Časopis pro pěstování matematiky

Ladislav Nebeský

Hypergraphs and intervals. III.

Časopis pro pěstování matematiky, Vol. 113 (1988), No. 1, 80--87

Persistent URL: http://dml.cz/dmlcz/118335

Terms of use:

© Institute of Mathematics AS CR, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

HYPERGRAPHS AND INTERVALS, III

Ladislav Nebeský, Praha

(Received December 18, 1985)

Abstract

Summary. Similarly to author's papers ,Hypergraphs and intervals" and Hypergraphs and intervals, $\mathrm{II}^{\prime \prime}$ a projectoid means an ordered pair (V, \mathscr{E}), where V is a finite nonempty set, \mathscr{E} is a set of nonempty subsets of V, and V can be ordered as a sequence $\left(v_{1}, \ldots, v_{|V|}\right)$ in such a way that for each $E \in \mathscr{E}$, there exist $i, j \in\{1, \ldots|V|\}$ such that $i \leqq j$ and $E=\{v, \ldots, v$,$\} . In the present$ paper special kinds of projectoids (called Σ-projectoids and active Σ-projectoids) are studied.

Keywords: hypergraph, sequence of vertices.
AMS Classification: 05C65.
The present paper is a free continuation of papers [1] and [2]. However, the results of Parts 1 and 2 of the present paper are independent of the results of [1] and [2].

0 . Let X and X^{\prime} be arbitrary sets. If at least one of the sets $X-X^{\prime}, X \cap X^{\prime}$, and $X^{\prime}-X$ is empty, we write $X \sim X^{\prime}$. Otherwise, we write $X \sim X^{\prime}$.

By a nonempty sequence we shall mean an arbitrary finite sequence (u_{1}, \ldots, u_{m}), where $m \geqq 1$. If $\alpha=\left(v_{1}, \ldots, v_{n}\right)$ is an arbitrary nonempty sequence ($n \geqq 1$), we define

$$
\langle\alpha\rangle=\left\{v ; \text { there exists } i \in\{1, \ldots, n\} \text { such that } v=v_{i}\right\} .
$$

If $\alpha_{1}=\left(v_{11}, \ldots, v_{1 n_{1}}\right), \ldots, \alpha_{k}=\left(v_{k_{1}}, \ldots, v_{k n_{k}}\right)$ are nonempty sequences (where $k \geqq 2$ and $n_{1}, \ldots, n_{k} \geqq 1$), then the sequence

$$
\left(v_{11}, \ldots, v_{1 n_{1}}, \ldots, v_{k 1}, \ldots, v_{k n_{k}}\right)
$$

will be denoted by $\alpha_{1} \ldots \alpha_{k}$. Moreover, we introduce the empty sequence ω satisfying $\alpha \omega=\alpha=\omega \alpha$ for any nonempty sequence α, and $\omega \omega=\omega$. By a sequence we shall mean either a nonempty sequence or the empty one.

Let V be a finite nonempty set with n elements. We denote by $V^{\#}$ the set of all sequences $\left(v_{1}, \ldots, v_{n}\right)$ such that

$$
\left\langle\left(v_{1}, \ldots, v_{n}\right)\right\rangle=V
$$

Obviously, $\left|V^{\sharp}\right|=n!$ (note that if X is a finite set, $|X|$ denotes the number of its elements). Let $\alpha \in V^{\#}$; we say that a set I is an interval set in α if there exists a nonempty sequence ι and sequences β and γ such that $\alpha=\beta \iota \gamma$ and $I=\langle\iota\rangle$; we denote
by Int (α) the set of all interval sets in α. If $A \subseteq V^{\#}$ and $A \neq \emptyset$, then we denote

$$
\operatorname{Int}(A)=\bigcap_{\alpha \in A} \operatorname{Int}(\alpha)
$$

Similarly to [1] and [2], by a hypergraph we mean an ordered pair (V, \mathscr{E}), where V is a finite nonempty set and \mathscr{E} is a set of nonempty subsets of V. If $H=(V, \mathscr{E})$ is a hypergraph, we write $V(H)=V$ and $\mathscr{E}(H)=\mathscr{E}$. If $H=(V, \mathscr{E})$ is a hypergraph, then we denote

$$
\Pi(H)=\left\{\alpha \in V^{\sharp} ; \mathscr{E} \subseteq \operatorname{Int}(\alpha)\right\}
$$

