Časopis pro pěstování matematiky

Pavel Komárek
On good characterizations for digraphs

Časopis pro pěstování matematiky, Vol. 111 (1986), No. 4, 424--430
Persistent URL: http://dml.cz/dmlcz/118289

Terms of use:

© Institute of Mathematics AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON GOOD CHARACTERIZATIONS FOR DIGRAPHS

Pavel Komárek, Praha

(Received June 14, 1984)

Suppose a class \mathscr{G} of digraphs is characterized in two ways: by the nonexistence of a homomorphism from some fixed digraph A (this fact is denoted by $\mathscr{G}=A \leftrightarrow$) and by the existence of a homomorphism to some fixed digraph B (this is denoted by $\mathscr{G}=\rightarrow B$). The equality $A \rightarrow=\rightarrow B$ will be then called a good characterization. The importance of good characterizations consists in the fact that every theorem of this type makes the efficient solution of the appertaining problem possible.

The aim of this paper is to show some new good characterizations. Further, we shall prove one necessary condition for the digraphs A which appear in good characterizations of this type.

1. INTRODUCTION

In the beginning we shall present some necessary definitions and facts. Denote the set of all digraphs (without loops and multiple edges) as \mathscr{D}. A homomorphism h in \mathscr{D} from a digraph $G=(V(G), E(G))$ to a digraph $H=(V(H), E(H))$ is a mapping $\left.h: V(G) \rightarrow V^{\prime} H\right)$ such that $(x, y) \in E^{\prime}(G) \Rightarrow(h(x), h(y)) \in E(H)$.

Suppose $G, H \in \mathscr{D}, h$ is a homomorphism from G to H; we denote by $h(G)$ the subgraph of H defined by

$$
\left.h(G)=\left(\left\{h^{\prime} v\right) ; v \in V(G)\right\},\left\{\left(h\left(v_{1}\right), h\left(v_{2}\right)\right) ;\left(v_{1}, v_{2}\right) \in E(G)\right\}\right) .
$$

Further, we introduce the following classes of graphs:
$A \rightarrow$ is the class of all digraphs $G \in \mathscr{D}$ such that there is no homomorphism from A to G.
$\rightarrow B$ is the class of all digraphs $G \in \mathscr{D}$ such that there exists a homomorphism from G to B.
An other concept to be defined is the good characterization (Edmonds, 1965). In this paper we will understand a good characterization as a relation $A \rightarrow=\rightarrow B$ (see [3]).

There are two known classes of good characterizations in \mathscr{D} :

$$
\begin{aligned}
& P_{n} \rightarrow=\rightarrow U_{n}(\text { for every } n \geqq 1)(\text { see }[4]) \text { and } \\
& A_{m, n} \rightarrow=\rightarrow B_{m, n} \cdot(\text { for every } m, n, m \geqq 2, n \geqq 2)(\text { see [2]). }
\end{aligned}
$$

2. THE NECESSARY CONDITION

We shall show here one necessary condition for the digraph A when $A \rightarrow=\rightarrow B$.
Definition 1. Let $C=(V, E)$ be a semicycle (defined as in [1]) on n vertices, let $V=\left\{v_{0}, \ldots, v_{n-1}\right\}$, let $E=E_{1} \cup E_{2}$, where E_{1}, E_{2} are defined by
$E_{1}=\left\{e \in E ; e=\left(v_{i}, v_{i+1}\right) ; i \in\{0,1, \ldots, n-1\}\right\}$,
$E_{2}=\left\{e \in E ; e=\left(v_{i+1}, v_{i}\right), i \in\{0,1, \ldots, n-1\}\right\}$, where $v_{n}=v_{0}$.
We call the semicycle C balanced iff $\left|E_{1}\right|=\left|E_{2}\right|=k(k=n / 2)$.
Lemma 1. The semicycle C is balanced iff there exists a directed tree T and a homomorphism h such that $h(C)=T$.

