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Časopís pro pěstování matematiky, roč. 106 (1981), Praha 

COMPLEMENTS OF CONGRUENCES IN AN &-GROUP 

FRANTI§EK SIK, Brno 

(Received June 15, 1979) 

1. In the present note we are concerned with the problem of the existence of com
plements of congruences in an O-group. The notion of a congruence in a universal 
algebra was introduced in [1] I, where the reader may find a basic information on the 
object (also see [4—6]). A congruence in an algebra G is a stable symmetric and tran
sitive binary relation in G. Symmetric and transitive binary relations in the set G 
(= partitions in G) form a complete lattice, denoted by P(G), with respect to the in
clusion; congruences in the algebra G also form a complete lattice X(G), which is 
a closed A -subsemilattice of P(G). We shall deal with congruences in an O-group G 
which are relative complements of a congruence C e X(G) in a given interval [A, B], 
A _ C 5̂  B being congruences in G. We shall consider a complement in the lattice 
P(G) — the socalled P-complement, as well as in the lattice X(G), called the X-
complement (Definition 1.1). In an analogous way we distinguish a Dedekind P-
complement and a Dedekind X-komplement (Definition 2.1). Criteria for the exis
tence of a relative P-complement are given in 1.5, 1.6 and 1.7. In Theorem 2.7 we 
show that no congruence is a Dedeking P-complement of a congruence C in \A, B], 
A < C <B. 

Let us recall the notation and some results that are needed. Let A be a sym
metric and transitive binary relation (ST-relation) in a set G. For x e G let A(x) = 
= {yeG: yAx} and \JA = U{* e G : A(x)}. If A(x) =f= 0 then A(x) is said to be 
a block of A and [JA its domain. The set of all blocks of an ST-relation in G is called 
a partition in G. We use the same notation for both the ST-relation and this parti
tion, because there is a 1 — 1 correspondence between the set of all ST-relations in G 
and the set of all partitions in G, as is well known. We shall also find it useful to con
sider, if need be, the partitions in G as ST-relations and vice versa. If G is an O-group 
then U-4 is an O-subgroup of G and A(0) is an ideal of \}A. If {Aa} £ X(G) and B = 
= V Aa, then [JB is the O-subgroup <U(U^a)> generated in G by the set \J(\JAa) 

aeK a <x 

and B(0) = «U4.(0)»uB, the ideal generated in \JB by the set \JAjp) and A = 

= [)AJA(0) (see 1.4 and 1.6 [1]). 

In what follows G means an £2-group. 
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1.1 Definition. Let A <£ C = B be congruences in G. D e «̂ *(G) is said to be a rela
tive P-complement or a relative ^-complement of C in the interval [A, JB], when D 
is a relative complement of C in [A, B] with respect to the lattice P(G) (i.e. to the 
lattice operations v p , A P ) or to the lattice ,JC(G) i(e. to v ^ , A ^ ) , respectively. 

1.2 Lemma. Let % 93, £ be Q-subgroups of G. If 91 u 93 = £ fhen fhe sets 91 
and -8 are comparable by inclusion. 

See [2] Lemma 2.2. 

1.3 Let A = B be congruences in G. The partition A has evidently a unique 
relative P-complement in [A, £ ] , namely B. Analogously for B. Hence by studying 
the relative complementarity we may suppose, without loss of generality, A < C < B. 

1.4 Lemma, (see [1] 2.8.2). Let A < C < B be congruences in G and let D e tf(G) 
be a relative P-complement of C in [A, B\. Then D is a relative tf-complement of C 
in [A9 B] and it holds 

(1) J3(0) = C(0) + D(0) = D(0) + C(0), A(0) = C(0) n D(0) 

(2) C(0) + [)A = [)B9 [)C = [)B9 [)D = [)A or 

D(0) + [)A = [)B9 [)C = [)A9 [)D = [)B 

(3) C(0) = A(0) o D(0) = B(0) o C = [)BJA(0) o D = [)A\B(0) 

(4) C(0) = J5(0) <=> D(0) = A(0) o C = U^/#(0) o D = U ^ ( 0 ) . 

Proof. D is a relative Jf-complement of C in [A9 B] because 

(*) C A ^ D = C A P D = A and B = C v ^ D = C A P D = J5 . 

