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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

REMARKS ON HETEROGENEOUS ALGEBRAS 

MIROSLAV NOVOTNY, Brno 

(Received July 15, 1981) 

1. INTRODUCTION 

The aim of this paper is to pick out some new applications of heterogeneous 
algebras. Particularly, the system of all blocks of a compatible relation on a complete 
algebra may be considered a heterogeneous algebra of the so called full type. We prove 
that to any heterogeneous algebra 91 a heterogeneous algebra 93 of full type can be 
constructed on a complete algebra in such a way that the subalgebras of 21 and 93 
are in a close connection. A special case of this construction is the well-known 
construction of a deterministic acceptor to a given acceptor in such a way that both 
accept the same language. 

2. HETEROGENEOUS ALGEBRAS 

In what follows, we recall some well-known definitions; only new definitions and 
results are numbered. 

Let I 4= 0 be a set. Suppose that a set At is assigned to any i in I. Then we say that 
the function A is an indexed family of sets of type I; it is denoted by (Ai)ieI. If ij 
in J and i =)= j imply At 4= Aj9 we say that (At)ieI is an indexed family of mutually 
different sets (of type /). An indexed family (Bt)ieI of type I is said to be a subfamily 
of (Ai)ieI if B( c At for any i in L The set of all subfamilies of a family is a complete 
lattice if the relation "is less than or equal to" is understood as "is a subfamily of". 

In what follows, we often omit the expression "indexed" if it is clear from the 
context. 

Let A{k) = (Aik))ieI be an indexed subfamily of a fixed family of type I for any 
k e K and let (A{k')keK be a family of these subfamilies. Then Am = (A^)^ is the 
greatest lower bound of (Aw)keK in the above mentioned complete lattice if and only 
if A^ = D 4 k ) for every i e I. 

keK 

We identify ordered n-tuples with words of length n so that relations are considered 
as sets of words. 
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1. Definition. Let I + 0, T # 0 be sets, a a function of Tinto the set of nonnegative 
integers, and co a function of T into the set of all relations on I such that, for any 
t e T, co(t) is a relation on I of arity a(f) + 1. Then the ordered quadruple (I, T, a, co) 
is said to be a heterogeneous algebra type. 

2. Definition. Let (I, T, a, co) be a heterogeneous algebra type, (-4i)ie/ an indexed 
family of sets of type J. Then the ordered triple 51 = ((-4i)ieI, (ff)teT, co) is said to 
be a heterogeneous algebra of type (I, T, a, co) whenever the following condition 
is satisfied. For any t e T, ff is a partial operation on the set (J At of arity a(t) such 

iel 

that for any i(0), i(l),..., i(a(t)) in I with the property i(0) i(l) ... i(a(t))eco(t), 
ff maps the set Ai{l) x Ai(2) x ... x Ai(a(t)) into Ai(0). 

The sets At (i el) are called components (or phyla) of 91. 

Remarks. (1) If a(t) = 0, then/f is a constant such that/f e A{ for any i e co(t). 
(2) If a(0 > 0 and i(l),..., i(a(t)) in J are such that i(0) i(l) ... i(a(t)) $ co(t) for 

every i(0) in 7, then the operation ff may be defined in some points of Ai(1) x 
x Ai(2) x ... x -4i(fl(t)), and need not be defined in others. The defined values are 
not subjected to any condition; for instance, they may be in different components. 

(3) In [1], co(t) is supposed to contain exactly one element for every t e T; in [8] 
only mutually disjoint sets Ax (i e I) are admitted. We dispense with these restrictions. 

Let 9t = ((-4i)ieJ, (ff)teT, co) be a heterogeneous algebra, (Bt)iGl a subfamily of the 
family (A)ieI. The family (B)ieI is said to be closed in 9f if the following condition 
is satisfied. For any t in T, for arbitrary i(0), i(l),..., i(a(t)) in I with the property 
i(0) i(l) ... i(a(t)) e co(t), and for arbitrary xt e Bi{1),..., xa{t) e Bmt)) the assertion 
ff(xu ...,xa(t))eBi{0) holds. For a Mn T with a(t) = 0, this means that ffeBt 

for every i in co(t). 

