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Časopis pro pěstování matematiky, roč. 104 (1979), Praha 

COMPATIBILITY IN ORTHOMODULAR POSETS 

JIRI BRABEC, Praha 

(Received October 14, 1976) 

1. NOTATION AND INTRODUCTORY REMARKS 

. Troughout this paper the letter P will be reserved for an orthomodular poset 
(cf. [3]), that is, a partially ordered set (with an ordering relation g ) with the greatest 
element 1 and with a mapping J_ : P -> P, a i-* a1 satisfying the conditions: 

(i) a ^ b implies b1 ^ a1; 
(ii) (a 1) 1 = a for all a e P; 

(iii) for all a,beP such that a ^ b1 there exists sup (a, b); 
(iv) sup (a, a1) = 1 for all a e P; 
(v) if a g b, then there exists a unique c such that c = a 1 and sup (a, c) = b; 

in this case we write c = b — a. 

(The condition (v) is the so-called orthomodular law.) 

We say that a, beP are orthogonal and write a ± b if a ^ b1. 
The least upper bound or the greatest lower bound of a family (at)ieJ will be denoted 

by A <*i °* A &i> respectively. We shall use the notation ][] aj for V af iff a,. 1 ty 
iel iel iel iel 

for all ijel, i * ; . 
An orthomodular poset P is said to be a-orthoadditive if the following condition 

is satisfied: 
00 

(vi) if a( 1 aj9 i,j = 1, 2, ...„ i 4= I\ then there exists £ a,. 

If, in addition, P is a lattice or a <r-complete lattice, then P is called an ortho-
modular lattice or an orthomodular c-complete lattice, respectively. 

Remarks. 1) 0 =df l 1 is the least element of P and a A a1 = 0 for all aeP. 

2) ( V at)1 - A at whenever A ^ or V at exists. 
tel iel tel | 6 / 

3) b - a = fc A a1 and (6 - a) JL a. 
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4) The condition (v) implies: 

(1) ^ if a + b -= 1, then b = a1. 

5) It is known (cf. [2]) that every orthomodular lattice with unique complements is 
a Boolean algebra, where a i-> a1 is the (unique) complementation. 

6) The notions "orthomodular subposet" "orthomodular sublattice" etc. of P are 
used in the same sense as in the general theory of abstract algebraic structures. 
In particular, a subposet A c P is a Boolean subalgebra of P if 
(a) a1 € A for all a e A; 
(b) if a, 6 € A9 then there exist a v b9 a A b and a v be A9 a A be A; 
(c) A is a Boolean algebra with respect to the operations (a, b) i-> a v b, (a, b) *-> 

• .-* a A b, a i-> a1. 

2. COMPATIBLE SETS OF P 

Definition. Elements a9beP are said to be compatible (and we write a <-+ b) if 
there are ai9 bl9 u e P such that 

(2) a = ax + u , b = b t + u , at 1 b x . 

It is easy to show that the folowing lemmas hold. 

Lemma 1. / / a «-* b, then there exist a v b, a A b. Moreover, we have a A b =- M, 
a v b = a t + bx + u (cf. [2]). 

Lemma 2. For all a9beP the following conditions are equivalent: 

(a) a+-*b; 
(b) a1 ++b; 
(c) fftere ex/sfs « e P such that u £ a9 u £ b and a — u -Lb. 

Lemma 3. Lef a' b£ a complement of a in P (i.e. a A a' -= 0, a v a' -= l). TAen 
a*->a' iff a' = a1. 

The following theorem (which is due to VARADARAJAN, cf. [4], [5]) holds. 

Theorem 1. Let P be an orthomodular lattice or a o-complete orthomodular lattice. 
Let M c Pbea subset ofpairwise compatible elements. Then there exists a maximal 
subset B => M of pairwise compatible elements and B is a Boolean sublagebra or 
a Bollean o-complete subalgebra of P, respectively, 

It should be noted that the theorem cited above does not remain valid in the case, 
when P is an orthomodular poset or a a-orthoadditive orthomodular poset. This is 
shown by the following example. 
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Example. Let X be the set {1, 2,..., 2n}9 where n is a natural number, n 2> 5. 
Let P be the system of all subsets of X consisting of an even number of elements. 
Assuming that the ordering in P is given by the set-theoretical inclusion, M1 = 
= P - M, it is not difficult to see that P is an orthomodular poset (cf. [1]). Although 
the elements A = {1, 2. 3, 4, 5, 6}, B = {1, 2, 3, 4, 7, 8}, C = {1, 2, 3, 5, 7, 9} are 
pairwise compatible, there is no Boolean subalgebra containing A9 B9 C since 
sup {A9 B9 C} does not exist. We are now going to give a generalization of Varada-
rajan's result cited above. First of all we need a suitable extension of the notion of 
compatibility. We define what we mean by a compatible set in P. 

Definition. Let M be a finite subset of P. A finite family (et)t -g ̂ „ is called an ortho
gonal covering of the set M if (i) et JL ek for all i #= k and (ii) for each a e M there is 
a subfamily (etj) such that a = £ef j. 