(1) By [1] 2.8.2 we have 

(**) [)C = [)A and U-?> = U-5 or U<? = U ^ and [)D = U-4 . 

Suppose the first case of (**) occurs. By [2] 1.3 it holds 

C v P D(0) = [C(0) + [)Cr\ D(0)] u [UD n C(0) + D(0)] = 

= [C(0) + [)An D(0)] u [[)B n C(0) + D(0)] = C(0) + D(0). 

The order of summands in the square brackets may be changed. It follows 

B(0) = C v P D(0) = C(0) + D(0) = D(0) + C(0). 

The equality A(0) = C(0) n D(0) is evident. 
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(2) By [2] 1.6 and (**) we have 

xeUD\(D(0) + \JCn{JD) = JB\(D(0) + \JA) => C vPD(x) = 

= x + D(0) => B(x) = x + B(0) = x + D(0). 

If D(0) + J A * \JB then B(0) = D(0), hence C(0) c D(0). By (1) C(0) = C(0) n 
n D(0) = A(0), hence C = A, a contradiction. Supposing the other case of (**) 
occurs we obtain the first condition of (2). 
(3) Suppose C(0) = .A(O). If the first possibility of (**) holds then C = A, a contra
diction. If the second possibility is true then C = JBJA(0). By (1) B(0) = C(0) + 
+ D(0) = A(0) + D(0) = D(0), hence by (**) D = JAJB(0). Now, by (1) C(0) = 
= C(0) n B(0) = C(0) n D(0) = .A(O). 

We get (4) from (3) by interchanging C and D. 

1.5 Theorem. Let A < C < B, D e [A, B\ be congruences in G. Then D is a rela
tive P-complement of C in [A, B] iff the following conditions (l) and (2) hold: 

(1), UC = \JA and [JD = JB or JC = U^ and \JD = \JA 

(2) C(0) + U-4 = \JC, D(0) + {JA = [JD, C(0) n D(0) = A(0) and 

C(0) + D(0) = B(0). 

Proof. Let 
(a) C have D e Jf(G) as its relative P-complement in [A, B], 
By [1] 2.8 it holds 

(a) C(0) + U-4 = []C or (b) 5(0) = C(0). 

Because D has C e «^(G) for its relative P-complement in [A, B"] we have 

(a') D(0) + U-4 = JD or (b') B(0) = D(0). 

By 1.4(2) we have 

(a") C(0) + Û 4 = \JB, \JC = U^- and Û > = U^. 

(b)" D(0) + Û 4 = \JB, \JC = U^- and JD = U^. 

The same Lemma implies 

(c) C(0) n D(0) = A(0) and C(0) + D(0) = B(0) = D(0) + C(0). 

It follows that one of the 8 possibilities a A a' A a" to b A b' A b" is true. We 
investigate each of them as follows. 
(a A a' A a") A C => (2) and the second condition of (1) (a A b' A a") A c. From 
(b') and (c) it follows that C(0) = ,4(0) and hence by (a) C = (C(0) + U^)M(0) = 
= (A(0) + \JA)JA(0) = A, a contradiction b A a' A a" implies C = {JBfB(0) = B9 

a contradiction, b A b' A a" implies C = \JBJB(0) = B, a contradiction. 
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The remaining 4 possibilities are obtained from the above by interchanging C 
and D. Thus it is proved that (a) => (1) and (2). 

Conversely, let (4) and (2) be true. Suppose that the first condition of (1) holds. 
We shall show C v#D = C v P D. Using Lemma 1.6 [2] we obtain (in virtue of the 
fact that [JC n \JD = [)A by (1)) 

U C v P D(x) = U [ C v P D(0) + x] 2 U [C(0) + x] = C(0) + [)A = [)C. 
xevA xeuA xeuA 

Similarly 
U C v P D(x) 2 D(0) + [)A = [)D. 

