Časopis pro pěstování matematiky

Bohdan Zelinka
Pure circuits in cube graphs

Časopis pro pěstování matematiky, Vol. 108 (1983), No. 3, 239--240
Persistent URL: http://dml.cz/dmlcz/118170

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

PURE CIRCUITS IN CUBE GRAPHS

Bohdan Zelinka, Liberec

(Received May 4, 1982)

A graph of the n-dimensional cube is the graph Q_{n} whose vertex set is the set of all Boolean vectors (i.e. vectors whose coordinates are equal to 0 or 1) of the dimension n and in which two vertices are adjacent if and only if they differ in exactly one coordinate.

A pure circuit in a graph G is a circuit C which is an induced subgraph of G (i.e. all edges of G joining two vertices of C belong to C).

By $\lambda(n)$ we denote the maximum length of a pure circuit in Q_{n} for $n \geqq 2$.
In [1] A. Kotzig proposed the problem to find the exact values or at least good estimates of $\lambda(n)$ for small values of n; the values $\lambda(2)=4, \lambda(3)=6, \lambda(4)=8$ and $\lambda(5)=14$ were presented in that paper. (These are the only values known at present.) We shall give some bounds for $\lambda(n)$.

Theorem 1. Let n be an integer, $n \geqq 2$. Then

$$
\lambda(n+1) \geqq \frac{3}{2} \lambda(n)
$$

for $\lambda(n) \equiv 0(\bmod 4)$ and

$$
\lambda(n+1) \geqq \frac{3}{2} \lambda(n)-1
$$

for $\lambda(n) \equiv 2(\bmod 4)$.
Proof. Consider the graphs Q_{n}, Q_{n+1} of cubes of dimensions n and $n+1$, respectively. Let M_{0} (or M_{1}) be the subset of the vertex set $V\left(Q_{n+1}\right)$ of Q_{n+1} consisting of all vectors with the last coordinate 0 (or 1 , respectively). Let G_{0} (or G_{1}) be the subgraph of Q_{n+1} induced by the set M_{0} (or M_{1}, respectively). Let φ_{0} (or φ_{1}) be the mapping of $V\left(Q_{n}\right)$ into $V\left(Q_{n+1}\right)$ such that for each n-dimensional vector v the image $\varphi_{0}(\boldsymbol{v})$ (or $\varphi_{1}(\mathbf{v})$) is the $(n+1)$-dimensional vector obtained from \mathbf{v} by adding the $\left(n+1\right.$)-th coordinate equal to 0 (or 1 , respectively). Clearly φ_{0} (or φ_{1}) is an isomorphic mapping of Q_{n} onto G_{0} (or G_{1}, respectively). Now let C be a pure circuit in Q_{n} of the length $\lambda(n)$. Let the vertices of C be $u_{0}, u_{1}, \ldots, u_{\lambda(n)-1}$ and let the edges of C be $u_{i} u_{i+1}$ for $i=0,1, \ldots, \lambda(n)-1$, the sum $i+1$ being taken modulo $\lambda(n)$.

The graph Q_{n} is bipartite and all circuits in it have even lengths; hence $\lambda(n)$ is even. If $\lambda(n) \equiv 0(\bmod 4)$, we construct a circuit C^{*} in Q_{n+1} in the following way. For each i such that $0 \leqq i \leqq \lambda(n)-4$ and $i \equiv 0(\bmod 4)$ we construct a path P_{i} from $\varphi_{0}\left(u_{i}\right)$ into $\varphi_{0}\left(u_{i+4}\right)$ having the vertices $\varphi_{0}\left(u_{i}\right), \varphi_{0}\left(u_{i+1}\right), \varphi_{0}\left(u_{i+2}\right), \varphi_{1}\left(u_{i+2}\right), \varphi_{1}\left(u_{i+3}\right)$, $\varphi_{1}\left(u_{i+4}\right), \varphi_{0}\left(u_{i+4}\right)$. The citcuit C^{*} is the union of the paths P_{i} for all i with the described property; its length is $\frac{3}{2} \lambda(n)$. If $\lambda(n) \equiv 2(\bmod 4)$, we construct the paths P_{i} in the same way for each i such that $0 \leqq i \leqq \lambda(n)-6$ and $i \equiv 0(\bmod 4)$. Further, we denote by P^{\prime} the path from $u_{\lambda(n)-2}$ to u_{0} of the length 2 with the inner vertex $u_{\lambda(n)-1}$. Now C^{*} will be the union of P_{i} for all i with the described property and of P^{\prime}; its length is $\frac{3}{2} \lambda(n)-1$. It remains to prove that C^{*} is a pure circuit in Q_{n+1}. Suppose that there are two vertices of C^{*} which are joined by an edge not belonging to C^{*}. If they are both in M_{0}, then they are $\varphi_{0}\left(u_{j}\right), \varphi_{0}\left(u_{k}\right)$ for some j and k such that $|j-k| \neq 1(\bmod \lambda(n))$. As φ_{0} is an isomorphism, the vertices u_{j}, u_{k} are adjacent in Q_{n} and the edge $u_{j} u_{k}$ joins two vertices of C and does not belong to C, which is a contradiction with the assumption that C is a pure circuit in Q_{n}. Analogously if both these vertices are in M_{1}. If one of them is in M_{0} and the other in M_{1}, then they are $\varphi_{0}\left(u_{j}\right), \varphi_{1}\left(u_{j}\right)$ for some j. From the construction of C^{*} it is clear that this is not possible. Hence C^{*} is a pure circuit in Q_{n+1}, which yields the assertion.

Corollary. Let n be an integer, $n \geqq 5$. Then

$$
\lambda(n) \geqq 12 \cdot\left(\frac{3}{2}\right)^{n-5}+2 .
$$

This follows immediately from Theorem 1 and the fact $[1]$ that $\lambda(5)=14$.
Theorem 2. Let n be an integer, $n \geqq 2$. Then

$$
\lambda(n) \leqq 2^{n-1}(1+1 /(n-1))
$$

Proof. Let C be a pure circuit in Q_{n} of the length $\lambda(n)$. Each vertex of C is adjacent to $n-2$ vertices not belonging to C. Each vertex not belonging to C is adjacent to at most n vertices of C. Thus for the number $2^{n}-\lambda(n)$ of vertices not belonging to C we have

$$
2^{n}-\lambda(n) \geqq(n-2) \lambda(n) / n
$$

This implies our inequality.

Reference

[1] A. Kotzig: Selected open problems in graph theory. In: Graph Theory and Related Topics, Academic Press, New York 1979.

Author'c address: 46001 Liberec 1, Felberova 2 (katedra matematiky VŠST).

