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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

SOLUTION OF THE PROBLEM OF DIRECTLY 
DECOMPOSABLE HOMOMORPHISMS 

JAROMIR DUDA, Brno 

(Received March 6, 1981) 

1. INTRODUCTION AND PRELIMINARIES 

Let 3lf = (At, F>, 33f = <J5f, F>, iel, be algebras of the same type and let ht 

be a homomorphism of 3If into ©f (in symbols: ht e Horn (3T£, 93,;)) for every i eI. 
Then it is a trivial fact that the mapping h defined by the rule h((# ,)i6j) = {hi(a$)ieI, 
(ai)ieie EI î> *s a homomorphism of J3 9lt- into Y[ ®f> denote it by h = (hi)ieJ. 

iel iel ie l 

Homomorphisms of this form are called directly decomposable homomorphisms, 
briefly: DDHom. It is well-known (see e.g. [1]) that not every homomorphism 
of Yl ̂ i i n t 0 I ! ®. *s directly decomposable and so a natural question arises: 

iel iel 

Under which conditions is a given homomorphism of f ] 31; into JJ ®i directly 
decomposable? ieI ieI 

This problem, i.e. the so called problem of DDHom, was investigated in a number 
of papers, see e.g. [6, 7, 8,10] and references there. These papers include many useful 
results dealing with the necessary or sufficient conditions for DDHom on various 
types of algebras. However, it appears rather difficult to find the full characterization 
of this phenomenon, i.e. to state necessary and sufficient conditions for DDHom. 

Recently, the problem of DDHom was solved for the products of two similar 
algebras and thus, evidently, for the products of any finite family of similar algebras, 
see [1]. The aim of the present paper is to generalize the results of [1] for the products 
of arbitrary families of similar algebras, i.e. to give the full characterization of 
DDHom. 

In order to avoid interrupting the discussion later, let us first recall some prelimi
nary concepts and results: 

For any product A = f{ -4* of nonempty sets Ah iel, there are binary operations 
iel 

dt: A x A -> A, iel, introduced by H. Werner [12] as follows: 

x for j #= i 

ІPГi. 
PГJ . , . . . . , . . 

y for J = 1 . 
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These operations are closely related with the canonical projections pr{: A -> Ax, 
iel; one can easily verify that Kerprf = {(x,y)eA x A; x = dt(x, y)} for each 
ieL 

Further, let us recall that the nonindexed product ® 9li of algebras 91; = <Ai? Fi>, 
iel 

iel, is the algebra < f | .A i , F>, where any n-ary operation feF corresponds to 
iel 

a certain sequence of n-ary polynomials pt of 9li5 i e I, and is defined by f((a))ieI,... 
•••> (al)iei) = (Pi(fli,--,fl|))tej ^ any elements (aJ) ieJ,..., (a1)ieIe Y[Ai, see [3], 

ie/ 

[4; p. 357], [5] and [11]. For the sake of brevity we identify the operation f with the 
sequence (pt)iel, i.e. we write / = (pt)ieI. 

The nonindexed product is defined for algebras of various similarity types. Howe
ver, if algebras 91;, 93,-, i e I, are of the same type, then the algebras ® 9If and ® 93f 

iel iel 

are of the same type as well and so the symbol Horn ( ® 9If, ® 23f) has the usual 
meaning. ieI ieI 

2. CHARACTERIZATION OF DDHom 

The main result of this paper is the following 

Theorem 1. Let 91; = <Ai, F>, 93; = <B;, F>, iel, be algebras of the same type. 
Then for any homomorphism h e Horn ( f j 9Ii5 n®0> the following conditions 
are equivalent: ieI ieI 

(1) h is directly decomposable; 

(2) h e Horn ( ® 9Ii5 ® SB,); 
iel iel 

(3) h e Horn « n A„ {d(; i e J}>, < fT Bt, {dt; i e /}»; 
iel iel 

(4) h preserves the kernels of all canonical projections, i.e. [h x h) Ker prt ^ 
£ Ker prt for all ie I. 

Proof. (1) => (2). Choose an n-ary operationf = (pt)ieI of the nonindexed product 
® 91;. By hypothesis, the homomorphism h is directly decomposable, i.e. h is of the 
iel 

form h = (hi)i€l, where ht e Horn (9If, 93f) for all i e I. Clearly, every homomorphism 
ht preserves the polynomial p(, iel, and, consequently, h = (/i;)ieI preserves the 
operation f=(P;)i6j. 

(2) => (3). This implication follows directly from the fact that for each i e I, 

j / J \ i i f e? for i 4= / 
di = (dijhl W h e r e dU = { 2 r • • 

\e\ for i = ; , 
and that the trivial operations e\, e\ (x = e\(x, y), y = e\(x, y)) are polynomials 
of any algebra. 
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(3) => (4). Let i el and take (x, y) e Ker prt. As we noted above, see Section 1, 
(x, y) e Ker pr{ implies the identity x = dt(x, y). Now, by applying the hypothesis, 
we get h(x) = h(dt(x, y)) = di(h(x), h(y)) and thus (h(x), h(y)) e Ker pri9 proving 
the inclusion (h x h) Ker pr. £ Ker prt. 

