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Časopis pro pěstování matematiky, roč. 108 (1983), Praha 

ON A PROBLEM OF L. MlSlK 

H. W. Pu, H. H. Pu, College Station 

(Received February 12, 1982) 

Let X be a topological space, @ a basis for the topology, and f a real valued 
function on X. In [2], L. Misik defined the following notions: 

A c X has the property M\($) if, for each Be® with BnA + 0, BnA is 
uncountable, where B denotes the closure of B; 

fe 9Mi(^) if, for each real a, the sets {x :f(x) < a] and {x :f(x) > a} have the 
propeity M\($); 

fe Q)0($) if, for each Be&, x,yeB, real numbers a such that f(x) < a < f(y) 
and e > 0, there exists £ e B with f(£) e (a - s, a + e); 

fe 2(31) if, for each B e 28, x,yeB, real number a such that f(ix) < a < f(y), 
there exists £eB with f(£) = a. He proved that the classes W^ffl) and 3)o(0&) are 
closed under uniform convergence. Clearly 3)($) c ^ 0 (^) - Also, ®(#) c W^) 
if each £ e & is uncountable. Thus, if X is a topological space in which open sets 
are uncountable, and if {fw} is a sequence in Q)($) converging uniformly to f, then 
feW^$) n 30(O). He raised the question whether every feW[(^) n ®0(#) i s 

the limit of a uniformly convergent sequence in Q)($). 

In the present paper, a negative answer to the above question is given. On the other 
hand, a subclass of W±($) n Q)0($) is found to be the uniform closure of $)($) 
under certain conditions in Theorem which includes a result in [ l ] . Furthermore, 
we discuss the possibility of a generalization to transformations on X. 

In the sequel, we assume that each B e 08 is uncountable. 

Definition 1. r(^) is the class of functions f such that, for each pair of numbers 
a < b, the set {x : a < f(x) < b} has the property M'^0). 

As MiSik did for the class 3Mi(^), we can easily show that ®(@) c r(3i) and iT(@) 
is closed under uniform convergence. Consequently, iff is the limit of a uniformly 
convergent sequence in 9)($), thenf e y(®) n 9)0($). Now we give a negative answer 
to the above mentioned question by constructing a function fe Wx($) n Q>0(&) -
- r(3S). 
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Let X be the real line, B8 the collection of all open intervals, A the set of all irra
tionals in (0,1) and H a countable dense subset of A. Enumerate all open intervals 
in (0,1) with rational endpoints as {Jn}n=i- We can pick xx + yx in H n Jt and 
xn * yn in H n Jn - {xftzl - {y,-fci for n > 1. Let Hi = {xn : n = 1, 2,...} 
and H2 = {yn : n = 1, 2, . . .}. Then Hi n H2 = 0 and they are dense subsets of H. 
Applying the same process to H2, we obtain disjoint dense subsets H2 and H'3 of H2. 
By induction, for each n > 1, Hn has two disjoint dense subsets Hn and H^+i- Let 

Hx = H - U Hn (it should be noted that Ht => Hi). Then H = (J H„ and {Hn} 
n = 2 n=-l 

is a sequence of mutually disjoint dense subsets of (0,1). By Lemma 4.1 in [l] , 
A — H = A1 u .A2, where At n A2 = 0 and A1? A2 are c-dense in A — H, that is, 
for i = 1,2, the set At n U is uncountable whenever IT is an open set with U n 
n (A — H) 4= 0. We define f as follows: 

f(x) = x if x e l - i , 

= 0 if xeAx, 

= 1 if xe A2 , 

= r„ if x G H„ , 

where {rB} is an enumeration of all rationals in (0,1). It can be checked without dif
ficulty that fe SRi(^) n @0(@). However, {x : 0 < f(x) < 1} = H u ((0,1) - A) 
does not have the property Mi(^). Therefore f$ ir(^\ 

Definition 2. %(@) = -T(^) n 0O(^). 
Let Card X denote the cardinality of X, and c that of the continuum. Suppose 

Card X = c and Card J1 ^ c. Then we have the following 

Theorem, fe °U(0f) if and only if it is the limit of a uniformly convergent sequence 
in ®($). 