Thus the blocks C v P D(x) for xe[)A cover the set UC u [)D = U# u [)A = UB. 
So they exhaust all blocks of the partition C v P D. Further 

B(0) 2 C V , D(0) = «C(0), D(0)»<v,CfUi» 3 C(0) + D(0) = B(0), 
thus 

C v*. Z)(0) = C(0) + D(0) = B(0). 
Finally 

C v ^ D(0) 2 C v P D(0) 2 U [C(0) + x] = C(0) + D(0) = C v ^ Z>(0), 
xeD(O) 

so C v*. 2)(0) = C vP D(0). By [2] 1.3, if xe[)C n[)D = [)A then 

C v P D(x) = C v P D(0) + x = C v ^ Z)(0) + x = C v ^ D(x), 

so C vP D = C v ^ D. From the above it is also clear that C vP D = C v# D = 
= \JBJB(0) = B. Further, it holds evidently 

C APD = C A^D = [)Cn [JDlC(0) n D(0) = U^M(O) = -4, 

which completes the proof of Theorem. 

1.6 Theorem. Let A < C < B be congruences in G and let D e Jf(G) be a relative 
X-complement of C in [A, B]. Then D is a relative P-complement of C in [A, B] 
iff 
(1) C(0) + [)A = UC andjor D(0) + [JA = [)D. 

Proof. Let D be a relative X-complement of C in [A, B] and let (1) be true. If 
we prove C vP D = C v# D then D will be a relative P-complement of C in [A., B] 
(because C A P D = C A*. D). But this follows from [2] 2.5 since l̂ # C + B 
implies C || £>. 

Now, we give a proof of the stronger version of the converse implication (with 
"and" in (1)). Let D e tf(G) be a relative P-complement (and hence also a relative 
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X-complement) of C in [A, B]. Then [)Cn[)D = [)A and [)C u [)D = [)B. 
It follows either [)A = [)C n[)D = [)D (hence [)C = [)B)ox[)A = [)C n[)D = 
= [)C (and hence [)D = U#). Now, let C(0) + [)A * UC. By [2] 1.6, if x e 
€ UC\(C(0) + [)A) = UC\(C(0) + UC n U-9) then x + C(0) = C v P D(x) = 
= C v ^ D(x) = x + B(0), hence C(0) = B(0). If U-4 = UC then C(0) + [)A = 
= C(0) + UC = UC, a contradiction. If U# = UC then C = U-9/#(0) = B, 
a contradiction. The case D(0) + [)A + [)D is symmetric. Hence the stronger 
version of (l) follows. 

(The weaker version of the converse implication (with "or" in (1)) follows im
mediately from 1.4.) 

1.7 Theorem. Lei* A < C < B and D e [A, B] be congruences in G. Then D is 
a relative F'-complement of C in [A, B] iff the following identities hold 

(1) C A D = A, 

(2) C(0) + [)A = [)B or D(0) + [)A = \)B, 

(3) C(0) + UC n D(0) = J5(0) or D(0) + [)Dn C(0) = B(0). 

Proof. Necessity, (l) is evident and (2) follows immediately from 1.5. 
(3) By 1.4, D is a relative /^-complement of C in [A, B], hence by [2] 1.3 

B(0) = C v 3 r D ( 0 ) = C v P D(0) = [C(0) + UC n D(0)] u [D(0) + [)D n C(0)] . 

Both members on the right are iQ-subgroups, thus by 1.2 one of them is a subset 
of the other, i.e. 

either B(0) = C(0) + UC n D(0) or J3(0) = D(0) + [)D n C(0). 

Sufficiency will be proved similarly as that of 1.5. Let the conditions (1), (2) and 
(3) be fulfilled. We shall prove Cv^D = CvPD = B. 

In virtue o f U C n U # = U-4it follows from [2] 1.6 that 

[) CvP D(x) = U [C vP D(0) + x] =2 U [C(0) + x] = C(0) + [)A. 
xeuA xeuA xeuA 

Similarly 
U C vPD(x)^ D(0) + [)A. 

xeuA 

One of these sets is equal to [)B. Therefore the blocks C v P D(x) for x e [)A cover 
the set U^ a nd thus exhaust all blocks of the partition C vP D. Finally, [2] 1.3 
implies for x e [)C n [)D = [)A 

.8(0) + x 2 C v# D(x) 2 C v P D(x) = 

= [C(0) + UC n D(0)] u [D(0) + [)Dn C(0)] 2 B(0) + x, 
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thus B(0) + x = C v# D(x) = C vP D(x)9 i.e. C vPD = C v#D = U-3/B(0) == 

== B9 which completes the proof of Theorem. 