Proof.1) Suppose that $C=\left(\left\{v_{0}, \ldots, v_{2 k-1}\right\}, E\right)$ is balanced. We shall construct T as a directed path whose vertices will be integers. Define $h^{\prime}\left(v_{0}\right)=0$. Suppose $h\left(v_{i}\right)=$ $=m$. If $\left(v_{i}, v_{i+1}\right) \in E$, define $h\left(v_{i+1}\right)=m+1$. If $\left(v_{i+1}, v_{i}\right) \in E$, define $\left.h_{(}^{\prime} v_{i+1}\right)=$ $=m-1$. The semicycle C is balanced so that when we go through all the vertices of C (back to v_{0}), we must be again at the vertex 0 . This means that h is a homomorphism from C to the directed path T, where $V(T)=\{r, r+1, \ldots,-1,0$, $1, \ldots, s\}$ for some integers $r \leqq 0, s \geqq 0$.
2) Suppose that $C=\left(\left\{v_{0}, \ldots, v_{n-1}\right\}, E\right)$ is a semicycle, T is a directed tree and h is a homomorphism satisfying $h(C)=T$. For every $w \in V(T)$ define the height $H_{(}^{\prime}(w)$ by:
a) $H\left(h\left(v_{0}\right)\right)=0$;
b) $H(w)=m+1$, if there exists a vertex w^{\prime} such that $\left(w^{\prime}, w\right) \in E(T), H\left(w^{\prime}\right)=m$;
c) $H(w)=m-1$, if there exists a vertex w^{\prime} such that $\left(w, w^{\prime}\right) \in E(T), H\left(w^{\prime}\right)=\dot{m}$.

It follows that if $x, y \in V(T)$ satisfy $(x, y) \in E^{\prime}(T)$ then $H(y)=H(x)+1$.
Let $e=\left(v_{i}, v_{i+1}\right) \in E\left(\right.$ so that $\left.e \in E_{1}\right)$; then $\left.\left(h\left(v_{i}\right), h_{(}^{\prime} v_{i+1}\right)\right) \in E(T)$ and $H\left(h\left(v_{i+1}\right)\right)=$ $\left.\left.=H_{(}^{\prime} h^{\prime} v_{i}\right)\right)+1$. On the other hand, let $e^{\prime}=\left(v_{j+1}, v_{j}\right) \in E$ (so that $e^{\prime} \in E_{2}$); then $\left.\left(h^{\prime}\left(v_{j+1}\right), h^{\prime} v_{j}\right)\right) \in E(T)$ and $\left.\left.H\left(h_{j+1}\right)\right)=H\left(h_{(}^{\prime} v_{j}\right)\right)-1$. Starting at v_{0} and going through all the vertices of C back to v_{0}, we must, in T, get to $h\left(v_{0}\right)$, with height $\left.H\left(h^{\prime} v_{0}\right)\right)=0$. It follows that $\left|E_{1}\right|=\left|E_{2}\right|$.

Theorem 1. Let A, B be two digraphs satisfying $A \rightarrow=\rightarrow B$. Then all semicycles contained in A are balanced.

Proof. Suppose that there exist digraphs A, B such that $A \rightarrow=\rightarrow B$ and A contains a non-balanced semicycle C. Put $\left.k=\mid E_{i}^{\prime} C\right) \mid$. Lemma 1 implies that for every homomorphism h the digraph $h(C)$, and then also $h(A)$, contains a semicycle C_{1}, where $\left|E\left(C_{1}\right)\right| \leqq k$. This means that every digraph which is not from the class $A \rightarrow$ must contain a semicycle $C_{1},\left|E\left(C_{1}\right)\right| \leqq k$. We shall use here the following theorem: For any natural numbers n, c, there exists a digraph G whose chromatic number $\chi(G)>c$ and such that G contains no semicycle C_{1} with $\left|E\left(C_{1}\right)\right| \leqq n$.

Putting $c=\chi(B)$ and $n=k$, we see that there exists a digraph G with $G \in A \rightarrow$ but $G \notin \rightarrow B$. This contradicts $A \rightarrow=\rightarrow B$.

3. GOOD CHARACTERIZATIONS

Now we shall define an infinite family of digraphs $A_{m, n, p, q}$ - examples are in Fig. 1 - and show that for every $A_{m, n, p, q}$ there exists a digraph $B_{m, n, p, q}$ such that $A_{m, n, p, q} \rightarrow=\rightarrow B_{m, n, p, q}$.