We say that a hypergraph H is a projectoid if $\Pi(H) \neq \emptyset$.
The following definition can be motivated by some results of papers [1] and [2]. Let H be a projectoid. We shall say that H is a Σ-projectoid if the following conditions hold:
(1) $V(H) \in \mathscr{E}(H)$,
(2) if $v \in V(H)$, then $\{v\} \in \mathscr{E}(H)$, and
(3) if $E, E^{\prime} \in \mathscr{E}(H)$ and $E \sim E^{\prime}$, then $E \cup E^{\prime}, E \cap E^{\prime}, E-E^{\prime} \in \mathscr{E}(H)$.

Theorem 2 in [1] can be reformulated as follows:

Lemma 0. If H is a Σ-projectoid, then $\mathscr{E}(H)=\operatorname{Int}(\Pi(H))$.
Let V be a finite nonempty set, and let $A \subseteq V^{*}, A \neq \emptyset$. It is obvious that $(V, \operatorname{Int}(\alpha))$ is a Σ-projectoid for each $\alpha \in A$. Combining this fact with (1)-(3) we can easily get that $(V, \operatorname{Int}(A))$ is also a Σ-projectoid. This observation together with Lemma 0 gives the following result:

Theorem 0. Let V be a finite nonempty set, and let H be a hypergraph such that $V(H)=V$. Then H is a Σ-projectoid if and only if there exists a nonempty subset A of $V^{\#}$ such that $\mathscr{E}(H)=\operatorname{Int}(A)$.

1. Let H be a Σ-projectoid. We denote

$$
\mathscr{F}(H)=\{F \in \mathscr{E}(H) ; F \sim E \text { for each } E \in \mathscr{E}(H)\}
$$

For every $F \in \mathscr{F}(H)$, we denote by $\mathscr{N}_{H}(F)$ the set of $F^{\prime} \in \mathscr{F}(H)$ such that F^{\prime} is a proper subset of F and if $F^{\prime \prime} \in \mathscr{F}(H)$ and $F^{\prime} \subseteq F^{\prime \prime} \subseteq F$, then either $F^{\prime}=F^{\prime \prime}$ or $F^{\prime \prime}=F$. Clearly, if $F \in \mathscr{F}(H)$, then $\mathscr{N}_{H}(F) \neq \emptyset$ if and only if $|F| \geqq 2$. Moreover, we denote by $\mathscr{F} *(H)$ the set of all $F \in \mathscr{F}(H)$ with the property that there exists a proper subset \mathscr{M} of $\mathscr{N}_{H}(F)$ such that $|\mathscr{M}| \geqq 2$ and

$$
\bigcup_{F^{\prime} \in \mathcal{M}} F^{\prime} \in \mathscr{E}(H) .
$$

Let $F \in \mathscr{F}(H)$ such that $\mathscr{N}_{H}(F) \neq \emptyset$, and let $\alpha \in \Pi(H)$. There exists exactly one sequence $\left(F_{1}, \ldots, F_{n}\right) \in\left(\mathscr{N}_{H}(F)\right)^{*}$ such that there exist sequences $\varphi_{1}, \ldots, \varphi_{n}, \beta$, and γ satisfying

$$
\left\langle\varphi_{1}\right\rangle=F_{1}, \ldots,\left\langle\varphi_{n}\right\rangle=F_{n}, \quad \text { and } \quad \alpha=\beta \varphi_{1} \ldots \varphi_{n} \gamma
$$

We denote the sequence $\left(F_{1}, \ldots, F_{n}\right)$ by $S_{H}(F, \alpha)$ and the set

$$
\left\{F_{i} \cup \ldots \cup F_{j} ; 1 \leqq i<j \leqq n, j-i<n-1\right\}
$$

by $\mathscr{P}_{H}(F, \alpha)$.
The following theorem shows that if H is a Σ-projectoid, then $\mathscr{E}(H)$ can be derived from $\mathscr{F}(H), \mathscr{F}^{*}(H)$, and one arbitrary $\alpha \in \Pi(H)$.

