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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

NONOSCILLATORY SOLUTIONS OF n-th ORDER NONLINEAR 
DIFFERENTIAL EQUATION 

JOZEF ROVDER, Bratislava 

(Received March 24, 1980) 

Nonoscillatory solutions of the linear differential equation 

y(n) + p(x) y = 0 

were studied in the paper [1], The present paper extends those results to the nonlinear 
differential equation 

(E) /n) ± (~l)nf(x9 y, / , . . . , y("-1}) = 0 . 

Throughout the whole paper we suppose that the function f(x9 w0, ul9..., u,.-^ 
is continuous and of one sign on the region 

D: a = x < co , — co < ux < oo , i = 0, 1, ..., n — 1 , 

and for every point (c0, cl9..., cn-^) =)= (0, 0,..., 0) the function f(x9 c0, cl9..., crt-.!) 
does not identically equal zero in any subinterval of the interval [a, oo). 

A solution y(x) of (E) is said to be nonoscillatory on [a, oo) if there exists a number 
b = a such that y(x) 4= 0 on [b9 oo). By (E+) or (E") we denote equation (E) with 
the sign + or —, respectively. 

PRELIMINARY RESULTS 

Let q(x) be a continuous function on [a, co) such that 

(1) 0 < q(x) ^ x on [a9 oo) and lim q(x) = co . 
JC->OO 

Let us define the following sets of nonoscillatory solution of (E): Let S 0 be the set 
of bounded nonoscillatory solutions of (E), let Sk9 k = 1, 2,..., n — 1, be the set 
of nonoscillatory solutions y(x) of (E) with the properties 

(2) lim -MOL > K a n d H m - ^ = 0 , 
v J q^f'1 *-oo q(xf x->oo 
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and let Sn be the set of nonoscillatory solutions y(x) of (E) such that 

(3) " lim J M . > K 
x-+oo q\x) 

for a positive constant K. 

Lemma 1. Suppose y(x) e Cn[b, oo), >(x) ^ 0 on [b, oo), 

(4) Hm ilfl = 0 
q(x)r X-+00 

fore an integer r, 1 :g r ^ n — 1, and v(n)(x) =1=0 on anv subinterval of [b, oo). 

If y(n) ^ 0 on [b, oc), ?hen 

(-1)* + 1 >(w"^(x) > 0 on [b, oo) 

for fc = 1, 2,..., n — r, and also for k = n — r + 1 if n — r is even. If y{n)

 = 0 
on [b, oc), /hen 

(-1)*/»-*>(JC) > 0 on [b, oc) 

for fc =• 1, 2,..., n — r, and also for k = n — r-rlifn — ris odd. 

Proof. Consider the case yM ^ 0. We need to prove y{n~l) < 0 on [b, oo). 
If >(n~1:)(a) ^ 0 for some a ^ b, then y{Jt~1)(x) > K for a positive constant K on 
an interval [/?, oo), /? > a. However, this implies that >(x) > K^""1 on [j8l9 oo) 
for some ^ > /? and Kx > 0 and also 

lim -J-*--^ Ж . > 0 . 
x-*oo Л 

On the other hand, 

l i m ZW _ ] i m >M. <?M ^ lim ]&.*-*-» = 0, 
x-oo *" 1 x-oo g ( x ) r X* X x-oo q(x)r 

which is a contradiction. Thus >'(n_1)(x) < 0 on [b, oo). If > ( n _ 2 ,(a) ^ 0 for some 
a ^ &, then >(x) -* — oo, contradicting the inequality y(x) ^ 0, and so y(n~2)(x) > 0 
on [b, oo). Repeating the above arguments we complete the proof. 

Lemma 2. Suppose y(x) e Cn[b, oo), y(x) is bounded and y{n)(x) =# 0 on any sub-
interval of [b, oo). 

If yW = 0on [b, oo), then 

(-l)*+i/"-*>(.*) > 0 on [b,co) 

for fc =- 1, 2,.,., n — 1. 
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If /») = 0 on [b, GO), then 

(-l)*y»-*)(jc)>0 OH [b, oo) 

for fc — 1, 2,..., /i — 1 

The proof is easy and will be omitted. (It also follows from the proof of Theorem 1 
in [2].) 