(4) => (1). Firstly, we claim that for an arbitrarily chosen i e I, the correspondence 
ai^Vrih((a)ieI), (at)ieI e f\ Ah is a mapping. Take an element (a^eHAi 

iel iel 

such that ai = a'i, i.e. (a'i)ieI is an element with the property ((ai)ieI, (a\)ieJ) e Ker prt. 
By applying the hypothesis we have (h((ai)l€j, h(a%e^) e Ker pr{ or, equivalently, 
prih((ai)ieI = prih((a$ieI). However, this proves that the correspondence afi~> 
*-> Pri h((ai)ie/ is a mapping of A{ into £,; denote it by h(. 

Secondly, the proof that ht e Horn (9Ii, 23,), iel, and h = (fei)ie/ is straightforward 
and hence omitted. 

Remark 1. It is an interesting fact that for I = {1,. . . , n] the set of binary opera
tions {dt; 1 ^ i ^ n} may be replaced by one n-ary operation dn defined by the 
rule dn = (en)i^n, where e\, ...,en are the n-ary trivial operations (xt = en(xl9..., xn)). 
Clearly, dn is the operation of the nonindexed product ® 9Ij of any algebras 

i£n 

% = <Ai, Fi>, 1 = i = n, such that dn((a\)i±n, ..., (a
n)^n) = (a\, ..., a^) for 

(a\)i^n> •••- ( ^ i ) ^ 6 n ^ i anc* t ' l u s w e ^ a v e t^ie f°lloving relationship between dn 

iel 

and dh 1 = i = n: dt(x, y) = dn(x, ...,x, y, x,..., x), 1 = i = n. * 
( i - l)-times 

Notice that dn is the well-known n-dimensional canonical diagonal operation, see 

[-]. [9]-

Combining these facts with the preceding theorem, we readily obtain 

Theorem 2. Let % = <Af, F>, 93- = (Bi9 F>, 1 ^ i = n, be algebras of the same 
type. Then for any homomorphism h e Horn ( \\ At, J ] B() the following conditions 
are equivalent: l-n l-n 

(1) h is directly decomposable', 

(2) h e Horn (®%, ® Bj); 
i£n i£n 

(3') h e Horn « Tl -4«, «?>, < ll Bi> dn))l 
i£n i£n 

(3) fceHom«n^(. K 4.}>> < II *.. (rfi. • ••.-*-}»; 
i g n i ̂  n 

(4) (h x h) Ker pr, c Ker prh 1 = i = n. 

Proof. Immediate from Theorem 1 and Remark 1. 
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3. APPLICATIONS 

For rings with 1 and for lattices with 0,1, the results of Section 2 enable us to derive 
more detailed conditions characterizing the DDHom. In this section we write a 
instead of (a^ / l f at = a for every i e I. 

Corollary 1. Let R(, Si9 iel, be arbitrary rings with 1. Then for any homomor-
phism heVLom(Y[Rb I I *̂)> the following conditions are equivalent: 

iel iel 

(1) h is directly decomposable; 
(2) h preserves the elements df(0, T), iel, i.e. h(dt(0, T)) = dt{09T) for each iel; 
(2') h preserves the elements di(T, 0), i el. 

Proof. (1) => (2) is evident. 

The equivalence (2) o (2') follows from the fact that dft, 0) + dt(0, T) = T for 
every i e I. 

(2') => (1). It can be easily seen that dt(x, y) = x dt(T, 0) + y dffi, T). By applying 
the hypothesis (2') and, equivalently, (2), we get h(dt(x, y)) = h(x dt{\, 0) + 
+ y di(0, T)) = h(x) dt(l, 0) + h(y) dt(0, T) = dt(h(x), h(y)). By virtue of Theorem 
1(3), condition (1) follows. 

Corollary 2. Let Li9 Mi9 i e I, be lattices with nullary operations 0, 1. Then for any 
homomorphism h e Horn ( Y[ Li9 Yl^i), the following conditions are equivalent: 

iel iel 

(1) h is directly decomposable; 

(2) h preserves the elements df(T, 0) and dt(09 T), ieL 

Proof. (1) => (2) is quite clear. 

(2) => (1). Obviously, dt(x, y) = (x A df(T, 0)) v (y A di(0, T)) and so 
h(dt(x, y)) = h((x A di(T, 0)) v (y A di(0, T))) = (h(x) A df(T, 0)) v (h(y) A 
A di(0,1)) = di(h(x), h(y)) for every iel, entailing the direct decomposability of h. 
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