Theorem 1. Let H be a Σ-projectoid, and let $\alpha \in \Pi(H)$. Then

$$
\mathscr{E}(H)-\mathscr{F}(H)=\bigcup_{F \in \mathscr{F} *(H)} \mathscr{P}_{H}(F, \alpha) .
$$

Proof. If H_{0} is a Σ-projectoid and $\alpha_{0} \in \Pi\left(H_{0}\right)$, then we denote

$$
\mathscr{Q}\left(H_{0}, \alpha_{0}\right)=\bigcup_{F_{0} \in \mathscr{\mathscr { F }}\left(H_{0}\right)} \mathscr{P}_{H_{0}}\left(F_{0}, \alpha_{0}\right) .
$$

We wish to prove that $\mathscr{E}(H)-\mathscr{F}(H)=\mathscr{2}(H, \alpha)$.
We proceed by induction on $|V(H)|$. The case when $|V(H)|=1$ is obvious. Let $|V(H)|>1$. Assume that for every Σ-projectoid H^{\prime} such that $\left|V\left(H^{\prime}\right)\right|<|V(H)|$ and every $\alpha^{\prime} \in \Pi\left(H^{\prime}\right)$, it has been proved that $\mathscr{E}\left(H^{\prime}\right)-\mathscr{F}\left(H^{\prime}\right)=\mathscr{2}\left(H^{\prime}, \alpha^{\prime}\right)$.

We distinguish two cases:
Case 1. Assume that there exists no $F \in \mathscr{F}(H)$ such that $1<|F|<|V(H)|$. If $\mathscr{F}^{*}(H)=\emptyset$, then $\mathscr{E}(H)-\mathscr{F}(H)=\emptyset=\mathscr{2}(H, \alpha)$. Let $\mathscr{F}^{*}(H) \neq \emptyset$. Then $\mathscr{F}^{*}(H)=$ $=\{V(H)\}$. It is obvious that $\mathscr{E}(H)-\mathscr{F}(H) \subseteq \mathscr{2}(H, \alpha)$. We shall assume that $\mathscr{2}(H, \alpha)-(\mathscr{E}(H)-\mathscr{F}(H)) \neq \emptyset$. Consider such $X \in \mathscr{Z}(H, \alpha)-(\mathscr{E}(H)-\mathscr{F}(H))$ that for each $X^{\prime} \in \mathscr{Q}(H, \alpha)-(\mathscr{E}(H)-\mathscr{F}(H)),\left|X^{\prime}\right| \leqq|X|$. Denote

$$
\alpha=\left(v_{1}, \ldots, v_{n}\right) .
$$

There exist $f, h \in\{1, \ldots, n\}$ such that $1 \leqq f \leqq h \leqq n$ and that $X=\left\{v_{f}, \ldots, v_{g}\right\}$. Since $X \notin \mathscr{F}(H)$, we have $f<h$ and $h-f<n-1$.

Assume that $1<f$ and $h<n$. As follows from the maximality of $|X|,\left\{v_{1}, \ldots, v_{h}\right\}$, $\left\{v_{f}, \ldots, v_{n}\right\} \in \mathscr{E}(H)$. Since H is a Σ-projectoid, it follows from (3) that

$$
\left\{v_{1}, \ldots, v_{h}\right\} \cap\left\{v_{f}, \ldots, v_{n}\right\} \in \mathscr{E}(H),
$$

which is a contradiction. This means that either $f=1$ or $h=n$. Without loss of generality we assume that $f=1$.

According to (2), $\left\{v_{1}\right\} \in \mathscr{E}(H)$. We denote by g the maximum integer not exceeding h such that $\left\{v_{1}, \ldots, v_{g}\right\} \in \mathscr{E}(H)$. Since $\mathscr{F} *(H)=\{V(H)\}$, there exists $E \in \mathscr{E}(H)$ such that $E \sim E^{\prime}$ for at least one $E^{\prime} \in \mathscr{E}(H)$. By the assumption of Case 1, there exists no $F \in \mathscr{F}(H)$ such that $1<|F|<|V(H)|$. The fact that H is a Σ-projectoid implies that there exist $E_{1}, E_{2} \in \mathscr{E}(H)$ such that $E_{1} \sim E_{2}$ and $E_{1} \cup E_{2}=V$. Therefore, either $g \geqq 2$ or $h+1 \leqq n-1$. Moreover, we get $\left\{v_{g+1}, \ldots, v_{h+1}\right\} \in \mathscr{E}(H)$. Since $\left\{v_{g+1}, \ldots, v_{h+1}\right\} \notin \mathscr{F}(H)$, there exists $E_{0} \in \mathscr{E}(H)$ such that $E_{0} \approx\left\{v_{g+1}, \ldots, v_{h+1}\right\}$. Clearly, either (i) $E_{0} \sim\left\{v_{1}, \ldots, v_{h+1}\right\}$ or (ii) $E_{0} \subseteq\left\{v_{1}, \ldots, v_{h+1}\right\}$ and $v_{g}, v_{g+1} \in E_{0}$.