Definition 2. Let m, n, p, q be integers, $0 \leqq p \leqq n-2,0 \leqq q \leqq m-2$. By $A_{m, n, p, q}$ we denote the digraph (V, E), where

```
\(V=\left\{0, \ldots, m, m+1, \ldots, m+p,-q^{\prime}, \ldots,-1^{\prime}, 0^{\prime}, 1^{\prime}, \ldots, n^{\prime}\right\}\),
\(E=\{(i, i+1) ; i=0, \ldots, m+p-1\} \cup\left\{\left(i^{\prime}, i+1^{\prime}\right) ; i=-q, \ldots, n-1\right\} \cup\)
        \(\cup\left\{\left(0^{\prime}, m\right)\right\}\) (see Fig. 1 ).
```

Let us remark that the classes $A_{m, n, p, q} \rightarrow$ are mutually different.

$A_{5,4,1,3}$

$A_{4,5,2,1}$

Fig. 1
Definition 3. Let G be a digraph without directed cycles. Define the valuation of the vertices of G by $\mu(x)=\left(d_{1}, d_{2}\right)$, where $d_{1}\left(d_{2}\right)$ is the length of the longest directed path ending (styrting, respectively) at the vertex x.

Definition 4. Let $r \geqq 1$, define the digraph $F_{r}=\left(V_{r}, E_{r}\right)$ by

Fig. 2

$$
\begin{aligned}
& V_{r}=\{i j ; i \geqq 0, j \geqq 0,1 \leqq i+j \leqq r\} \\
& E_{r}=\left\{(i j, p q) ; i j, p q \in V_{r}, i<p, j>q\right\} \text { (see Fig. 2). }
\end{aligned}
$$

Definition 5. Let m, n, p, q be integers, $0 \leqq p \leqq n-2,0 \leqq q \leqq m-2$. Define two subsets $V_{L(q)}$ and $V_{U(p)}$ of V_{m+n-2} by

$$
\begin{aligned}
& V_{L(q)}=\left\{i j \in V_{m+n-2} ; j \geqq n, i \geqq q\right\} \\
& V_{U(p)}=\left\{i j \in V_{m+n-2} ; i \geqq m, j \geqq p\right\}
\end{aligned}
$$

(in Fig. 3, the vertex sets $V_{m+n-2}, V_{L(q)}$ and $V_{U(p)}$ are shown for $m=7, n=5, p=2$,

Fig. 3
$q=3$), define the set \bar{E} by

$$
\bar{E}=\left\{\left(v_{1}, v_{2}\right) \in E_{m+n-2} ; v_{1} \in V_{L(q)}, v_{2} \in V_{U(p)}\right\}
$$

Define now the digraph $B_{m, n, p, q}=\left(V^{\prime}, E^{\prime}\right)$ by $V^{\prime}=V_{m+n-2}, E^{\prime}=E_{m+n-2} \backslash \bar{E}$.
In Fig. 4 we see $B_{2,4,1,0}$.
The following lemma appears already in [2]:
Lemma 2. Let G be a digraph without directed cycles. Suppose for every $x \in V(G)$, $d_{1}+d_{2} \leqq r$ holds, where $\left(d_{1}, d_{2}\right)=\mu(x)$. In other words, its longest directed path contains at most r edges. There exists a homomorphism $h: G \rightarrow F_{r}$ satisfying the following conditions:

Let $x \in V(G), \mu(x)=\left(d_{1}, d_{2}\right)$.
a) If $d_{1}=d_{2}=0$, then $h^{\prime}(x)=01$.
b) Otherwise $\left(1 \leqq d_{1}+d_{2} \leqq r\right), h(x)=d_{1} d_{2}$.

Proof. For every $x \in V(G)$ the vertex $h(x)$ exists (see Definition 4). Let $v_{1}, v_{2} \in$ $\in V(G), \mu\left(v_{1}\right)=\left(d_{1}, d_{2}\right), \mu\left(v_{2}\right)=\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$. Let $\left(v_{1}, v_{2}\right) \in E(G)$. Then $d_{1}<d_{1}^{\prime}$ and
$d_{2}>d_{2}^{\prime}$ (see Definition 3). The definition of E_{r} implies that $\left(d_{1} d_{2}, d_{1}^{\prime} d_{2}^{\prime}\right) \in E_{r}$. This means that $\left(v_{1}, v_{2}\right) \in E(G) \Rightarrow\left(h\left(v_{1}\right), h\left(v_{2}\right)\right) \in E_{r}$ holds.

