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GENERALIZED UNIFORMLY LINE VULNERABLE DIGRAPHS 

PETER HORAK, Bratislava 

(Received July 20, 1981) 

L INTRODUCTION, DEFINITIONS AND NOTATION 

The digraphs considered in this paper are finite without loops and multiple lines. 
Let C3 be the class of all strong digraphs, i.e. strongly connected digraphs, C2 the 

class of all unilateral digraphs which are not strong, Cx the class of all weak digraphs 
which are not unilateral and, finally, C0 the class of all disconnected digraphs. We 
will also say that a digraph D e C2 (D e Cx) is strictly unilateral (strictly weak). 
If D e Ct and x is a line (a point) of D such that (D — x) e Cj then x is called an i, j 
line (point). 

In [1], F. Harary, R. Norman and D. Cartwright studied the so called uniformly 
line vulnerable digraphs, i.e. digraphs with the property that all lines have the same 
i,j value. They proved that the only uniformly line vulnerable digraphs are those in 
which every line is 1,0 line, every line is 2,0 line or every line is 3,2 line. In order to 
extend the concept of uniformly line vulnerable digraphs we give the following 
definitions. 

Let mtj(D) denote the number of lines of a digraph D which are not i, j lines. 

Definition. A digraph D is (i,j) minimal, i =t= j , if D has an i,j line and m^D) = 

^ mtj(D')for every digraph D' such that D' has an i,j line. 

Thus, [l] contains a description, in our terminology, of all (i, y)-minimal digraphs D 
with mij(D) = 0. Further, there is no (i,y)-minimal digraph for i <j nor a (3,0)-
minimal digraph as there is no i,j line for i < j , nor a 3,0 line in any digraph. The 
aim of this paper is to describe the two remaining cases, the (3,l)-minimal and 
(2,l)-minimal digraphs. 

Next we give some other definitions and conventions. Let D be a digraph. Then 
V(D) is the set of points and E(D) is the set of lines of D, respectively. We will denote 
by D* the digraph which is the condensation of D. If there is a path in D from 
a point u to a point v then v is said to be reachable from w. If v is reachable from u 
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or u is reachable from v, then u and v are said to communicate in D. In the other 
cases u and v are separated. Let v be a point of a digraph D. Then t d(v) is the total 
degree of v and the symbol Cv denotes the set of the cycles of D on which v lies, i.e. 
Cv = {C, C is a cycle of D, r e V(C)}. Let D be a strong digraph and let x be a 3,1 
line of D. Let u and i? be the unique transmitter and the unique receiver of (D — x)*, 
respectively. Then Dx is a digraph that arises from the digraph (D — x)* by adding 
the line x' = vu. It is clear that Dx is also strong and the structure of Dx is "similar" 
to the structure of D. Further, x' is a 3,1 line of Dx and x' lies on every cycle of Dx. 
Finally, let a pseudocycle be a digraph obtained from a directed path by adding one 
arc from its first point to its last point. 

The notions not defined here will be used in the sense of [2]. 

2. PRELIMINARIES 

In this part of our paper we give the statements useful for the description of (i, j)-
minimal digraphs. 

Theorem 1 ([3]). Let D be a strong digraph with at least two points .Then for 
every point v of D there exists a point u(v) + v such that D — u(v) is unilateral 
and v can be reached from every point in D — u(v). 

Corollary 1 ([3]). Let D be a strong digraph with at least two points. Then for 
every point v of D there exists a line x(v) such that D — x(v) is unilateral and v 
can be reached from every point in D — x(v). 

Lemma 1. Let D be a strong digraph and let x be a line of D incident with 
a point v. Then, ifD — v is unilateral, D — x is unilateral as well. 

Proof. Let x = zv be a line of D, D e C3, and assume that D — v is unilateral. 
As D is strong, v can reach every point in D — x, i.e. D — x is also unilateral. The 
proof of the line x = vz is analogous to the preceding one. 

Lemma 2. Let D be a strong digraph, let x be a 3,1 line of D and let u, v, w be 
points of Dx. Then u and v are separated in Dx — w iff Cw => Cu, Cw ID Cv and 
CunCv = 0. 

