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ON UNIQUENESS OF SOLUTIONS OF DIFFERENTIAL EQUATIONS 

MILOSLAV NEKVINDA, Praha 

(Received March 18, 1981) 

It is known, see for example [ l ] , that there exists a continuous function / : R2 -* R 
such that for every point (a, b) e R2 and for every e > 0 the initial-value problem 

(i) y'=f{*,y)> y(a) = b, 

has more than one solution in the interval <a, a + e) as well as in the interval 
(a - e, a>. 

Let D a R2, let / : D -> R be a function continuous in D. We shall say that the 
differential equation 

(2) y'=f(x,y) 

has the property of uniqueness in the forward (backward) direction in D9 if for 
every (a9 b)e D and for every e > 0 the initial-value problem (1) has at most one 
solution in the interval <a, a + e) (resp. in the interval (a — e, a}). 

It is well-known, see for example [ l ] , that if the function / of the variable y is for 
each x nonincreasing (nondecreasing) in D9 then Equation (2) has the property of 
uniqueness in the forward (backward) direction. Therefore, the following question 
is natural: to what degree the property of uniqueness in the forward direction can be 
violated in case of a differential equation with the property of backward uniqueness? 

Theorem 1. Let D <= R2, letf : D -> R be a continuous function in D. Let Equation 
(2) have the property of uniqueness in the backward direction. For any ae R let A 
be the set of all b e R such that (a, b)e D and, for some e > 0, the initial-value 
problem (1) has more than one solution in the interval <a, a + e). Then A is at 
most countable. 

Proof. Let e > 0. Denote by A(e) the set of all b e R such that (a, b)e D and the 
initial-value problem (1) has more than one solution in the interval (a> a + e). 
Therefore, if b e A(e), then there are two solutions yl9 y2 of (l) defined in an interval 



which contains <a, a + e) and such that yx(a + e) < y2(a + e). Denote 1(b) = 
— <yi(« + e)> y2^ + e)>- To every fc e A(e) we have thus assigned a nondegenerate 
interval 7(b). (This interval depends on the functions yl9 y2, and consequently, it is 
not uniquely determined. The only important point is that it is nondegenerate.) 
Obviously /(bj) nl(b2) = 0 if bx 4= b2, for we suppose that the equation has the 
property of backward uniqueness. As any set of nondegenerate disjoint intervals is 
at most countable, the set A(e) is also at most countable. 

Let {rn} be a sequence containing just all the positive rational numbers. Now, it 
+ 00 

suffices to take into account that A = (J A(rn) and that the countable union of at 
n = l 

most countable sets is, again, at most countable. The theorem is proved. 

The previous theorem shows the worst possibility of nonuniqueness in the forward 
direction in case Equation (2) has the property of backward uniqueness. In the fol
lowing theorem we shall see that this "worst" case may, as a matter of fact, occur. 
The symbols C<a, b) and C1<a, b) will have the usual meaning of the sets of all 
continuous and continuously differentiable functions on the interval <a, b), respec
tively. 

Theorem 2. Let a < b, letfQ,fi e Cx(a, b) be any two functions such thatf0(a) < 
< fi(a) and ft — f0 is increasing on the interval <a, b>. Let 

G = {(x, y) : a = x £ b, f0(x) = y = / , ( x ) } . 

Then there is a continuous function <p : G -+ R such that: 

1. For each xe(a, b), q> is a nondecreasing function of the variable y on the 

interval </0(x),/i(x)>3 

2. For each c e <a, b), there is a countable set H(c), dense in the interval </0(c), 
fi(c)) and such that for each deH(c), ee(0,b — c), the initial-value problem 

(3) / = <p(x, y) , y(c) = d 

has more than one solution in the interval <c, c + e). 

Note . The first assertion of the theorem implies that the differential equation y' = 
= q>(x, y) has the property of backward uniqueness in D. 

Before proving the theorem we shall state several lemmas and introduce some 
notations. 

For f: <a, b) -+ R, g : <a, b) -+ R we shall write f <g if f(x) = g(x) for each 
xe <a, b). In the space C1(ka9 b) we introduce the norm, for example, by the rule 

||/|| - max (|/(x)| + \f'(x)\) 
a£x£b 

for / e C\a, by. 



Lemma 1. Let f, g e C\a, by, f < g. Define h: <a, by -> R by h(x) = i(/(*) + 
+ g(x)), x e <a, b>. Then h e CA<a, b>, f < h < g, \\h - f | | = ||^ - h|| = 
= i | |g ~ / | | - ^ n addition, if g — f is increasing on an interval I a <a, b>, fhen 
both the functions h — f, g — h arc increasing on I as well. 