Let 91 = ((A^fej, (ff)teT, co) be a heterogeneous algebra, (B)ieI a closed family 
in A. We put B = IJ Bt and /® = /? n Bfl<'>+1 for any f e T. Then, for any i(0), 

ieJf 

i(l),..., i(a(f)) in I with i(0) i(l) ... i(a(t))e co(t) and any x± e BK1), ..., xa{t) e 
e Bi{a{t)), we have /*(xx , . . . , *fl(0) Xl ... xa(t) eff n (Bi(0) x Bi(1) x ... x Bi(fl(f))) c 
S / * n £"«>+1 = / » which implies that ff(xu ..., xa{t)) = ff(xu ..., xa{t)). We 
put S = ((Bi)iei, (ff)teT, co); then S is a heterogeneous algebra which is called 
a subalgebra of 91. 

It is clear that the greatest lower bound of a nonempty family of closed subfamilies 
in a heterogeneous algebra 91 is closed in 91. It follows that for any heterogeneous 
algebra 9! = ((Ai)iel9 (ff)teT, co) and for any subfamily (Ct)ieI of the family (A)ieI, 
there exists a least family (Bi)ieJ closed in 91 such that (C)ieI is a subfamily of (B)ieI-
The subalgebra 93 = ((Bi)ieI, (ff)teT, co) is said to be generated by the family (C)ier 
Particularly, if Ct = 0 for any iel, then 93 is the least subalgebra and (B)iei the 
least closed family in 91. 
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3. Definition. Let T 4= 0 be a set and a a mapping of T into the set of nonnegative 
integers. Then the ordered pair (T, a) is said to be a complete algebra type. 

4. Definition. If (T, a) is a complete algebra type and A a set, then the ordered 
pair (A, (ft)teT) is said to be a complete algebra of type (T, a) provided that ft is 
a complete operation on A of arity a(t) for any t e T 

A complete algebra can be converted into a heterogeneous algebra in various ways. 
We describe some of them. 

5. Definition. Let r = (T, a) be a complete algebra type, a = (I, T, a', co) a hetero­
geneous algebra type. Then a is said to be admissible to T if a' = a. 

6. Definition. Let § = (A, (ff)teT) be a complete algebra of type T = (T, a), 
(j = (I, T, a, co) a heterogeneous algebra type admissible to r. We put At = A for 
every iel, ff = / f for any feT, 9T = ((i4,)te/, ( /*) t e T , co). Then 91 is said to be 
a heterogeneous algebra of type a on § . 

By a heterogeneous algebra % on a complete algebra § we mean a heterogeneous 
algebra 91 on § of a type admissible to the type of § . 

7. Definition. A heterogeneous algebra type a = (I, T, a, co) is said to be trivial 
if I has exactly one element, say 0, and co(t) = {0a (0+1} for every t e T. 

Various heterogeneous algebras on the same complete algebra $ define various 
families of subalgebras. The family of subalgebras corresponding to the heterogeneous 
algebra of trivial type on § coincides with the family of subalgebras of § in the usual 
sense. 

We have seen that a complete algebra § defines various heterogeneous algebras 
on § that determine various subalgebras. Conversely: 

8. Proposition. For any heterogeneous algebra 9t = ((Ai)ieI, (ff)teT, co) of type 
(I, T, a, co) there exists a complete algebra § = (A, (ff)teT) such that 91 is a sub-
algebra of the heterogeneous algebra of type (I, T, a, co) on § . 

Proof. We take an element co not in (J At and we put A = \J At u {co}. For 
iel iel 

any r e T a n d any xl9..., xfl(r) in A , we define 

/• fy~ Y ^ __ r/?(*:u • • •> Xaa)) i f ft (*i> • • •, x«(o) is defined , 
[co otherwise . 

Clearly, $ = (A, (ff)f6T) is a complete algebra. I f / f = / * for every t e T, provided 
Ct = A for every i e I, then C = ((Cf)le/, (/f ),eT, co) is a heterogeneous algebra of 
type (I, T, a, co) on $ and 91 is its subalgebra. • 
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3. ACCEPTOR AS AN EXAMPLE OF A HETEROGENEOUS ALGEBRA 

An acceptor is an ordered quadruple 91 = (S, V,f, J) where S, Fare sets, J a sub­
set of S, andf£ function of the set S x Vinto 2s. The elements in S are called states, 
the elements in J initial states, the elements in Vare said to be letters, f is called the 
transition function. We denote by V* the set of all words over V, by A the empty 
word. The binary operation of catenation is defined on the set V*. The catenation 
of x, y in V* is denoted by xy. 