Therefore, there exists $k, g+1 \leqq k \leqq h-1$, such that $\left\{v_{1}, \ldots, v_{k}\right\} \in \mathscr{E}(H)$, which is a contradiction. Thus, $\mathscr{E}(H)-\mathscr{F}(H)=\mathscr{2}(H, \alpha)$.

Case 2. Assume that there exists $F_{0} \in \mathscr{F}(H)$ such that $1<\left|F_{0}\right|<|V(H)|$. Then there exists $F \in \mathscr{F}(H)$ such that $1<|F|<|V(H)|$ and that for every $F^{\prime} \in \mathscr{F}(H)$ the inequality $\left|F^{\prime}\right|<|F|$ implies $\left|F^{\prime}\right|=1$. There exist sequences β, γ, and φ such that $\alpha=\beta \varphi \gamma$ and $\langle\varphi\rangle=F$.

We denote by H_{F} the hypergraph defined as follows:

$$
V\left(H_{F}\right)=F \quad \text { and } \quad \mathscr{E}\left(H_{F}\right)=\{E \in \mathscr{E}(H) ; E \subseteq F\}
$$

It is easy to see that H_{F} is a Σ-projectoid, $\varphi \in \Pi\left(H_{F}\right), \mathscr{F}\left(H_{F}\right)=\mathscr{F}(H) \cap \mathscr{E}\left(H_{F}\right)$, $\mathscr{F} *\left(H_{F}\right)=\mathscr{F} *(H) \cap \mathscr{E}\left(H_{F}\right)$, and $\mathscr{Q}\left(H_{F}, \varphi\right)=\mathscr{Q}(H, \alpha) \cap \mathscr{E}\left(H_{F}\right)$. Since $|F|<|V(H)|$, according to the induction hypothesis $\mathscr{E}\left(H_{F}\right)-\mathscr{F}\left(H_{F}\right)=\mathscr{2}\left(H_{F}, \varphi\right)$; thus

$$
\begin{equation*}
(\mathscr{E}(H)-\mathscr{F}(H)) \cap \mathscr{E}\left(H_{F}\right)=\mathscr{2}(H, \alpha) \cap \mathscr{E}\left(H_{F}\right) . \tag{4}
\end{equation*}
$$

Consider an element x such that $x \notin V(H)$. We denote by H^{F} the hypergraph defined as follows:

$$
\begin{aligned}
V\left(H^{F}\right)= & (V-F) \cup\left\{x^{\prime} ;\right. \text { and } \\
\mathscr{E}\left(H^{F}\right)= & \left\{E_{1} ; E_{1} \in \mathscr{E}(H), E_{1} \cap F=\emptyset\right\} \cup \\
& \cup\left\{\left(E_{2}-F\right) \cup\left\{x^{\prime} ; E_{2} \in \mathscr{E}(H), F \subseteq E_{2}\right\} .\right.
\end{aligned}
$$

We can easily see that H^{F} is a Σ-projectoid and $\beta(x) \gamma \in \Pi\left(H^{F}\right)$. Moreover, we can see that

$$
\begin{aligned}
\mathscr{F}\left(H^{F}\right)= & \left\{F_{1} ; F_{1} \in \mathscr{F}(H) ; F_{1} \cap F=\emptyset\right\} \cup \\
& \left.\cup!\left(F_{2}-F\right) \cup\{x\} ; F_{2} \in \mathscr{F}(H), F \subseteq F_{2}\right\} \text { and } \\
\mathscr{F}^{*}\left(H^{F}\right)= & \left\{F_{1} ; F_{1} \in \mathscr{F}^{*}(H), F_{1} \cap F=\emptyset\right\} \cup \\
& \cup\left\{\left(F_{2}-F\right) \cup\{x\} ; F_{2} \subseteq \mathscr{F}^{*}(H), F \subseteq F_{2}, F \neq F_{2}\right\} .
\end{aligned}
$$