Proof. Obvious. 

Lemma 2. Letfe C*<w, v> be increasing on <w, v>, w < u. Then fhere is a function 
g e C*<w, v> sweh that: 

1. g Is increasing on <w, v>, a(w) = g'(w) = 0; 
2. f — g is a/so increasing on <w, v>. 

Proof. Choose a number q e (0, 1) and define a function h : <w, v> -> JR by 

h(x) = min (qf'(x), x — w) , x e <w, v> . 

Clearly h e C<w, v>, h(w) = 0, 0 g h(x) ^ qf'(x) for x e <w, v>. As f is increasing 
on <w, v>, there is no nondegenerate interval I such that h is identically equal to zero 
on L The function g defined by 

g(x) = p,(í) dř, x є <w, vy 

is, therefore, increasing on <w, v>. In addition, g e C*<w, v>, a(w) = g'(w) = 0. 

For any two real numbers x, y9 u ^ x < y _ v9 we have #(>;) — g(x) = j"J h(t) dt ^ 

^ 9 Rf'(t)d< = «(/M - /(*)) < Ay) - /(*) s o t hat f(>0 - ff(y) > f(x) - g(x). 
The function f — g is, therefore, increasing on <w, v> and the lemma is proved. 

Lemma 3. Let c e <a, b>, f, g e C*<a, b>, f <̂ g and let g — f be increasing on 

<c, b>. Then there is a function h e Cx(a, by,f<h<g, such that: 1. h(x) = f(x) 

for each x e <a, c>; 2. Bofh the functions h — f, g — h arc increasing on <c, b>. 

Proof. The function p, p(x) = g(x) — f(x), x e <c, b> is, by the hypothesis of the 

lemma, increasing on <c, b> and p e C*<c, b>. According to Lemma 2, there is a func

tion q e C*<c, b>, increasing on <c, b>, q(c) = q'(c) = 0 and such that p — q is 

also increasing on <c, b>. Define h : <a, b> -> .R by h(x) = f(x) for x e <a, c>, 

h(x) = f(x) + q(x) for x e <c, b>. Because of q(c) = q'(c) = 0 we have h e C*<a, b>. 

Since h(x) — f(x) = q(x), x e <c, b>, h — f is, consequently, increasing on <c, b>. 

Since g(x) — h(x) = g(x) — f(x) — q(x) = p(x) — g(x), x e <c, b>, then the fact 

that p — q is increasing on <c, b> implies that the function g — h is increasing on 

<c, b>, and the lemma is proved. 

N o t e . In the sense of the above given construction, the function h is said to be 

obtained by splitting f at point c in the direction to g. In addition tof, we no whave 

another function h, which coincides with f on the interval <a, c> andf -< h < g. 



L e t / o , / ! be two functions fulfilling the assumptions of Theorem 2. Denote 

F = {fife C\a, by, f0(x) ^ f(x) = fx(x), x e <a, b>} . 

Let A be a subset of F. We shall say that A has the pioperty V, if the following three 
conditions hold: 

1. A is finite. 
2. For any two functions/, g e A, e i ther/ -< g o r / > g. (A is, therefore, linearly 

ordered with respect to the relation -<.) 
3. Iff g e A,f -< g, then g — fis nondecreasing on <a, b>. If, in addition, f(c) < 

< g(c) for some c e <a, b>, then g — f is increasing on <c, b>. 
Suppose A cz F has the property V. Let f, g e A, f 4= g,f< g. We shall say that 

f, g are adjacent in A if, for each he A such that f •< h -< g, either h = f or h = g. 

Lemma 4. For each n eN there is a set Sn c F with the property V, such that the 
following five conditions hold: 

l.f0eSn,fxeSn; 
2. iff, g e Sn are any two functions adjacent in Sn, then 

(4) | | 0 - / | | £ 2 - C 

where C = 2\\ft - f0\\: 

3. if fe Sn, f + fi, then f(x) < fr(x) for each x e (a, by; 
4. Sn cz Sn+1; 

5. for each feSn,f+ fi9 and for each interval I c <a, b> of length l/n, there 
is a number eel and a function g e Sn + l such that g(x) = f(x) for x e <a, c>, 
g(x) > f(x)for x e (c, by. 

Note . If the set Sn+i fulfils the conditions 4 and 5 we shall say that Sn+l has the 
property V„ with respect to Sn. 

