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Časopis pro p stování matematìky, roč. 105 (1980), Praha 

VARIATIONS OF DISCRETE ANALOGUES 
OF WIRTINGER'S INEQUALITY 

JARMILA NOVOTNA, Praha 

(Received December 20, 1977) 

Discrete analogues of Wirtinger's inequality have been already studied by dif
ferent methods of proofs. The basic theorem of the topic dealt with in our article is 
Theorem 1. Its first proof was published 1950 by I. J. SCHOENBERG (see [5]). The 
author uses the complex finite Fourier series and proves Theorem 1 for complex 
numbers. 

In [3], published 1955, K. FAN, O. TAUSSKY and J. TODD discuss discrete analogues 
of several integral inequalities. The main tool they use to prove them are the proper
ties of Hermitian matrices which are known from the calculus of variations (see [3], 
p. 77). In this way the authors prove the first three theorems of those which will be 
dealt with in this article (Theorems 1, 2 and 3). In [3], each theorem is proved 
separately. 

In 1957, H. D. BLOCK in [2] proved the complex case of Theorem 1 using the pro
perties of operators in the ^-dimensional unitary space. 

O. SHISHA published 1973 another proof of Theorem 1 (see [6]). He uses geometrical 
tools based on Fenchel's theorem for a spherical curve. 

In our paper we prove the basic Theorem 1 using the real trigonometric polynomials 
(see [l], pp. 13 — 20). The method is analogous to that used by I. J. Schoenberg. As 
compared with the results achieved as far, we obtain also a sharpening of Theorem 1 
(Theorem 5). We show that Theorems 2 and 3 follow immediately from Theorem 1. 
Theorem 4 is a discrete analogue of the integral inequality as proved in [4], p. 595. 
We derive its sharpening (Theorem 6). Theorems 4, 5, 6 are mentioned neither in [2] 
nor in [3], [5], [6]. 

First we give Theorems 1 through 6. Then we derive-Theorems 2, 3 and 4 from the 
basic one — Theorem 1 — and Theorem 6 from Theorem 5. The proofs of Theorems 
1 and 5 are given afterwards. 

In the last part of the paper, a geometrical application — the proof of the iso-
perimetric inequality for some polygons — via Theorems 1 and 5 is given. 
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1. LIST OF THEOREMS 

Theorem 1. Let x 1 ? . . . , xn be n real numbers such that 

(1.1) i>, = o. 
i = i 

Let us define xn+1 = xx. Then 

(1.2) i ( x i - x I . + 1 ) 2 = 4 s i n ^ i ^ . 
i=i n i=i 

The equality in (1.2) holds if and only if 

/^ -»\ A 2TH . 2ui . 
(1.3) xf = A cos 1- B sin — , i = 1, ..., n , A, B = const. 

n n 

Theorem 2. / / x l f ..., x„ are n real numbers and xx = 0, then 

(1-4) ' "__>. - * j + 1 ) 2 ^ 4 s i n 2 — 1 — f *? • 
i=i 2(2n — 1) i=2 

The equality in (1.4) ho/ds if and only if 

(1.5) x f =_4s in^ -~-, i = l, . . . , n , _4 = const. 
2n - 1 

Theorem 3. / / x l 5 . . . , xn are n real numbers, then 

(1-6) E ( * . - * i + i ) 2 = 4 s i n * - i L - f x 2 p 

i=o 2(n + 1) i=o 

where x0 = x n + 1 = 0. The equality in (1.6) holds if and only if 

(1.7) xt = A sin , i = 1, . . . , n , _4 = const. 
n + 1 

Theorem 4. Lef x l5 ...,xnbe n real numbers satisfying (1.1). Then 

(1.8) "ifr-x.+i^-Msin'f I*2. 
i=i 2n i=i 

The equality in (1.8) holds if and only if 

/* ^\ A (2i ~ 1)^ 
(1.9) Xj = A cos ^ , i = l , . . . , n , A = const. 

2n 
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Theorem 5 (sharpening of Theorem 1 for n even). Letn = 2m, n ^ 4, let x l 5 . . . , x„ 
be n real numbers satisfying (1.1). Let us define x„+i = xi9 i -= 1, . . . , m. Th^n 

(1.10) E ( x . - x . + 1 ) 2 _ : 
i= l 

^ (sin2 ?* - sin2 *) t (Xi + x i + m)2 + 4 sin2 * £ x2 . 
\ n n/ i=i n i-=i 

T/ie equality in (1.10) fro/ds i/ and onIy i/ 

/< *<\ ^ 2rci __ . 2rci _ 4rci . 4rci 
(1.11) x, = .4 cos h -B sin — + C cos — + D sin — , 

n n n n 
i = 1 , . . . , n , 4̂, JB, C, D = const. 

Remark. 1. For n ^ 4 the inequality sin2 (2n:/n) - sin2 (rc/n) > 0 holds. 