To prove the theorem, we need a lemma which follows immediately from Lemma 1 
in [3]: 

Lemma. Let A be a set with Card A = c, $Fa family of subsets of A such that 
0 < Card SF ^ c and Card F = c for each F eSF. Then there exist pairwise dis
joint sets A0, A1,..., A11, ... (ft < Q, the first ordinal number corresponding to c) 
in A such that 

1° U{-4* : 0 = /x < Q] = A, 
2° Card F n _4M = c for every F e3F and every \i < Q. 

Proof of Theorem. The "if" part was already mentioned preceding the example. 
Now we assume that fe <%(&) and e > 0. It is sufficient to show that there exists 
g e Q}(0i) such that |f(x) - g(x)\ < e for every xeX. 
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The real line can be decomposed as U /„, where each In = [fce, (fc + 1) e) for 

some integer fc. Let An = f~l(ln), where ln is the interior of Jn. Since fe < 
), for each Be 31 and each n, we have either B n An = 0 or Card B n An = c. 

For the n's such that Ah # 0, we have Card An = c, 0 < Card #*„ = c, where 
#-n = {B n A„ : B e @ and 5 n 4 + 0}, and Card B n An = c for each B n i . e 
e J^„. By the lemma, there are pairwise disjoint sets A?n, 0 g /x < Q, such that 4̂n = 
= \J{A* :Q ^ fi < Q} and Card B n i J = c for each JB e ^ with B n AL„ * 0 
and each ft, Q ̂  fi < Q. 

For each n with 4̂rt =# 0, let T„ be an onto map from {// : 0 g // < .Q} to In and 
let gn be defined on An by 

g„(x) = TB(AI) if x e A S . 

Clearly #,.(£ n A.,) = In for each B e @ such that B n An + 0. We define # as follows: 

G(X) = gnC*) -f * ~ An for some n , 

= f(x) otherwise . 

It is immediate that |f(.*) — g(x)\ < e for every xeX. Now we prove that g e : 
Let B e &, x, ye B and g(x) < a < g()>) be given. We want to show that a e g(B). 
If f(x) < a < f(>>), a eI„ for some n, then there exists reln such that f(x) < r < 
< f(y). It follows from fe %($) cz ®0($) that 5 n An # 0. Thus a e/w cz In = 
= #„(£ n A„) cz g(B). If a ^ f(x), then g(x) < a ^ f(x) and hence there must be 
some nx such that xeAni. Now we have g(x)elni, f(x)elni, and x e S n ^ -
Consequently, a e IM1 = ani(£ n AWl) cz a(B). If a = f(y), then f(>>) = a < g(y) and 
>; G A„2 for some n2. Similar to the above, ae /„ 2 cz g(B). The proof is completed. 

Remark 1. From Definition 2, we can easily prove that fe <%($) if and only if, 
for each Be^,x,yeB and each countable set D cz B, J n f(B — D) is dense in J, 
where J is the interval with f(x) and f(y) as endpoints. If X and ^ are taken as the 
real line and the collection of all open intervals respectively, then °U(88) becomes the 
class °U in [1]. Thus the above theorem includes the corresponding result in [1]. 

Remark 2. The definitions of the classes $J0($), @(@), f (J*) can be given in the 
following version by which we can generalize these concepts to transformations from 
X to a topological space Y: 

feQ)0($) if, for each Be@, f(B) is connected whenever B is a set such that 
B cz 5 cz B; 

fe $)($) if, for each Be Si, f(B) is connected whenever B is a set such that B cz 
c 5 c S ; 

fe *r($) if, for each B e @ and each open set Vin Y such that B nf'^V) * 0, 
CardJ5nf_1(V) = c. 
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Let Ybe a fixed metric space. Consider the classes of transformations from X to K 
It can be shown that 9(a) c <%($) which is defined to be -T(0) n 90(a), and 
Y(a) is closed under uniform convergence. It is interesting to know whether 90(a) 
is still closed under uniform convergence and what is the uniform closure of the class 
9(a). 
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