Proof. We shall construct the,sequence {Sn} inductively. 

1. Assume Sx contains just the two functions f0,fi- Clearly Sx fulfils the first 
three conditions of the lemma. 

2. Suppose n = 1, let Sn be already defined fulfilling the first three conditions of 
the lemma. First, we shall construct an auxiliary set Rn a F with the property V 
which should have the property Vn with respect to Sn. In the beginning, choose r e N 
and real numbers x0 < xt < ... < xr such that x0 = a, xr = b, xt — xi_1 :g l/n 
for i == 1, 2 , . . . , r. Obviously the set of all points (xt,f(xi)) where feSn, f 4= fx 

and i = 0 , 1 , . . . , r - 1, is finite. We denote these points Al9 A2,..., As (the order is 
of no importance). Denote Tx = Sn. Considering, at first, the point Ax = (u, v), 
there is a function / e Tx such thatf(w) = v and, ifheTt is any other function which 
fulfils h(u) = v, then h -<f Furthermore, there is a function g e Ti9 g > f which is 



adjacent to fin Tx. Such a function must exist because off(w) < fi(w). (As a matter 
of fact, f(x) < fi(x) for all x e <a, by.) Now, we split f at u in the direction to g9 in 
the sense of Lemma 3, thus obtaining a function h e C^a, b}9 f < h -< g9 which 
coincides with f just on <a, w>. Joining h to Tx we obtain a set T2. Lemma 3 implies 
that, again, T2 has the property V. Now, considering A2 we obtain a new function 
by splitting an appropriate function at the ̂ -coordinate of A2 (by the same method 
as in the previous case, considering, of course, the set T2 instead of Tt). Joining this 
new function to T2 we get a set T3 which also has the property V. In this way, we 
successively consider all the points Ai9 i = 1,2,..., s, thus obtaining the set 
Ts+1 which, again, has the property V. At last we denote Rn = Ts+i. It is easy 
to see that Rn has the property Vn with respect to Sn. In addition, Rn obviously 
fulfils the first three conditions of our lemma (of course, after replacing in them Sn 

by Rn). 
3. Now, for each two functions f9g e Rn which are adjacent in Rn and f -< g we 

construct a function h by the rule h(x) = i(f(x) + g(x)), * e <a, b}. By the in
duction hypothesis, Inequality (4) holds for f, g. Hence, Lemma 1 implies h e 
e C\a9 by9f<h<g and \h - f | | = \\g - h\\ g C 2~"_1. Joining the set of all 
functions obtained in this way to the set Rn we get the set Sn+l. Obviously Sn+l has 
the property V. Moreover, Sn+l fulfils the first three conditions of the lemma. Since 
Sn+l -=> Rn and Rn has the property Vn with respect to Sn9 then Sn+l also has the 
property Vn with respect to Sn. The lemma is proved. 

In the following, for a given function f : D -+ R the symbol <f> should denote the 
grapfy off, that is, the set of all points (x9f(x)) where xe D. 

Let Si, S2,... be sets which fulfil the hypotheses of Lemma 4. Denote 

+ oo +oo 

<s*> = U < / > , s = [)si9 <s> = u <Si>-
feSn i = l i = l 

Now, we define a function cp : <S> -> R by the following rule: if (x9 y) e S, then 
there is n e N and a function feSn such that y = f(x). So we define 

<K*> y) = / ' (*) • 

Because of the properties of the set Sn and in view of the inclusion Sn cz Sn+i, 
neN, the value <p(x9 y) depends neither on n nor on f. The function q> is, therefore, 
uniquely determined. 

Consider now the properties of cp. For each x e <a, b} let 

I, ={(x,y):f0(x)£y£fl(x)}, 

Px = <S}nIx. 

Lemma 4 (the second property, Relation (4)) implies that Px is dense in Ix so that <S> 
is dense in G. Furthermore, Px is countable, since S„ is finite for each neN. 



Lemma 5. F0r each x e <a, by, cp is a non deer easing function of the variable y 
on <5>, that is, on Px. 

Proof. Let (x, c) e Px, (x, d) e Px, c < d. Then there are n eN and two functions 
/ , g eSn such that f(x) = c, g(x) = d. Since Sn has the property V, we have f <g 
so that g — / is nondecreasing on <a, b>. Hence g'(x) ^ / ' (* ) , that is, cp(x, d) = 

_ <p(x, c), which proves the lemma. 