2. Choosing a number \i9 0 < /* < sin2 (2rc/n) - sin2 (rc/n), we can derive in the 
same way as in the proof of (1.10) (see the proof of (3.9)) that the following inequality 
holds: 

(1.10') t (*i - **+i)2 - A* Z (*i + *i+-)a + 4 sin2 5 Z *? > 
i= i i= i n i = i 

where the numbers xl9 ..., xw satisfy the assumptions of Theorem 5. The equality 
in (1.10') holds if and only if xf satisfy (1.3). 

Theorem 6 (sharpening of Theorem 4). Let xl9 ..., xn be n real numbers satis
fying (1.1), n ^ 2. Then 

(1.12) Z ^ i - X i + i ) 2 ^ 
i = i 

£ (sin2 5 - sin2 f ) £ (x, + xB+1_,)2 + 4 sin2 f t * ? -
\ n 2ny i=i 2n i=i 

The equality in (1.12) /w/ds i/and 0n/>> 1/ 

(1.13) x . - ^ A c o s ^ ^ ^ ^ + J g c o s ^ ^ 1 ^ , i = l , . . . , n , 
2n n 

Al, B = const. 

2. APPLICATION OF THE BASIC THEOREMS 

Now it will be shown how to derive Theorem 2 from Theorem 1. Let yl9..., j>2<2»-1> 
be 2(2n — 1) real numbers defined as follows: 
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(2.1) yk = 