Since $\left|V\left(H^{F}\right)\right|<|V(H)|$, it follows from the induction hypothesis that $\mathscr{E}\left(H^{F}\right)-$ $-\mathscr{F}\left(H^{F}\right)=\mathscr{Q}\left(H^{F}, \beta(x) \gamma\right)$. This implies

$$
\begin{equation*}
(\mathscr{E}(H)-\mathscr{F}(H))-\mathscr{E}\left(H_{F}\right)=\mathscr{Q}(H, \alpha)-E\left(H_{F}\right) . \tag{5}
\end{equation*}
$$

Combining (4) and (5), we get $\mathscr{E}(H)-\mathscr{F}(H)=\mathscr{2}(H, \alpha)$, which completes the proof of Theorem 1.

Corollary. Let H_{1} and H_{2} be Σ-projectoids such that $V\left(H_{1}\right)=V\left(H_{2}\right)$ and $\Pi\left(H_{1}\right) \cap$ $\cap \Pi\left(H_{2}\right) \neq \emptyset$. Then $\mathscr{E}\left(H_{1}\right)=\mathscr{E}\left(H_{2}\right)$ if and only if $\mathscr{F}\left(H_{1}\right)=\mathscr{F}\left(H_{2}\right)$ and $\mathscr{F} *\left(H_{1}\right)=$ $=\mathscr{F} *\left(H_{2}\right)$.
2. Let V be a finite nonempty set. If $A \subseteq V^{\sharp}$, then we denote by $\operatorname{Stab}(A)$ the set of all $X \in \operatorname{Int}(A)$ which possess the following property:
(6) if φ_{i}, ξ_{i}, and ψ_{i} (for $i=1$ and 2) are arbitrary sequences such that $\varphi_{1} \xi_{1} \psi_{1}$, $\varphi_{2} \xi_{2} \psi_{2} \in A$ and $\left\langle\xi_{1}\right\rangle=X=\left\langle\xi_{2}\right\rangle$, then $\varphi_{2} \xi_{1} \psi_{2} \in A$.

Lemma 1. Let V be a finite nonempty set, and let $A \subseteq V^{\sharp}$. Then $(V, \operatorname{Stab}(A))$ is a Σ-projectoid.

Proof. Denote $H_{A}=(V, \operatorname{Stab}(A))$. According to Theorem $0, H_{A}$ is a projectoid. It is obvious that $V \in \operatorname{Stab}(A)$ and that $\{v\} \in \operatorname{Stab}(A)$ for each $v \in V$. Let $X, Y \in$ $\in \operatorname{Stab}(A), X \sim Y$, and let $Z \in\{X \cup Y, X \cap Y, X-Y\}$. Consider arbitrary sequences φ_{i}, ζ_{i}, and ψ_{i} for $i=1$ and 2 such that $\varphi_{1} \zeta_{1} \psi_{1}, \varphi_{2} \zeta_{2} \psi_{2} \in A$, and $\left\langle\zeta_{1}\right\rangle=Z=\left\langle\zeta_{2}\right\rangle$. We wish to show that $\varphi_{2} \zeta_{1} \psi_{2} \in A$.

Since $X \cup Y, X \cap Y, X-Y, Y-X \in \operatorname{Int}(A)$, there exist sequences $\varrho_{i}, \beta_{i}, \gamma_{i}, \delta_{i}$, and σ_{i} for $i=1$ and 2 such that

$$
\begin{gathered}
\varrho_{j} \beta_{j} \gamma_{j} \delta_{j} \sigma_{j}=\varphi_{j} \zeta_{j} \psi_{j}, \text { for } j=1 \text { and } 2 \text {, and } \\
\left\{\left\langle\beta_{k} \gamma_{k}\right\rangle,\left\langle\gamma_{k} \delta_{k}\right\rangle\right\}=\{X, Y\}, \text { for } k=1 \text { and } 2 .
\end{gathered}
$$

Without loss of generality we assume that $X=\left\langle\beta_{1} \gamma_{1}\right\rangle$. Therefore, $Y=\left\langle\gamma_{1} \delta_{1}\right\rangle$.
Let $X=\left\langle\gamma_{2} \delta_{2}\right\rangle$. Then $Y=\left\langle\beta_{2} \gamma_{2}\right\rangle$. Since $X \in \operatorname{Stab}(A)$, it follows from (6) that $\varrho_{2} \beta_{2} \beta_{1} \gamma_{1} \sigma_{2} \in A$.