Lemma 6. For each x e <a, b>, cp is uniformly continuous on Px. 

Proof. Let e > 0. Then there is neN such that C2~n < \e, where C = 
= 2\\ft — / 0 | j . The set Sn contains at most a finite number of functions, hence <S„> 
intersects Ix in a finite number of points (belonging, therefore, to Px) (x, y), i = 
= 0, 1, . . . , r, y0 < yt < ... < yr where y0 = f0(x), yr = fi(x)- Because of Inequality 
(4) we have y{ - y^-t < %e, cp(x, yt) - cp(x, yi-^) < \e for i = 1, 2, ..., r. Let 
5 = min (y( — yi-t). Since cp is nondecreasing in the variable y, then for (x, u), 

(x,v)ePx, 0 < v — u < d, the inequality cp(x, v) — cp(x, u) < e must hold. Since 
e > 0 was arbitrary, the lemma is proved. 

Since the function cp is uniformly continuous on Px and Px is dense in Ix, the 
function cp can be uniquely continuously extended onto the whole Ix. This extension 
we denote, again, by cp. Since x is an arbitrary point from <a, b>, the function cp is, 
therefore, extended onto the whole set G. 

Lemma 7. The function cp is continuous on G. 

Proof. On the one hand, cp is continuous and nondecreasing (in the variable y) 
on Ix for each x e <a, &>. On the other hand, cp is continuous on each curve </> 
where /e S. We shall only show that cp is continuous at each interior point (c, d) e G. 
The continuity at the boundary points of G can be proved by an easy modification. 
So let a < c < b, f0(c) < d < fi(c), let e > 0. The continuity of cp on Ic implies 
the existence of a number A > 0 such that, if y e(d — A, d + A), then 

(5) cp(c, d) - e < cp(c, y) < cp(c9 d) + e . 

Since Pc is dense in Ic, there are functions f,geS such that d — A < f(c) < d < 
< g(c) < d + A. As/ , g are continuous and, moreover, <p is continuous on </>, <g>, 
there is a number S > 6 such that, if x e (c — d, c + 3), then f(x) < g(x) and 

(p(x9f(x)) > (p(cj(c)) - e ; <p(x,g(x)) < cp(c, g(c)) + e . 

Now, using Relation (5) we obtain 

<p(x>f(x) > <p(c> d) - 2e ; <p(x, g(x)) < <p(c, d) + 2e . 



Since <p is nondecreasing in the variable y, the inequality 

q>(c, d) — 2e < cp(x, y) < cp(c, d) + 2e 

must be true in U = {(x, y) : c - 6 < x < c + 8, f(x) < y < g(x)}. Because e > 0 
was arbitrary, the last relation implies that q> is continuous at the point (c, d). The 
lemma is proved. 

Proof of Theorem 2. We shall show that the just constructed function cp fulfils 
all the conditions of our theorem. First, by Lemma 7, cp is continuous on G. Further
more, the first condition of the theorem follows from Lemma 5. It remains to prove 
the second condition. Let c e (a, b), H(c) = {y : (c, y) e Pc, y < fi(c)}. The set Pc is 
dense in Ic, so that H(c) is dense in <f0(c),fi(c)>. Moreover, H(c) is at most countable. 
Let d e H(c), e e (0, b — c> be arbitrary. Because of d e H(c) we have (c, d) e Pc and, 
therefore, there are neN and a function fe Sn such that d = f(c). From d < ft(c) 
it follows that f +f1# The function f is, of course, a solution of the initial-value 
problem (3). We shall show that there exists another solution of (3) which differs 
from f at least at one point of the interval <c, c + e). As Sn c Sn + 1, neN, we may 
assume n to be so large that n'1 < e. Now, by the fifth property of Lemma 4, there 
is a number u e <c, c + e) and a function # e Sri+l such that ^(x) = f(x) for x e 
e <a, M>, g(.x) > f(x) for x e (w, b>. The function g is, therefore, another solution 
of the initial-value problem (3) which, moreover, differs from fin the interval (u, b>. 
We see that the set H(c) fulfils all the requirements. The theorem is proved. 

By an easy modification of the proof given above the following theoiem can be 
proved. 

Theorem 3. There is a continuous function f: R2 -> R such that 

1. the differential equation y' = f(x, y) has the property of backward uniqueness; 
2. for any a e R there is a countable set H(a) dense in R and such that for each 

e > 0, be H(a), the initial-value problem y' = f(x, y), y(a) = b has more than one 
solution on the interval <a, a + e). 
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