Proof. Let D be a strong digraph, let x be a 3,1 line of D and let r and t be the 
receiver and the transmitter of (D — x)*, respectively. Assume that the points u,v,w 
of Dx satisfy Cw 3 Cu, Cw => Cv, Cun Cv = 0. Since Cur\ Cv = 0, the points u and v 
are separated in (D — x)*. Further, Cw r> Cu, Cw 3 Cv implies that neither u nor v 
can reach the point r, or neither u nor v are reachable from the point t in Dx — w. 
Thus u and v are separated in Dx — w. 
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To prove the necessity, let u and v be separated in Dx — w. Assume that there is 
a path from u to v in (D — x)*. Then there exists a cycle in Dx containing both u 
and v, i.e. u communications with v in Dx — w for every point w of D^, u + w + u. 
Thus CM n C„ = 0. Suppose now that there exists a cycle C of Dx such that C e Ca, 
C £ Cw. As the line x' = rt belongs to every cycle of Dx and C £ Cw, it means that v 
communicates with u. But this is a contradiction. Therefore Cu £ Cw. Analogously 
we have Cv £ Cw. Let Cu = Cw. In fact, this case cannot occur because Cv .= Cw 

and Cun Cv = 0. Thus CM c Cw, C.. c Cw and the proof is complete. 

Theorem 2. Let D be a strong digraph with a 3,1 line. Then there are points 
v\> vi °f & su°h that D — v( is unilateral, i = 1, 2, and vl9 v2 are not adjacent. 

Proof. Let D be a strong digraph, and assume that x is a 3,1 line of D. Following 
Lemma 1 there exists a point in D which is a 3,1 point and hence Dx includes a 3,1 
point as well. Put 

fc = min {|CW|, w is a 3,1 point of Dx} . 

Assume that a point z of Dx satisfies |CZ| = fc. The digraph Dx — z is strictly weak, 
therefore there are points z l5 z2 of Dx which are separated in Dx — z and clearly 
are not adjacent. According to Lemma 2 we get Cz => CZ|, i.e. |CZJ < fc, and Dx — zf 

is unilateral, i = 1, 2. Thus in Dx there exists a line / = z{w9 where the point w 
can reach every point in Dx — zx. Let us denote by St the strong component of D — x 
corresponding to z t and by y = ab the line of D — x corresponding to y'. According 
to Theorem 1 there is a point v± of 5X such that Sx — vx is unilateral and a can be 
reached from every point in Sx — vv Clearly, D — vt is also unilateral. Analogously, 
there is v2 in 5 2 such that G — u2 is unilateral (52 is the strong component of D — x 
corresponding to z2). Since zi9 z2 are not adjacent, vl9 v2 have the same property. 
Thus, Theorem 2 is proved. 

The next theorem follows immediately from Lemma 1 and Theorem 2. 

Theorem 3. ([1])- Any strong digraph with a 3,1 line has at least four lines that 
are not 3,1. 

3. MAIN RESULTS 

Let M 0 be a digraph in Figure 1. Let Mn be the digraph that arises from M 0 by 
adding a path of length n, not containing the points w, v9 from t to w. It is clear that 
there are exactly four lines in Mn which are not 3,1. 

Theorem 4. A necessary and sufficient condition for a digraph D to be (3,1)-
minimal is that D ^ Mn9 n > 0. 

Proof. According to Theorem 3 it follows that a digraph D is (3,l)-minimal iff 
there is a 3,1 line in D and exactly four lines of D are not 3,1 lines. Obviously, the 
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digraph Mn, neN, has the property. To prove the necessity, let D be a (3,l)-minimal 
digraph and assume that x is a 3,1 line of D. In order to show that D ^ Mn we will 
first of all prove that Dx £ Mn, n > 0. The line x' corresponding to the line x of D 
is a 3,1 line of Dx, thus Dx has a 3,1 line. Assume that a line y = rz of Dx is not 3,1. 
Then a line of D — x corresponding to y and going from the strong component Sv 

Fig. 1. 