Fig. 4
Theorem 2. Let m, n, p, q be integers, $0 \leqq p \leqq n-2,0 \leqq q \leqq m-2$. Then (in the class \mathscr{D})

$$
A_{m, n, p, q} \rightarrow=\rightarrow B_{m, n, p, q} .
$$

Proof. a) First we shall prove that $A_{m, n, p, q} \rightarrow \subseteq \rightarrow B_{m, n, p, q}$. Let $G \in A_{m, n, p, q} \rightarrow$. This means that there is no homomorphism from $A_{m, n, p, q}$ to G. So, G contains no directed path P_{k} with $k \geqq m+n-1$ and no directed cycle. Hence, by Lemma 2,

Fig. 5
there exists a homomorphism h from G to F_{m+n-2}. Suppose now that there exists no homomorphism from G to $B_{m, n, p, q}$. That means that there exists an edge $\left(v_{1}, v_{2}\right) \in$ $\in E(G)$ such that $h\left(v_{1}\right) \in V_{L(q)}, h\left(v_{2}\right) \in V_{U(p)}$. There exists a directed path $P_{s}(s \geqq m)$ ending v_{2} and another directed path $P_{s^{\prime}}\left(s^{\prime} \geqq p\right)$ starting v_{2}. There exists also a directed path $P_{t}(t \geqq q)$ ending v_{1} and another directed path $P_{t^{\prime}}\left(t^{\prime} \geqq n\right)$ starting v_{1}. This is a contradiction with the assumption $G \in A_{m, n, p, q} \rightarrow$. It means that $A_{m, n, p, q} \rightarrow$ $\rightarrow \subseteq \rightarrow B_{m, n, p, q}$ holds.
b) It remains to prove that $\rightarrow B_{m, n, p, q} \subseteq A_{m, n, p, q} \rightarrow$. Let $G \in \rightarrow B_{m, n, p, q}$. Suppose that $G \notin A_{m, n, p, q} \rightarrow$. From these two statements it follows that there exists a homomorphism h from $A_{m, n, p, q}$ to $B_{m, n, p, q}$. There is a directed path P_{m} ending at the vertex m and also another directed path P_{p} starting at m (see Fig. 5); this means that $h(m) \in$ $\in V_{U(p)}$. There is a directed path P_{q} ending at the vertex 0^{\prime} and also another directed path P_{n} starting at 0^{\prime}; this means that $\left.h_{(}^{\prime} 0^{\prime}\right) \in V_{L(q)}$.

Fig. 6a

$A_{2,3,1,0}$
$B_{2,3,4,0}$
Fig. 6b

We have $\left(0^{\prime}, m\right) \in E\left(A_{m, n, p, q}\right)$, but there are no edges between $V_{L(q)}$ and $V_{U(p)}$ in $B_{m, n, p, q}$. This contradiction implies that if $G \in \rightarrow B_{m, n, p, q}$, then $G \in A_{m, n, p, q} \rightarrow$. The proof is complete.

Some examples of good characterizations are seen in Fig. 6.
Remark. Theorem 2 shows that there exist good characterizations $A \rightarrow=\rightarrow B$, where A contains vertices of degree 3 . This suggests that the following conjecture is perhaps not too adventurous:

Conjecture. For every orientation of a tree T there exists a digraph B such that $T \rightarrow=\rightarrow B$.

References

[1] F. Harary, R. Z. Norman, D. Cartwright: Structural Models: An Introduction to the Theory of Directed Graphs, John Wiley \& Sons, Inc., 1965.
[2] P. Komárek: Some New Good Characterizations for Directed Graphs, Čas. pěst. mat. 109 (1984), 348-354.
[3] J. Nešetřil: Theory of Graphs (Czech), Praha, SNTL (1979).
[4] J. Nešetřil, A. Pultr: On Classes of Graphs Determined by Factor Objects and Subobjects, Discrete Math. 22 (1978), s. 287-300.
Author's address: 11567 Praha 1, Žitná 25 (Matematický ústav ČSAV).