2.1 Definition. Let A £ C ^ JB be elements of a lattice S. An element D e [A9 B"] 
is called a Dedekind complement of C in [A9 B] if (2a) £ = C v (D A E) for every 
C = F = B, and (2b) F = D A (C V F) for every yl = F = D. 

A Dedekind complement of C in [̂ 4, B] is a relative complement of C in [A, B] 
since (2a) for F = B implies B = C v (D A B) = C v D, and (2b) for F = .4 
implies A = D A (C v A) = D A C. 

Note that C = _4 or C = B has exactly one Dedekind complement D in [A9 B], 
namely D = B or D = .A, respectively. 

2.2 Let A9 B, C, D be congruences in an algebra G. There are two types of the 
Dedekind complement. 

D is called a Dedekind P-complement of C in [A, B] or a Dedekind X-comple-
ment of C in [̂ 4, B] if D is a Dedekind complement of C in [A9 B] referred to the 
lattice S = P(G) or S = Jf (G), respectively. 

2.3 Definition. Let C and D be elements of a lattice S. We say that (C, D) is a modu
lar pair (in S) and we write (C, D) M, when 

D A (C v F) = (D A C) v F for every F <L D. 

Dually, we say that (C, D) is a dual modular pair (in S) and we write (C, D) M*, 
when 

D v (C A F) = (D v C) A F for every D ^ E. 

See [3] Def. 1.1. 
By [3] 1.4, Definition 2.3 can be reformulated as follows: 

2.4 Lemma. (C, D) M iff D A (C V F) = F for every C A D = F g D 
(which means (C, D) M in the /attiee [C A D, C v D]); 

(C, D) M* QT D v (C A E) = E for every D^ESC v D 

(which means (C, D) M* in the lattice [C A D, C V D]). 

2.5 Lemma. Lei* _4 g C ^ B fee elements of a lattice S. An element D e [A9 B] 
is a Dedekind complement of C in [A9 B] iff 

(2a') (D, C) M*, i.e. C v (D A £) = (C v D) A E for every C g £, 

(2b') (C, D) M, i.e. D A (C v F) = (D A C) v F for every F S D. 

Proof follows from 2.4. The condition (2a), Def. 1.1, is equivalent to (2a') and (2b) 
is equivalent to (2b'). 
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2.6 Note. From 2.6 it follows that the relation "to be a Dedekind complement 
in [A, £ ] " is symmetric, i.e. 

if D is a Dedekind complement of C in [A, B] then 

C is a Dedekind complement of D in \A9 B] . 

2.7 Theorem. Let A < C < D be congruences in G. Then no congruence in G 
is a Dedekind P-complement of C in \A9 B\. 

Proof. Let D e tf(G) be a Dedekind P-complement of C in [A, B\ Then D is 
a relative P-complement of C [A, B\ and thus by 1.4 

(Q) (l) UC = U-4 and [)D = UB or (2) UC = U* and [)D = U^ 

and simultaneously 

(3) C(0) n D(0) = ,4(0) and C(0) + D(0) = B(0). 

By 2.5, D is a Dedekind P-complement of C in [A, 5] iff (2a') and (2b') are fulfilled, 
which is equivalent by [l] 2.2 and 2.3.1 to the simultaneous validity of the following 
conditions (R) and (S): 

(R) (a) D(0) s UC or (b) C(0) £ D(0), 

(S) (a) D(0) n UC £ C(0) n [)D or (p) D(0) n UC 2 C(0) n [)D. 

The statement R A S is equivalent to one of the following four statements a A a 
to b A p: 

(a A a = ) D(0)c= C(0), 

(a A p = ) UC => D(0) => C(0) n [)D9 

(b A a = ) D(0) n UC £ c(0) £ £>(0), 

(b A p =) D(°) 2 C(0). 