Let 91 = (S, V,f, J) be an acceptor, n ^ 0 an integer, vl9..., vn letters in V, 
x = vx ... vn, and s a state in S. The word x is said to be s-accepted by 91 if there 
exist states s0, s t,..., s„ in S such that s0 e J, sn = s, and sI+1 ef(sf, vi+1) for i = 
= 0,1 vi - 1. 

Remark. Another set F £ S appears in the usual definition of an acceptor 
[14]; a word is said to be accepted if it is s-accepted for at least one s in F. Further­
more, finite acceptors are usually dealt with which means that the sets S, Vare finite. 
To our aims, these restrictions have no importance and we omit them. 

1. Definition. Let 91 = (S, V, f, J) be an acceptor and suppose that 0 £ V. 
We put T = Vu {0}, a(0) = 0, co(0) = J, a(v) = 1, (o(v) = {rs; seS,r ef(s, v)} 

for any veV Furthermore, we set As = V* for any seS, ff = A, ff(x) = xv for 
any v e Vand any x e V*. Then 5t = ((As)seS, (f®)teT, co) is a heterogeneous algebra. 

We put 9t = >(9l). 

Remark. The operator ft assigns a heterogeneous algebra to any acceptor in a way 
which is different from the way described in [7], p. 70. 

2. Proposition. Let 91 = (S, V,f, J) be an acceptor, suppose /(9t) = 51 = 
= ((As)seS> (ff)teT> <»)• Let (Bs)seS be the least closed family in 51. 

If xeV* and se S, fhen the following assertions are equivalent. 

(i)xeBs. 
(ii) The word x is s-accepted by 91. 

Proof. For any seS, let Cs be the set of all words s-accepted by 91. The following 
conditions (1) and (2) are satisfied. 

(1) The family (Cs)seS is closed in 5t. 
(2) Cs e Bs holds for any seS. 

The proof of (1) is immediate, (2) may be easily proved by induction on the length 
of a word. 

By (1), (2), and the minimality of the closed family (B^, we obtain Bs = Cs 

for any se S which implies the equivalence of (i) and (ii). • 

Remark. This proposition is close to 3.8 and 4.4 of [13], cf. also [11]. 

400 



3. Definition. Let 91 = {{At)ieI, {ff)t€T> <*>) be a heterogeneous algebra. It will be 
called good if the following conditions are satisfied. 

(i) There exists a set V such that At = V* for any iel and T = Vu {0} where 
0£V. 

(ii) a{0) = 0, / * = A and a(r) = 1, ff{x) = xv for any veV and any x e V*. 

4. Definition. Let 21 = ((^4-)£eJ, (/f )feT, co) be a good heterogeneous algebra. We 
have T = Vu {0} where 0 £ V. 

Set J = co(0), /(i, i>) = {j e I; ji e co{v)} for any i e I and i; e V. Finally, we put 
« = (I, VJ, J), ?(«) = 91. 

Clearly, (̂91) is an acceptor for any good heterogeneous algebra 91 and ^(9t) 
is a good heterogeneous algebra for any acceptor 91. 

5. Proposition. ?{fe{yi)) = 9i for any acceptor 91 and /(^(9l)) = 91 for any 
good heterogeneous algebra 91. 

The proof follows immediately from 1, 3, and 4. • 

Remark. This result is very close to 4.6 of [13]. 

4. FAMILY OF BLOCKS OF A COMPATIBLE RELATION AS AN EXAMPLE 
OF A HETEROGENEOUS ALGEBRA 

We now give some other applications of heterogeneous algebras. Some more 
examples can be found in [7]; cf. also [10], [12]. 

The following notions appear in [2] and [6]. 
Let A be a set, Q a binary relation on A. A subset B of A is said to be a block 

of Q if it satisfies the following conditions, (i) B =j= 0; (ii) B x B _= Q; (iii) B != C ^ A 
and C x C ^ Q imply B = C. 

