional on X vanishing 
for each of the elements of £f be the identically zero functional. By the Riesz repre
sentation theorem, all linear functionals /(f) on L- are known to have the form 1(f) = 
38 $f(%) &(£)&% where g is a bounded measurable function. It will, therefore, be 
sufficient to show that if the relations 
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jk(^jђg(í)dí = 0 

hold for all x and all 8 > 0, then g(£) must be zero almost everywhere. In turn, 
this will be an immediate consequence of the following result regarding approxima
tions of the identity which is of some interest in itself. 

Lemma. Let ksLx and g e L^, then 

(2) Umi f / c f c ^ W ) d £ = l i m U k f ^ W - «)-« = fftof*({)« 

/IOWS on the Lebesgue set of g. 

Proof. We recall the definition of the Lebesgue set of g as the set of all points x 
at which the relation 

И m U \g(x ~ {) - g(x)\ dÇ - 0 
ł »° дJШ<å fl«h 

holds. 
We will first prove (2) under the additional assumption that fc is a bounded 

measurable function vanishing outside of a finite interval, say fc(£) = 0 for |<£| J> a. 
Letting [[/cl̂  denote the essential supremum of fc, a straightforward computation 
then yields 

I1- [k{t 15) g(x - «) d{ - g(x) f fc(^) dd = \\\ f fc(£/<5) [>(x - f) - flf(x)] d£ ^ 
P J J I dUH\<ad 

from which (2) follows immediately in this case. 
Suppose now that ke Lv To reduce this situation to the one just considered, we 

construct a sequence of bounded measurable functions fc(B), n = 1, 2,..., vanishing 
outside of [—n, + n], and which converge to fc in the Lx norm: 

(3) ||fc<"> - k\\t->0 as n -»oo . 

Setting 

y„« ffc(n)(0d£ and y = ffc(£)d£, 

this implies that 

(4) i ^ y as n -^oo , 
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If we now introduce the abbreviations 

. '«*> = H!) Md *>-..*(!)• 
and use the notation (u * v) (x) to denote ju(x — £) v(£) d^ = JM(<̂ ) t?(x — f) d£, 
the convolution of M and v evaluated at x, we may write 

|(*. * g) to - r fl(x)| = |(*?> * 5) (x) - yn g(x)\ + 

+ \([ks-kr]*g)(x)\ + \(yn-y)g(x)\. 

For the middle term we have the estimate 

. Kfo - * n *0) tol = life* - *?1i IklU = \\k - *% M . ; 
hence 

\(ks*g)(x)-yg(x)\£ 

<; \(kr*g)(x) - yng(x)\ + [\\k - k<% + \y„ - r | ] " | t f | . . 

Since each of the fc(n)'s is a bounded measurable function vanishing outside of a finite 
interval, by what has already been proven, the first term on the right t)f the preceding 
estimate tends to zero as S I 0, for x in the Lebesgue set of g. Thus, on the Lebesgue 
set of g 

ES|(fc**0) W - yg(*)\ £ [|fc - fc(1i + |y. - y|] ||g|U ; 

aio 

so that in view of (3) and (4), the desired result (2) then follows by letting n -» 00. 
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