We have $\left\langle\beta_{2}\right\rangle \cup\left\langle\gamma_{1}\right\rangle=(Y-X) \cup(Y \cap X)=Y$. Since $\left\langle\beta_{1}\right\rangle=X-Y, \beta_{1}$ is a nonempty sequence. Thus

$$
Y \notin \operatorname{Int}\left(\varrho_{2} \beta_{2} \beta_{1} \gamma_{1} \sigma_{2}\right),
$$

which is a contradiction. This means that $X=\left\langle\beta_{2} \gamma_{2}\right\rangle$, and therefore, $Y=\left\langle\gamma_{2} \sigma_{2}\right\rangle$.
Recall that $\varrho_{i} \beta_{i} \gamma_{i} \delta_{i} \sigma_{i} \in A$ for $i=1,2$. Since $\left\langle\beta_{j} \gamma_{j}\right\rangle=X$ for $j=1,2$, it follows from (6) that

$$
\varrho_{2} \beta_{1} \gamma_{1} \delta_{2} \sigma_{2} \in A
$$

Analogously, since $\left\langle\gamma_{k} \delta_{k}\right\rangle=Y$ for $k=1,2$, it follows from (6) that

$$
\varrho_{2} \beta_{2} \gamma_{1} \delta_{1} \sigma_{2} \in A
$$

Since $\left\langle\beta_{1} \gamma_{1}\right\rangle=\left\langle\beta_{2} \gamma_{1}\right\rangle$, the fact that $\varrho_{2} \beta_{1} \gamma_{1} \delta_{2} \sigma_{2}, \varrho_{2} \beta_{2} \gamma_{1} \delta_{1} \sigma_{2} \in A$ implies

$$
\varrho_{2} \beta_{1} \gamma_{1} \delta_{1} \sigma_{2} \in A
$$

Since $\left\langle\gamma_{1} \delta_{1}\right\rangle=\left\langle\gamma_{1} \delta_{2}\right\rangle$, the fact that $\varrho_{2} \beta_{1} \gamma_{1} \delta_{2} \sigma_{2}, \varrho_{2} \beta_{2} \gamma_{1} \delta_{1} \sigma_{2} \in A$ implies

$$
\varrho_{2} \beta_{2} \gamma_{1} \delta_{2} \sigma_{2} \in A
$$

Finally, since $\left\langle\gamma_{2} \delta_{2}\right\rangle=\left\langle\gamma_{1} \delta_{1}\right\rangle$, the fact that $\varrho_{2} \beta_{2} \gamma_{2} \delta_{2} \sigma_{2}, \varrho_{2} \beta_{1} \gamma_{1} \delta_{1} \sigma_{2} \in A$ implies

$$
\varrho_{2} \beta_{1} \gamma_{2} \delta_{2} \sigma_{2} \in A
$$

Since $Z \in\{X \cup Y, X \cap Y, X-Y\}$, we have $\varphi_{2} \zeta_{1} \psi_{2} \in A$. Hence, H_{A} is a Σ-projectoid, which completes the proof of the lemma.

We shall say that a Σ-projectoid H is active if $\mathscr{N}_{H}(F) \cap \mathscr{F} *(H)=\emptyset$ for each $F \in \mathscr{F}^{*}(H)$.

The statement of the next theorem is analogous to that of Theorem 0 . In the proof Theorem 1 will be used.

Theorem 2. Let V be a finite nonempty set, and let H be a hypergraph such that $V(H)=V$. Then H is an active Σ-projectoid if and only if there exists a nonempty subset A of $V^{\#}$ such that $\mathscr{E}(H)=\operatorname{Stab}(A)$.