Let 2? = (Bi)jej be a family of type I of mutually different nonempty subset of 
a set A. We set 

Q = {xy, x e A, y e A, there exists i e I such that x e Bi9 y e £,} . 

Then the relation Q is said to be B-defined on A. 

Let 2? = {Bt)ieI be a family of type I of mutually different nonempty subset of 
a set A. Then 2? is said to be a %-family if it satisfies the following conditions. 

(a) If i(0) e / and 7(0) c j , then JBI(0) £ U #. implies f| #i = #i(ov 
»e/(0) ie/(0) 

(b) If M != A and M $ Bt holds for every i e 7, then there exists D £ M with 
exactly two elements such that D $ jBf holds for every i e I. 

By a slight modification of Theorem 1 in [6], we obtain 
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Proposition. Let B = (-Bf)ie/ be an indexed family of mutually different nonempty 
subsets of a set A. Then the following conditions are equivalent. 

(i) B is the system of all blocks of the B-defined relation. 
(ii) B is a x-family. • 

Let 91 = (A, (ff )teT) be a complete algebra, g a binary relation on 91. Then g is 
said to be compatible with 91 if t e T, a(t) > 0, xl9..., xa{t), x\,..., xa(t) in A and 
xxx\ eg,..., xa(t)xa(t) e g imply ff(xu ..., xa(t))ff (x[,..., xa(t)) e g. 

1. Definition. Let (I, T,a,co) be a heterogeneous algebra type. This type is said 
to be full if co(t) is a complete a(f)-ary operation on I for any f e T, i.e., if for any 
i(l),..., i(a(t)) in I there exists exactly one i(0) e I such that i(0) i(l) . . . i(a(t)) e co(t). 

The applicability of these notions is demonstrated by the following 

2. Proposition. Let 91 = (A, (ff)ter) be a complete algebra of type (T, a) and 
B = (Bi)i€l an indexed family of mutually different nonempty subsets of A which 
is a i-family. Then the following conditions are equivalent. 

(i) The B-defined relation is compatible with 91. 
(ii) For any t e T there exists a complete a(t)-ary operation co(t) on I such that 

the family B is closed in the heterogeneous algebra on 91 of full type (I, T, a, co) 
admissible to (T, a). 

Proof. Clearly, the condition (ii) is satisfied if and only if B is normal in terms 
of [2]. By Theorem 2 of [2], (i) implies (ii). The proof of the implication (c) => (b) 
in [2] includes the proof of the implication (ii) => (i). • 

Remarks . This result is very close to Theorem 2 of [2] and to Theorem 3 of [6] 
where families of blocks of compatible relations are characterized. Various charac­
terizations of a single block of a compatible relation may be found in [3] and [4]. 
Some conditions equivalent to the condition that every block of each compatible 
relation is a subalgebra are formulated in [5]. 

5. HETEROGENEOUS ALGEBRAS OF FULL TYPES 

The definition of a heterogeneous algebra of full type is motivated by Proposition 
4.2. We describe some properties of these algebras and prove that some well-known 
properties of acceptors are included. 

First, we assign a full type to any heterogeneous algebra type. 

1. Definition. Let T = (I, T, a, co) be a heterogeneous algebra type. 
We put R = 2J. Let t e Tbe arbitrary. 
If a(t) = 0, we set Q(t) = {co(t)}. 
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If a(t) > 0, and i ( l ) , . . . , i(a(t)) are arbitrary elements in I, we put 

ht(i(l)...., i(a(t))) = {i(0); .(0)eI, i(0) i(l) ... i(a(t))e <o(t)} . 

For arbitrary r( l) , . . . , r(a(t)) in R, we set 

kt(r(l),.... r(a(t))) = [)ht(i(l),..., i(a(t))) , 

where the last union relates to all words i(l) ... i(a(t)) such that i(l) e r(l) , . . . , i(a(t)) e 
er(a(t)). 

Finally, we put 

Q(t) = {kt(r(l),...,r(a(t)))r(l)...r(a(t)); r(l), ...,r(a(t))e R] . 

Then 8 = (R, T, a, Q) is a full heterogeneous algebra type. We put $>(*c) = 8. 