Lemma 3. Lei* y(x) be a solution of (E). Then 

(5) /-*>(x) = >-<-*>(c) + Kk(c) + Kk(x) + 

T ( _ 1 ) " ( _ 1 ) k _ 1 JkTiji J / ' 1 ' * 5 ' *>• - ' 3'(n-1,(s))ds 

holds for x ^ c ^ a and 1 < fc ;g H, where 

fc-1 

C-iV+1 

i! 
ад = - 1 1 (--y+l ^ *У"-*+ч*) • 

J = I j . 

Proof. Let v(x) be a solution of (E). Integrating twice over [c, x] yields 

y--)(x). = y-2)(c) + / - » * - y-^oo'c + 

+ (-1)" PWI /(s, j<s),.... /-"(s)) ds . 

Changing the order of integration we get 

(6) / - 2 ) ( x ) = y-->(c) + /'-^(c) x - >•<--'(-) c + 

+ (-l)"x f7(s,Xs),...,/-J)(s))ds ± (-1)" fV(s,><s),...,y-1>(s))ds. 

Substituting 

y.-«(x) = ^- i)( c ) + (_i)» f/(s,j<s),...,y-1)(s))ds 

into (6) we obtain 

y- 2>(x) = / - 2 ) ( c ) + x/- 1 ) (x) - c>- l-"(c) + 

+ ( - l ) f ( - l ) [V(s,.v(s),...,/-1>(s))ds, 

i.e. Lemma 3 holds for fe = 2. If we repeat the above argument we obtain that Lemma 
3 holds for 1 < fc < n - 1. 
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MAIN RESULTS 

Theorem 1. Let a function fix, u0,..., un-^) have the following properties: 

(Hj) u0f(x,u0, ...,*/„_!) >= 0 ; 

(H2) if <x(x) € Cn[a, oo) and lim a(x) = L, 0 < L < oo, then 
JC-*OO 

sgn OL(X) J xn~ \f(x, a(x), a '(x),. . . , a(w" J)(x)) dx = oo . 

Then (i) S0 = 0 for fhe equation (E+), i.e. every hounded solution of (E+) is 
o5ciZ/ai*orj. 

(ii) If y(x) is a solution of (E ) and y(x) e 50 , then lim y(x) = 0. 
:c-+oo 

Proof, (i) From Lemma 3 it follows that every solution of (E+) satisfies the 
equation 

(7) y(x) = y(c) + Kn(c) + Kn(x) + —±— ("5- 1 f(s, y(s),..., / - »(s)) ds . 
(n ~ 1)! Jc 

The proof is by contradiction. Suppose 5 0 =t= 0, i.e. there exists a bounded non-
oscillatory solution y(x). Let >!(x) > 0, let n be even. Then y(n) = — f(x, y , . . . 
..., y{n~1}) ^ 0 and Lemma 2 implies that the sum in (7) is positive, therefore 

(8) y(x) = y(c) + Kn(c) + — i — ('*-* f(s, y(s),..., / - 1 \s)) ds . 
(n - 1)! Jc 

From Lemma 2 it follows that yf(x) > 0, therefore y(x) is increasing. Since y(x) is 
bounded, lim y(x) exists and is positive. Hence, by the assumption (H2), the right-

hand side diverges to 00 which contradicts the boundedness of y(x). When y(x) < 0, 
or n is odd, the proof is similar, 

(ii) Let y(x) be a solution of (E~), y(x) e 5 0 and lim y(x) = c + 0. If y(x) > 0, 

then, by Lemma 2 and Lemma 3, it satisfies the inequality 

y(x) = j(c) + Kn(c) - - J — f V - l f(s, y(s),..., v("~ ̂ (5)) d5 . 
(" - l ) U c 

The right-hand side tends to —00, while the left-hand side is bounded, which is 
a contradiction. 