to the strong component Sz (there exists at least one) is not a 3,1 line of D. As D is 
(3,l)-minimal, Dx is also (3.l)-minimal. From Theorem 2 we get that there are points 
u, v in Dx which are not 3,1 and, further, u and v are not adjacent. No line of Dx 

adjacent with u or ins a 3,1 line (Lemma 1). Since Dx is (3,l)-minimal, every point w 
of Dx, u 4= w 4= v, is a 3,1 point and f d(t;) = f d(w) = 2. By Lemma 2 we get that u 
and v form the unique pair of separated points in Dx — z, z is a 3,1 point (in the op
posite case there would exist another point which were not 3,1, and this is impossible). 
Therefore, Cv n Cu = 0 and Cv c Cz, Cu c Cz, z e V(DX), u * z * v. 

Let j = wv and / = w'w be the lines of Dx. Since Cw => Cy, Cw, z> CM and the 
digraph (D — x)* does not contain a cycle we get w = w'. Analogously, there is 
a point t of Dx such that vt and uf are lines of Dx. Dx is (3,l)-minimal, thus the sub-
digraph of Dx induced by the points u, v, w, t is isomorphic to M 0 or Mx. If this 
subdigraph is isomorphic to M 0 then there is a path Pn from t to w, because Dx 

is strong. There is no other point z in Dx because, if it were, then u and v would be 
mutually reachable in Dx — z and this is a contradiction. By similar reasoning there 
is no other line in Dx. Thus, Dx s M„, n > 0. It remains to show that D ^ Z)x, 
i.e. we will prove that every strong component of D — x is isomorphic to Kv Let Sz 

be a strong component of D — x corresponding to a point z of Dx, where z 4= w. 
Suppose that z'z" is a line of D, where z" £ Sz. By Corollary 1 we get that there is 
a line k of Sz such that the point z' can be reached from every point of Sz — k and 
Sz — fc is unilateral. Then I) — fc is also unilteral. But this is a contradiction. Thus, 
Sz s Kx. Analogously, by using the statements dual to Corollary 1 we get that 
Sw^Kt. Therefore, Dx s D, i.e. D s M„, n > 0. 

It is known that the strong components of a strictly unilateral digraph can be 
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ordered in such a way that Sf can be reached from Sj iff i > j . We use this ar
rangement of the strong components in the following theorem. 

Theorem 5. Let D be a digraph with at least three points and with n strong com
ponents S l s S 2 , . . . , Sn. Then D is (2,iyminimal iff the following three conditions 
are fulfilled: 

a) the condensation of D is a pseudocycle; 
b) there is at most one line from S{ to Sp 
c) Sx = Sn = K1 and either St = K1 or there is no line x in St such that Sf — x 

is unilateral and the point vt can reach every point in St — x and the point ut can 
be reached from every point in St — x, where u^^i is a line from Si-l to Si9for 
i = 2, ..., n - 1. 

Proof. According to [1], in every strictly unilateral digraph there exists at least 
one line which is not 2,1. As the pseudocycle has exactly one line that is not 2,1, 
a digraph D with q lines, q ^ 2, is (2,l)-minimal iff it contains q — 1 lines of the type 
2,1. Let now I) be a (2,l)-minimal digraph. Assume that there are two lines from St 

to Sj. Then each of them is a 2,2 line, which is a contradiction. There must be a line x 
from Sx to Sn. In the opposite case lines from St to Si + l would be of type 2,0. There 
cannot be another line y from Sf to Sj9 j 4= i + 1, because, if it were, then both x 
and y would be 2,2 lines. Thus, D is a pseudocycle. The strong component Sx has 
only one point. In the opposite case, Corollary 1 implies that in St there is a line which 
is a 2,2 line in D. Analogously for the strong component Sn. If Sh 2 ^ i = n — 1, 
is not isomorphic to Kl9 then in St there is no line with the property given in c) 
because it would be a 2,2 line in D. 

If D is a digraph satisfying the assumptions a) — c) then one can easily verify that 
a line from St to Sn is a 2,2 line and the other lines are 2,1. Thus, the proof is com
plete. 
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