2. Definition. Let § = (A, (ff )teT) be a complete algebra of type (T, a), T = 
= (I, T, a, co) a heterogeneous algebra type admissible to (T, a), 5 = ;®(T). (Clearly, 
3 is a type admissible to (T, a).) Let 91 be a heterogeneous algebra of type T on §, 93 
a heterogeneous algebra of type 8 on §. Then we put -B = ^(9t). 

3. Proposition. Lef § = (A, (ff)teT) be a complete algebra, 91 = ((Ai)ieI, 
(ff)teT> <°) a heterogeneous algebra on § , ^(91) = -8 = ((Br)reR, (f®)teT, -3). Then 
the following assertions hold. 

(i) If a family (Ct)ieI is closed in 91, fhen the family (Dr)reR with Z)0 = A, Dr = 
= H Q / ° r r 4= 0, r e K, is c/oscd in 93. 

ier 

(ii) If a family (Dr)reR is closed in 93, then the family (Ct)i€l with Ct = U Dr 

for i e I is closed in 91. I€r 

Proof. (1) Let (Ct)ieI be a family closed in 91. Suppose t e T. 
If a(t) = 0, we have to prove thatf̂ f e De)(0. This is trivial if co(t) = 0. If co(t) 4= 0, 

then ff G Cf for any i e co(t) which implies ff e f] Ct = DmW 
ieco(f) 

Let us have a(t) > 0, r(l) , . . . , r(a(t)) in R, xx e Z)r(1),..., x f l ( 0e Dr(a(0). 
The following cases may occur. 

(a) There exists j , 1 ^ I = a(t), such that r(j) = 0. 

(b) r(j) * 0 for 1 = 7 = a(t) and fcr(r(l),..., r(a(t))) = 0. 

(c) r(j) 4= 0 for 1 = ; = a(f) and fcr(r(l),..., r(a(t))) 4= 0. 

In case (a) we have, clearly, kr(r(l),..., r(a(t))) = 0. Thus, in cases (a), (b) we obtain 
ff(xl9..., xa{t))eA = DQ = Dkt(ril) g(a(0)) because the operat ion^ is complete. 

Suppose that (c) occurs. Let us have an arbitrary i in fc,(r(l),..., r(a(t))). By 
definition of fcr, there exist i ( l )e r(l) , . . . , i(a(t))e r(a(t)) such that i e hr(i(l),... 
..., i(a(t))). Since DrU) _ CiU), we have Xj e CiU) for any j , 1 Sj ^ a(t). This implies 
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ff(xl9..., xa(t)) e Cf for every i € fef(r(l),..., r(a(t))) which yields ff(xl9..., xfl(0) e 
e f) Q = -O*t(r(i),...,r(0(r)))-

»*6fer(r(l) r(«(t))) 

We have proved (i). 
(2) Let (-Dr)reR*be a family closed in 33. Suppose t e T. 
If a(t) = 0 and i(0) e co(t)9 then 0(f) = {ct>(*)} implies that ff e Dm{t) ^ [j Dr = 

Let us have a(t) > 0, i(0) i(i)... i(a(t)) in co(t) and xx e CJ(1),..., xfl(0 e C£(a(0). 
Then i(0)e fcf(i(l),..., f(a(r))). Since C,a) = [) Dr9 there exists r(j) such that 

*(1)G-

i(j) e r(j) and x,- e DfU) for any j9 1 _ j = r. This implies that fcf(i(l),..., i(fl(0)) =" 
cfc t(r(l),...,r(a(0)) w h e n c e i(O)ek-(r(l),...,r(fl(0)). Thus ff(xx, ..., xfl(0) 6 
e £fct(r(l),...,r(«(f))) ~ U A- = C|(0)-

i(0)er 

We have proved (ii). • 

4. Corollary. Let § = (A, (ff)teT) be a complete algebra, 9t = ((-4;)f6j, (ff)teT> <o) 
a heterogeneous algebra on $, .̂ (91) = 93 = ((.B,).^, (ff)teT> -3)- - ^ ^ = ((C»)iej> 
(ff)teT> °°) ^ ^ e ^a s* subalgebra of 9t, 2) = ((Dr)r6R> (f?)teT> @) the laest sub-
algebra of 93. Tften Cf = U Drf

or every iel. 
ier 

Proof. Let us put Ei = [j Dr for every i e J and Fr = fi C£ for every reK , 
ier ier 

r #= 0, and F 0 = .4. Then (Et)ieI is closed in 91 and (Fr)reR in © by 3, which implies 
Ct £ .Ej for every i e I and Dr £ Fr for every r e R. Thus, for every i e I, we obtain 
C, c £ . = U DP £ U ^r = U ( fl CJ) -= Ci> w h i c h implies the assertion. D 

ier ier ier jer 

Remark. The algebra < (̂9l) may be considered a deterministic version of 91. 
Indeed, if 91 = (S, F,f, J) is an acceptor, its deterministic version is X) = (2s, V, gy 