The proofs of the other cases are similar. 
Let 5 = 5 0 u 5 2 u ... u Sn if n is even and 5 = 5 0 u 5 2 u ... u 5„_ t if n is 

odd for equation (E+). 
For equation (E~) let 5 = Sx u 5 3 u ... u Sn if n is odd, and 5 = 5X u 5 3 u ... 

. . . u 5,,^! if n is even. 
The following theorem generalizes Theorem 1. 
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Theorem 2. Suppose f(x9 u09..., u„_i) has the properties 

(hj) there exists a continuous function p(x) ^ 0 on [a9 oo) such that 

sgn{u0} ./(^«o»--->"i.-i) = P(*)K| for all (x9 u0, ..., u„_,) e D , 

(h2) gO*)*"1 P(x)dx = oo . 

Then 5 = 0. 

Proof. Consider equation (E+) and n even, i.e. consider the equation y{n) + 
+ f(x, y, . . . , /""1 J) = 0. Suppose on the contrary that 5 =j= 0. Let y(x) e 5, >>(x) 
eventually positive. If (hx), (h2) hold, then (H-J, (H2) hold as well and therefore 
50 = 0. Now we show that Sn = 0. If y(x) e 5„, then 

lim y(*' >K>0 
^ooq( .x)""1 

and so y(x) > K q(x)n~1 on an interval [b, oo), b > a. Since f(x9 y(x),..., y{n~ 1](x)) ^ 
^ 0, then yin)(x) S' 0 and y{n-1)(x) > 0 on [a, oo). It follows from (hA) that 

/ (* , y(*), •. -, y(n" ' '(*)) = yW X*) > K <?(*)""' K*) 

on [b, oo). Consequently, 

/ - i )( jc) = /n-v(c) - !f(s,><s),...,y--1^))ds ^ 

= /»-D( C ) _ K fV_1(s)K5)ds • 
The last integral diverges to — oo which contradicts y{n~1}(x) > 0. Hence Sn = 0. 
Now suppose that 5r ={= 0, r = 2, 4,.. . , n — 2, and let y(x)e Sr. It follows from 
Lemma 1 that 

(9) (-1)*+1 y{n~k)(x) > 0 for k = 1, 2,. . . , n - r, /i - r + 1 . 

We apply Lemma 3 to >>(*) and obtain for k = n — r + 1, 

(10) / ' - " ( x ) = > > < - » + Kn.r+1(c) + K„_,+1(x) -

- 7—---- fV-V(s,y(s) , . . . , / ' -1 )(s))d_. 

It follows from (9) that _.__,.+t(x) is negative and hence 

y«-lXx)Z/'-»(c) + Kn_r+1(c)-

- 7 - ^ — ( V ' / ( - . Ks), • • •• / " " "(s)) ds • 
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Since y(x) e Sr9 it follows from (1), (2) and (h,) that 

4- r / (5 f y(s)9..., y(w-1}(5)) _ q(s)»-'. p(s) . K . a(s)'"1 , 

and therefore 

}«-»(x) _ /-"(c) + Kn.r+l(c) - —*— fq(sr1 p(s) ds . 

The right-hand side diverges to -co , while the left-hand side is, by (9), positive. 
This contradiction proves that Sr = 0 for r = 2, 4,.. . , n — 2 as well. 

If y(x) is eventually negative then (hx) implies that f(x, y(x)9..., y(n_1)(x)) ^ 0, 
so j ( w ) ^ 0. Then — y _ 0, ( —y)(w) _ 0. By applying Lemma 1 we obtain 
( — l)fc v(""k)(x) > 0 for k =- 1, 2,..., n — r, n — r + 1. Further, by a similar method 
as above We obtain a contradiction. Proofs for the other cases are similar. 

From the definition of Sk it is evident that St n Sj = 0, i 4= f i,j = 0, 1,..., n9 

except for S0 n Sj which consists of a bounded solution j(x), such that lim y(x) = 
JC-*OO 

= M =}= 0. However, if (Hj , (H2) are satisfied, then by Theorem 1 every nonoscilla-
tory solution of (E) either is unbounded or approaches zero, i.e. S0 n Sx is empty. 