Proof. (I) Assume that H is an active Σ-projectoid. Consider an arbitrary $\alpha \in \Pi(H)$. For every $F \in \mathscr{F}(H)$, we introduce a set $A(F)$ as follows:
(i) Let $\mathscr{N}_{H}(F)=\emptyset$. Let x denote the only vertex of F. Then we put $A(F)=\{(x)\}$.
(ii) Let $\mathscr{N}_{H}(F) \neq \emptyset$. Let $\left(F_{1}, \ldots, F_{n}\right)$ denote $S_{H}(F, \alpha)$. If $F \in \mathscr{F} *(H)$, we put

$$
A(F)=\left\{\varphi_{1} \ldots \varphi_{n} ; \varphi_{1} \in A\left(F_{1}\right), \ldots, \varphi_{n} \in A\left(F_{n}\right)\right\} ;
$$

if $F \notin \mathscr{F}^{*}(H)$, we put

$$
\begin{gathered}
A(F)=\left\{\varphi_{1} \ldots \varphi_{n} ; \text { either } \varphi_{1} \in A\left(F_{1}\right), \ldots, \varphi_{n} \in A\left(F_{n}\right)\right. \text { or } \\
\left.\varphi_{1} \in A\left(F_{n}\right), \ldots, \varphi_{n} \in A\left(F_{1}\right)\right\} .
\end{gathered}
$$

Moreover, we denote $A=A(V)$ and $H_{A}=(V, \operatorname{Stab}(A))$. According to Lemma 1, H_{A} is a Σ-projectoid.

The definition of A easily yields that
(7) $\mathscr{F}(H) \subseteq \mathscr{E}\left(H_{A}\right)$, and
(8) if $F \in \mathscr{F}(H), \mathscr{N}_{H}(F) \neq \emptyset$, and there exists $Z \in \mathscr{E}\left(H_{A}\right)$ such that Z is the union of at least two but not all elements of $\mathscr{N}_{H}(F)$, then $F \in \mathscr{F} *(H), Z \in \mathscr{P}_{H}(F, \alpha)$ and $\mathscr{P}_{H}(F, \alpha) \subseteq \mathscr{E}\left(H_{A}\right)$.

We wish to show that $\mathscr{E}(H)=\operatorname{Stab}(A)$. To the contrary, let $\mathscr{E}(H) \neq \operatorname{Stab}(A)$. Combining Theorem 1 with (7) and (8), we get that $\mathscr{F}(H)-\mathscr{F}\left(H_{A}\right) \neq \emptyset$. Hence, there exist $X \in \operatorname{Stab}(A)$ and $F_{0} \in \mathscr{F}(H)$ such that $X \sim F_{0}$. Consider such $F \in \mathscr{F}(H)$ that $X \subseteq F$ and for any $F^{\prime} \in \mathscr{F}(H)$, if $X \subseteq F^{\prime} \subseteq F$, then $F^{\prime}=F$. Obviously, $\mathscr{N}_{H}(F) \neq \emptyset$. We denote $S_{H}(F, \alpha)$ by $\left(G_{1}, \ldots, G_{m}\right)$. Since $X \sim F_{0}$, there exist f and h, $1 \leqq f<h \leqq m$, such that

$$
\begin{aligned}
& G_{f} \cap X \neq \emptyset \neq G_{h} \cap X, \\
& G_{g} \subseteq X \text { for each } g, f<g<h, \text { and either } G_{f} \leadsto X \text { or } G_{h} \sim X .
\end{aligned}
$$

Without loss of generality, let $G_{f} \sim X$. Obviously, $\mathscr{N}_{H}\left(G_{f}\right) \neq \emptyset$. We denote $S_{H}\left(G_{f}, \alpha\right)$ by $\left(J_{1}, \ldots, J_{n}\right)$. Since $X \cap G_{f+1} \neq \emptyset$, there exists $i, 1 \leqq i \geqq n$, such that

$$
J_{i} \cap X \neq \emptyset
$$

$$
J_{k} \subseteq X \text { for each } k, i<k \leqq n, \text { and if } i=1, \text { then } J_{i} \sim X .
$$

If $i=1$, we put $d=2$; if $i \geqq 2$, we put $d=i$. According to (7), $\mathscr{F}(H) \subseteq \operatorname{Stab}(A)$. Since H_{A} is a Σ-projectoid, it follows from (3) that

$$
J_{d} \cup \ldots \cup J_{n} \cup G_{f+1} \cup \ldots \cup G_{h} \in \operatorname{Stab}(A) .
$$