{J}) where g(r9 v) = { U/(s> *0} for any r e2 s and any veV (cf. [14]). We put 
J> = 491). 

5. Proposition. *t(9l) = ?(d(ft(9l))) for any acceptor 91. 

The proof follows immediately from 3.1, 2, 3.3, 3.4. • 

Thus, in the terminology of heterogeneous algebras, the operator d means transi­
tion to the deterministic version. 

Remark. The results 3 and 4 are very close to 6.5 of [9]. 
.Also the well-known equality of languages accepted by 91 and n(9\) (cf. [14]) 

reflects in 4 and can be derived as a consequence of 4. 

6. Example. Let us have V = {a9 b}9 A = V*, T = {1, 2, 3, 4}, a(l) = a(2) = 0, 
a(3) = a(4) = 1, ff = A9 ff = b9 f$(x) = axb9 ff(x) = axa for any xeV*. 
Then § =- (.4, (ff)teT) -s a complete algebra of type (T, a). 
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We set / = {s, u}, As = Au = V*, co(l) = {s}, c0(2) = {u}, co(3) = {ss}, co(4) = 
= {sw, ww}, ff = / * for any t e T, 21 = ((At)ieI, (/,% r, co). Then 2t is a hetero­
geneous algebra on § of type (/, T, a, co) admissible to (T, a). 

By 1, we obtain JR = 21 = {0, {s}, {u},/}; we set O = 0, S = {s}, U = {u}. 
Further, we have Q(l) = {S}, fi(2) = {U}. Moreover, h3(s) = {s}, h3(u) = 0 which 
implies k3(0) = O, fc3(S) = S, fc3(U) = O, fc3(/) = S. Similarly, h4(s) = 0, h4(w) = 
= {s, u} which entails fc4(0) = O, fc4(S) = O, fc4(U) = /, fc4(/) = /. Thus, Q(3) = 
= {00, SS, OU, SI}, 0(4) = {00, 0S,IU,II}. Putting B0 = Bs = £„ = 5, = V*, 

/» = / * for any t e T, and S = ((£r)re*, (/* ),e r, fi), we have S = ^(9t). 
Let (Cj)teJ be the least closed family in 21, (Dr)reR the least closed family in 93. 

The components Ct, Dr can be constructed by using a slight generalization of 4.4 
in [13]. Proposition 4.4 of [13] describes the components of the least subalgebra 
of a so called context-free algebra as sets of terminal words generated from non­
terminal symbols of a generalized grammar with context-free productions. General­
ized grammars corresponding to 21, 93 are (V, I, P) and (V, R, Q), respectively, 
where P = {(s, A), (u, b), (s, asb), (s, aua), (u, aua)} and Q = {(S, A), (U, b), 
(0, aOb), (S, aSb), (0, aUb), (S, alb), (0, aOa), (O, aSa), (I, aUa), (/, a/a)}. Then 
Ci is the set of words over V generated from i e I by means of the first grammar and 
Dr is the set of words generated from r e R by means of the second grammar. Clearly, 
Cs = {ambm; m = 0} u {am+nba"bm; m = 0, n = 1}, Cu = {ambam; m = 0}, Ds = 
= {ambm; m = 0} u {am+nba"bm; m = 1, n = 1}, Dv = {b}, Dr = {ambaw; m = 1}. 

Clearly, Cs = Ds u Dt, Cu = Dv u D7 which illustrates 4. It is easy to see that 
Dr = f| Ci generally does not hold for r + 0. We have Ds + Cs = fl ^i, #U * CM = 

ier ieS 

= n ci, -?/ -= cs n cu = n ce 
iel/ ie/ 
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