If we use either the condition (1) or (2) of (Q) we obtain a A P A (1 v 2) => either 
U-4 => D(0) 3 C(0) or D(0) 2 C(0) n U-4, 
b A a A (1 v 2) => either D(0) n U-4 <-= C(0) £ Z)(0) or D(0) = C(0). If we use in 
addition the condition (3) of (Q) we obtain a A a A 3 => C(0) = B(0) since C(0) = 
= D(0) + C(0) = B(0). It follows that .4(0) = C(0) n D(0) = D(0)9 so either C = 
= [)AJB(0)&ndD = UB/-4(0)(Q1), or C = [)BJB(0) = B by (Q2), a contradiction, 
a A p A 1 A 3 => C(0) = ,4(0) for A(0) = D(0) n C(0) = C(0). It follows by (Ql) 
that C = \JAjA(0) = .4, a contradiction. 
a A P A 2 A 3=>A(0) = C(0)n.D(0)2 C(0) n U-4 (=5-4(0)). It follows that 
A(0) = C(0) n U-4. Moreover, we have UC = [)B and [)D = U-4. 
b A a A 1 A 3 => C(0) = .A(0) since ,4(0) = .D(0) n C(0) = C(0). It follows by (Ql) 
that C = U^M(°) = -4, a contradiction. 
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b A a A 2 A 3 => B(0) = C(0) + D(0) = C(0). It follows that C = {JBJB(0) = By 

a contradiction. 
b A P A 3 => A.(0)*= C(0) because of A(0) = C(0) n D(0) = C(0). Hence either 
C = A by (Ql), a contradiction, or C = U#/-4(0) and D = (JAJB(0) by (Q2) and 1A 

Let us review the conclusions obtained up to now. We have proved that either C = 
= (JA\B(0) and D = (JBJA(0) or C = (JBJA(0) and D = U-4/JB(0) or (a A P A 
A 2 A 3) A(0) = C(0) n U-4, (JC = U# and U# = U-4. 

We can easily verify that D = U -9/̂ 4(0) is a Dedekind P-complement of C = 
= U-4/JB(0) only if either U-4 = (JB or A(0) = B(0). If (JA * U# and A(0) =f= B(0) 
then the set U-3\U-4 contains two different blocks of the partition D = U#/-4(0)* 
We choose E such that some of its blocks meets these blocks of D. Then (2a) cannot 
be fulfilled. It follows either U 4̂ = (JB or ,4(0) = B(0). 

By symmetry, the same result is obtained if C = (JBJA(0) and D = \JAJB(0). 
Now, if U-4 = U-B then C = JB and if A(0) = JB(0) then C = A, a contradiction 

in both cases. 
The remaining case is a A p A 2 A 3, 

(*) A(0) = C(0) n(JA9 (JC = U# and U# = U-4 . 

(This condition implies a A p, so (*) is a necessary and sufficient condition for some 
D € $f(G) to be a Dedekind P-complement of C in [A, JB]. But we shall show that 
the condition (*) also leads to a contradiction.) 

The congruence D is uniquely determined. In fact, since any Dedekind P-com
plement D e jf(G) of C in [A, JB] is a relative P-complement of C in [A, JB], we 
have by 1.4 that JB(0) = C(0) -f D(O). Further, it holds 

(**) [c(°) + D(°)l n U-4 = C(0) n U-4 + D(0) n U-4 . 

The inclusion 2 is evident. Let us prove the converse inclusion. For an element a 
on the left it holds a = c + d e (J A for a suitable c € C(0) and d s D(0). Then 
c G Û 4 - d e U l̂ + (JD = U# = U-4 (by (*)), thus c e C(0) n U-4 and hence 
a = c -f de C(0) n U-4 + -0(0) n U-4. Hence the inclusion follows. By (*) and (**) 
we obtain the null-block D(0) of the partition D as follows: B(0) n\JA = [C(0) + 
+ D(0)] n U-4 = C(0)n U-4 + D(0)n (JA == A(0) + D(0)n \JD = ,4(0) + D(0) = 
= D(0). Thus D = (JAJB(0) n U-4. 

By 2.6, the congruence C is a Dedekind P-complement of D in [A, JB]. As proved 
above, C is uniquely determined and equal to (JAJB(0) n U-4. Then A = C A Z> 
implies JB(0) n U-4 = -4(0). Hence C = U-4/-4(0) = A, a contradiction. This com
pletes the proof of of Theorem. 
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