It follows from (6) that $F, G_{f} \in \mathscr{F}^{*}(H)$. This implies that H is not active, which is a contradiction. Hence, $\mathscr{E}(H)=\operatorname{Stab}(A)$.
(II) Assume that there exists $A \subseteq V^{\sharp}$ such that $\mathscr{E}(H)=\operatorname{Stab}(A)$. According to Lemma $1, H$ is a Σ-projectoid. We wish to show that H is active. To the contrary, we assume that there exist $F, G \in \mathscr{F}^{*}(H)$ such that $G \in \mathscr{N}_{H}(F)$. According to the definition, $\operatorname{Stab}(A) \subseteq \operatorname{Int}(A)$. It follows from the definition of a projectoid that $A \subseteq \Pi(H)$. Consider an arbitrary $\alpha \in A$. Denote $S_{H}(F, \alpha)=\left(F_{1}, \ldots, F_{n}\right)$. Since $F \in \mathscr{F}^{*}(H), m \geqq 3$. Without loss of generality we assume that there exists $k, 1 \leqq$ $\leqq k \leqq m-1$, such that $G=F_{k}$. Denote $S_{H}\left(F_{k}, \alpha\right)=\left(G_{1}, \ldots, G_{n}\right)$. Since $F, G \in$ $\in \mathscr{F}^{*}(H)$, Theorem 1 implies

$$
\begin{gather*}
S_{H}\left(F, \alpha^{\prime}\right)=\left(F_{1}, \ldots, F_{m}\right) \text { and } S_{H}\left(F_{k}, \alpha^{\prime}\right)= \tag{9}\\
=\left(G_{1}, \ldots, G_{n}\right), \text { for each } \alpha^{\prime} \in A
\end{gather*}
$$

Since $G_{n}, F_{k+1} \in \operatorname{Stab}(A)$, it follows from (6) and (9) that $G_{n} \cup F_{k+1} \in \operatorname{Stab}(A)$. Since $G \sim G_{n} \cup F_{k+1}, G \notin \mathscr{F}(H)$, which is a contradiction. Thus, H is active, which completes the proof.

Remark. The subject of the present paper has its origin in the author's study of combinatorial properties of linguistic notions.

References

[1] L. Nebeský: Hypergraphs and intervals. Czechoslovak Math. J. 31 (106) (1981), 469-474.
[2] L. Nebeský: Hypergraphs and intervals, II. Časopis pěst. mat. 109 (1984), 286-289.

Souhrn

HYPERGRAFY A INTERVALY, III

Ladislav Nebeský

Podobně jako v autorových článcích ,Hypergraphs and intervals" a „Hypergraphs and [intervals, II'' se i v tomto článku projektoidem míní uspořádaná dvojice (V, \mathscr{E}), kde V je konečná neprázdná množina, \mathscr{E} je množina nějakých neprázdných podmnožin množiny V a konečně kde V může být uspořádaná do posloupnosti $\left(v_{1}, \ldots, v_{|V|}\right)$ takovým způsobem, že pro každé $E \in \mathscr{E}$ existují $i, j \in\{1, \ldots,|V|\}$, že $i \leqq j$ a přitom $E=\left\{v_{i}, \ldots, v_{j}\right\}$. V tomto článku se studují zvláštní druhy projektoidů (Σ-projektoidy a aktivní Σ-projektoidy).

Резюме

ГИПЕРГРАФЫ И ИНТЕРВАЛЫ, II
 Ladislav Nebeský

Как и в статьях автора „Гиперграфы и интервалы" и „Гиперграфы и интервалы, II", так и в этой работе проектоидом называется упорядоченная пара (V, \mathscr{E}), где V - конечное непустое множество, \mathscr{E} - некоторая система непустых подмножеств множества V и элементы множества V можно расположиь в последовательность ($v_{1}, \ldots, v_{|V|}$) таким образом, что для каждого $E \in \mathscr{E}$ сущэствуют $i, j \in\{1, \ldots,|V|\}$ такие, что $i \leq j$ и $E=\left\{v_{i}, \ldots, v_{j}\right\}$. В настоящей статье изучаются специальные виды проектоидов (Σ - проектоиды и активные Σ - проектоиды).

Author's address: Filozofická fakulta Univerzity Karlovy, nám. Krasnoarmějců 2, 11638 Praha 1.