Let S' = S 1 u S 3 u . . . u Sn.1 if n is even and Sf = Sx u S3 u ... u Sn if « is 
odd for equation (E+). For equation (E~) let S' = S0 u S2 u ... u S,.-! if n is odd 
and S' = S0 u S2 u ... u Sn if n is even. 

Theorem 3. Let the conditions (h j and (h2) be satisfied. Let the condition 

(h3): If y(x) is a nonoscillatory solution of (E), then 

lim 1—-—--1 exists (fiinite or equal to oo) for fc = 0, 1,...,«— 1 
JC-OO q(x)k 

be satisfied. Then every nonoscillatory solution belongs to S\ 

Proof. If the conditions (hj), (h2) are satisfied, then by Theorem 2 the set S is 
empty. Therefore it is sufficient to prove that the sets S0, Sl9..., Sn form a partition 
of the set of nonoscillatory solutions of (E) provided (h3) is satisfied. 

If a nonoscillatory solution y(x) is bounded, then it belongs to S0. Let y(x) be 
unbounded. If 

lim _____ > K > 0 , 
*-oo q(.x)""1 

then y(x) belongs to Sn. Otherwise, there exists m which is the largest positive integer 
m < n such that 

l i m J z W L > L > 0 and i _ _ _ - o . 
x-oo t 3 ( x ) m - 1 JC-OO fl(x)m 

Hence y(x) e Sm. This shows that any nonoscillatory solution of (E) belongs to some 
Sk, 0 ̂  k ^ n. 
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Corollary. If the conditions (hj), (h2) are satisfied and q(x) = x in (1), then every 
nonoscillatory solution of (E) belongs to S'. 

Proof. It is sufficient to prove that (h3) holds provided q(x) = x. Suppose on the 
contrary that 

0 < A < l i m i n f M < l i m s u p M ^ = = B < 00 
xk 

for a certain nonoscillatory solution of (E). Let y(x) > 0. Then there exists a number 
N, A < N < B, and a sequence {xn} such that the function gk(x) = g(x) — Nxk 

has an infinite number of zeros x„. Therefore g[n_1)(x) = y(n~1)(x) — N°(n — 1)!, 
where N° = N if k = 0 , 1 , . . . , n - 2 and N° = 0 if k = n - 1, has an infinite 
number of zeros, which contradicts y(n)(x) ^ 0 or y(n)(x) g 0. 

For the existence theorems for nonoscillatory solutions of (E), see [3] and [4]. 

Example . Consider the equation 

(E-) y'" +f(x,y,y',y") = 0, 

where the function f has the properties 

(hi) sgn {u0} f(x, u0,uu u2) = p(x) \u0\ , p(x) = 0 , 

(h2) x p(x) dx = co . 

Then every nonoscillatory solution of (£~) approaches zero as x -> oc. 

Proof. First of all we notice that if J°°xp(x)dx = J00 (yjx)2 p(x) dx = co, 
then |°° x2 p(x) dx = co as well. Let S"/* and Sx, i = 0, 1, 2, be the sets defined 
by (l) corresponding to the functions g(x) = x/x and q(x) = x respectively. It fol
lows from Theorem 2 that Six u S^x = 0 and Sx u S% = 0. Applying Corollary we 
obtain that 

l i m J i M ; fe = 0 , l , 2 , 
x-+oo X 

exists (finite or co). This implies that 

^m-k^2 
exists (finite or oo) as well. Indeed: 

If lim \y(x)\ = L < oo , then lim ^ 
x-*oo JC-*OO yjX 
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If lim |y(x)| = oo , then lim \^5J1 4- 0 because Sx = 0 and therefore 
X -+00 JC-->OO X 

lim 1 ^ 1 - 0 0 . " 
X~*00 yJX 

It follows from Theorem 3 that every nonoscillatory solution belongs to SJ u S*. 
and does not belong to S^x

9 i.e. there exists no y(x) such that lim y(x) > K. Hence 
JC-*OO 

S2 = 0. Consequently, every nonoscillatory solution of (£") belongs to S0, i.e. it is 
bounded and by Theorem 1 it converges to zero as x -> 00. 
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