Xjç , fc = 1, . . . , n , 

^2n-fc+i > k = n + 1, . . . , 2n — 1 , 
~~~xk+l-2n > fc = 2П, . .., ЗП — 1 , 

- x 4 n _ л , fc = Зn, ..., 2(2n - 1) . 

2 ( 2 n - l ) 

Since ]T yfc = 0, we can, putting y4„_! = yl5 apply the results of Theorem 1 to 
i = l 

(2.1). As x x = 0 , the following equalities hold: 

2(2n-l) n 2(2/1-1) n - 1 

I y2 = 4Ex2, x (^- f t + 1 ) 2 =4E(x j -x i + 1 ) 2 . 
fc=l i = 2 fc=l i = l 

Hence, (1.4) holds. The equality will hold for (1.5), since yt = 0 in the new computa
tion. 

In an analogous way Theorems 3 and 4 can be derived from Theorem 1. We shall 
show, only schematically, how to define the numbers {yk}. 
For Theorem 3: 

(2.2) 0, x l 5 x 2 , . . . , xn, 0, — xl9 —x 2 , . . . , — xB . 

For Theorem 4: 

yz.jj xl9 x 2, •.., xn , xn, ..., x 2 , x1 . 

Theorem 6, a sharpening of Theorem 4, can be derived from Theorem 5 via (2.3). 
Here, nx = 2m. 

Remark. Theorem 2 can be derived from Theorem 3 when the numbers {y*}fc=f1} 

are defined as follows (schematically written): 

X2, X3, ..., xn , x n ,. . ., x 2 , 

y0 = y2»-l = * 1 = 0 . 

3. P R O O F S O F T H E BASIC T H E O R E M S 

In [ l ] , p. 13-20, W. BLASCHKE has defined trigonometric polynomials. Let 
zl9..., zn be n numbers. First we assume n odd, n = 2m + 1. In [1] it is shown that 
we can choose such numbers £0, £l9..., £m, <!;*,..., <!;* that the following equalities 
hold: 

(3.1) zp = f0 + £ (£kcosfcp— + £*sinfcP— ) , p = 1, . . . , n9 

fc=i \ n n J 

(3.2) 1 i - ^ = ̂  + ; mi + e,2), 
n p = i 2fc=i 

(3.3) i _ (z, - z,+.)2 = 2 £ (# + tf n sin2 fc ̂  . "P "P* — 
l í p = l fc=l 
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Let now n be even, n = 2m. We can choose numbers c0, cl9..., cm, c*,..., c*^t in 
an analogous way, but now 

(3.1') 
m" l ( , 2TC * . . 2TC\ 2TI 

2P = co + L ( c* c o s ^P ^ ck s i n ^P — ) + cm cos mp — , p = 1, ..., n 
V / , 2K » . , 2JI\ 

= co + L I ct cos fcp 1- c* sin kp — ] + cm> 
*=i \ n n) 

Inserting 
(3.4) £0 = c 0 , _ 4 = c t , # = <£, fc = l , . . . , m - 1, 

, { - = V(-)«-. E = °. 
the equalities (3.2) and (3.3) will hold, too. 

n 

It can be easily shown that if £ zp = 0, then 
P=I 

(3.5) £0 = 0. 

The proof of Theorem 1 is now very simple. Using (3.2), (3.3) and (3.5) for xl9... 
..., xn9 we conclude that (1.2) will hold, provided 

(3.6) s i n 2 — ^ s i n 2 - , fc = 1, . . . ,m, 
n n 

is satisfied. (3.6) is true, since 0 = knjn = rc/2, fc == 1, ..., m. For x e <0,7t/2> the 
function sin x is growing. The equality in (1.2) holds if and only if £)i = £* = 0, 
i = 2,.. . , m, £l5 <!;* are arbitrary, i.e. if and only if (1.3) is satisfied. 

To prove Theorem 5 we shall use (3.2), (3.3) (with (3.4)) and (3.5). 
The equality 

(3.7) x( + xi+m = £ if* cos ki — + cos fc(i + m) — + 
k=i i L n n J 

+ {jf sin fci — + sin k(i + m) — I 

implies by virtue of (3.2) and (3.5) that 

(3.8) -t(xl + xi+nf = 1 f ( « + St2) (l + cos /cm**Y = 
n i=i 2 k = i \ n / 

-i l i(« + «ra)[i + ( -w . 
2 *=i 

(1.10) will hold if the inequality 
(sin2 * - sin2 2.) 5 f (tf + «•-) [1 + (-1)*]- + 
\ _ n n / 2 . = i 
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+ 2» sin2 î £ (Єk + íП _ 2n Y. (Й + # 2 ) sin2 fc -І 
Пfc=l k = l П 

is fulfilled, i.e. 

(3.9) t (£ + H2) {sin2 k - - sin2 * - i ( sin2 ^ - sin2 % + ( - 1 ) T j ^ O . 
k=i ( n n 4 \ n n/ J 

Let us denote 

Qk = sin2 k sin: 

n 
__i(W^-sin2*W(-ť/T-
n 4 \ n n/ 

In case of fc odd, 
• 2 1 n - 2K ^ n 

QҺ = sin fc sin - ^ 0 
n n 

(see (3.6)) with the equality holding only for fc = 1. In case of fc even, 

• 2 i K • 2 2ft 

oj, = sin fc sin — 
n n 

and (3.6) implies again Qk = 0. Here the equality holds only for fc = 2. The ine
quality (1.10) with the equality condition (1.11) is proved. 

Remark. The inequality (1.10') follows immediately from the proof of (1.10) 
given above. The form of the numbers Qk in this case is 

Qk = sin2 fc sin2 - = 0 for k odd , 

Qk = sin2 k sin2 \i > 0 for k even . 
n n 

Now0fc > Ofork > 1,QX = 0. The equality condition (1.3) for (1.10') is an immediate 
consequence of this fact. 

4. GEOMETRICAL APPLICATION 

Let P = At ... An denote an equilateral closed n-gon in E2 of area F and peri
meter L. In [1], p. 13—20, the inequality 

(4.1) L2
 = 4 n t g - F 

n 

is proved on the basis of trigonometric polynomials. The equality in (4.1) holds if 
and only if P is a regular n-gon. 
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(4.1) can be derived from Theorem 1. Let us choose a cartesian coordinate system 
S = {0 , x, y} in E2 with 0 being the centroid of P. Let Ax = [xi9 j^J, i = 1, . . . , n, 
in S. Let us denote An+1 = Ax. Then the equalities 

n n 

Z X i = = 0 ' E^i = 0 , X n + 1 -=X l 5 yn+i = y! 
i = l i = l 

hold and the assumptions of Theorem 1 for the numbers { x j , {yt} are fulfilled. 
For P the following relations hold: 

(4.2) --h(xi+1-xiy + (yi+1-yiy2, 
n i=i 

(4.3) F = |i £ ( x ^ . - y.xi+1)| = |i i [(*. + xi+1) (>•. - yi+1) + 
i = l i = l 

+ (yi + yi+l)(*i+l - * | ) ] | -
Using (4.3) we can write 

(4.4) 8 t g - F = 
n 

= 2tg- ZKxi + xi+i)(+yi + yi+0 + (yi + yi+i)(+*i+i + *.)] = 
n i = i 

= I ( + J , T ̂ ,+i)2 + tg2^ i(Xl + Xi+1y + 
i=i n i=i 

+ Z(±*i+i +" *02 + tg2- Z>< + >-,+i)
2 = 

i=i n i=i 

= i[(xi-xi+1y + (yl-yi+1y] + 
i = l 

+ tg2-Z{[4x2 - (*, + xi+Ay] + \Ay] - (yt - yl+1)
2]} = 

n i=i 

= Z {(l - tg2 5) [(x. - xi+1)2 + (yt - yi+iy]} + 

+ 4tg2* i(xl + y2
t). 

n i=i 

Now, using (1.2), (4.4) and (4.2), we derive the following inequality: 

(4.5) 8 t g - F = 

n 

= Z A - tg2 5 + - M [(*, - x,+1)
2 + (yt - yi+iy] - 2 --. 

i=i n 2 re I n 
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(4.5) is the inequality (4.1). The equality condition (the regularity of P) follows from 
(1.3) and the equality conditions in (4.4). 

Using (1.10'), we can derive a sharpening of (4.1) for n even. Let n = 2m, n = 4. 
In the coordinate system S let ut be defined as follows: 

u] = (x{ + xi+m)2 + (y{ + yi+m)2 , 

where xn+i = xh yn+i = yh i = 1,..., m. Then using (1.10') for 

1 . -, n 
u = - sinz -

4 n 
and (4.4) we obtain the inequality 

(4.6) 4 n t g - F + - t g 2 - £ u 2
 = L2 

n 8 n i=i 

with the equality holding only for the case of a regular n-gon. 
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