A finite set M for which there exists its orthogonal covering is called compaU 
ible in P. 

It is clear that each subset of a compatible set in P is compatible in P, thus we may 
define: A set Q c P is called compatible in P if each finite subset of Q is compatible 
in P. 

The notion of "compatibility just defined is clearly one of those which are of the 
so-called "finite character". Thus Tukey's lemma implies that for every compatible 
set Q c= P there exists a maximal compatible set B in P containing Q. We call every 
maximal compatible set in P a block of P. Our intention is to show that every block 
.B cz P is a Boolean subalgebra of P. 

Remarks. 7) {a9 b} is compatible iff a <-• b. 
n n 

8) Obviously, if {al9..., an} is compatible, then V ai exists. We shall see that A ai 
also exists. <==1 <a=1 

9) The set {A9 B, C} from the previous example is not compatible, although the 
elements A9 B9 C are pairwise compatible. 

10) If P is an orthomodular lattice, then M is compatible in P iff a <-* b for all 
a9beM. 

The last assertion may be proved easily by induction. 

Lemma 4. Let M be a compatible set in P. Then 

1) ae M implies M u {a1} is compatible in P; 
n 

2) al9 ...9aneM implies M u { V at} is compatible in P; 
*~i 

n 

3) al9 ...9aneM implies M u { A at} is compatible in P. 
f * i 
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Proof. We may assume that M is finite and that there exists an orthogonal 
covering (ei)i£izm of M with the smallest m possible. 

s 

1) Let M = {bl9..., br9 a} and a = £ et (possibly with a permutation of indices). 
/ = i 

The remaining elements es+l9..., em are not subelements of a but they are sub-
elements of some elements bj. Let us denote cm+1 = (bx v b2 v ... br v a)1; 
clearly cm+1 ± et for i = 1, 2,..., m. Putting b = cs+1 -f ... -f cm+1, we have 
b ±a and ft v a == cm+1 v em+1 = 1. Hence ft = a1 (see Remark 4) and 
(edizigm+i is an orthogonal covering of {bl9..., ftr, a9 a

1}. 
2) It is clear that every orthogonal covering of M is also an orthogonal covering 

n 

ofMu {>/<*<}• 
i = i 

3) From 1) it follows that M u {al9..., a\} is compatible in P. According to 2) 
n n 

the set M u { V f l | } = M u { ( A « i ) 1 } is also compatible in P. From 1) it 
n n 

follows that the set M u {(( A A.)1)1} = M u { A at} is compatible in P. 
. = i i= i 

Theorem 2. Lef P 6c an orthomodular poset. Then every block B of P is a Boolean 
subalgebra of P. 

Proof. According to Lemma 4, B is closed with respect to finite joins and inter
sections and to the orthocomplementation JL. Therefore B is an orthomodular 
sublattice of P. From Lemma 3 it follows that every element a e B has a unique 
complement a1 in B9 thus (see Remark 5) B is a Boolean subalgebra of P. 

In the remainder of this paper P will be a <7-orthoadditive orthomodular poset. 

Lemma 5. Suppose c, bl9 bl9 ... are arbitrary elements of P and the set 
CO 

{c, bu b29...} is compatible in P. If b = ]T bi9 then c<-+b. 
i = i 

00 

Proof. Clearly bt A C 1 bi A C for i 4-I. We put w = J] (&* A C); obviously 
*--i 

ti <; fr, i! <» c. It holds (c - u)1 = c1 v u ^ c1 v (bt A c) ^ fcf. for all i = 1, 2, 
Hence 6 :£ (c — u)1, i.e. fe ± (c - M) and by Lemma 2, c <-» b. 

Lemma 6. Let c{ ± ci for i # j9 i9j =- 1, 2,.. . , m. Let c( 4-> ft (j = 1, 2,.. . , m). 
T/icri {cj, c2,..., cm, 6} is compatible in P. 

Proof. We can see easily that an orthogonal covering of the set {ci9..., cm, ft} 
m 

is the family («., ...,um, cr - uu...,cm- um, & - £ « , ) , where «, = b A C, 

(i = l ,2, . . . ,m) . 
Lemmas 5,6 imply immediately 
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Lemma 7. Let {cl9 ..., cm9 bl9 ..., bn9...} be compatible in P, c, ± cj9 bt 1 bj 
00 

for i #= I. Then the set {cl9 ..., cm9 £ 6J is compatible in P. 
i = l 

Lemma 8. Let M be a compatible set in P, bt e M, i = 1, 2, ..., b; ± by/or i 4= I-
00 

Then fhe set M u { J] b j is compatible in P. 
i = i 

Proof. It follows from the preceding lemmas and from Remark 10. 

Theorem 3. Let P be a a-orthoadditive orthomodular poset. Then every block 
B c P is a o-complete Boolean subalgebra of P. 

Proof. B is a Boolean subalgebra by Theorem 2. According to Lemma 8, B is 
closed with respect to countable joins of mutually disjoint elements. Thus B is o-
complete, which completes the proof. 
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