Commentationes Mathematicae Universitatis Carolinae

Ting Eu Wang; Zhong Ri Ship; Yanhong Li
On uniformly nonsquare points and nonsquare points of Orlicz spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 33 (1992), No. 3, 477--484

Persistent URL: http://dml.cz/dmlcz/118515

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On uniformly nonsquare points and nonsquare points of Orlicz spaces*

Tingfu Wang, Zhongrui Shi, Yanhong Li

> Abstract. For Orlicz spaces endowed with the Orlicz norm and the Luxemburg norm, the criteria for uniformly nonsquare points and nonsquare points are given.

Keywords: Orlicz space, uniformly nonsquare point, nonsquare point
Classification: 46B30
R. James in [1] and J. Schäffer in [2] introduced conceptions of uniformly nonsquare, locally uniformly nonsquare and nonsquare Banach spaces, respectively. In this paper, we introduce the notions of uniformly nonsquare point and nonsquare point, and give criteria for them in Orlicz spaces.

Let $S(X)$ be the unit sphere of Banach space $X . x \in S(X)$ is called a uniformly nonsquare point in the sense of Schäffer (we write S-UNSP, for simplicity) provided that there is $\delta_{x}>0$ such that for every $y \in S(X)$,

$$
\operatorname{Max}\{\|x+y\|,\|x-y\|\} \geq 1+\delta_{x}
$$

$x \in S(X)$ is called a (S)-nonsquare point (S-NSP) if for every $y \in S(X)$

$$
\operatorname{Max}\{\|x+y\|,\|x-y\|\}>1
$$

$x \in S(X)$ is called a uniformly nonsquare point in the sense of James (J-UNSP) provided that there is $\delta_{x}>0$ such that for every $y \in S(X)$,

$$
\operatorname{Min}\{\|x+y\|,\|x-y\|\} \leq 2-\delta_{x}
$$

$x \in S(X)$ is called a (J)-nonsquare point (J-NSP) if for every $y \in S(X)$,

$$
\operatorname{Min}\{\|x+y\|,\|x-y\|\}<2
$$

Let $M(u)$ and $N(v)$ be a pair of complemented N-functions, we use L_{M} to express the Orlicz space generated by $M(u)$,

$$
L_{M}=\left\{x(t): \exists \lambda>0, R_{M}(\lambda x)<\infty\right\}
$$

[^0]and its subspace E_{M},
$$
E_{M}=\left\{x(t): \forall \lambda>0, R_{M}(\lambda x)<\infty\right\}
$$
where $R_{M}(x)=\int_{G} M(x(t)) d \mu$ is called the modulo of x over a finite nonatomic measure space (G, Σ, μ).

We denote by $L_{M}=\left[L_{M}(G),\|.\|_{M}\right]$ and $L_{M}=\left[L_{M}(G),\|\cdot\|_{(M)}\right]$ (see [3], [6]) the Orlicz spaces endowed with the Orlicz norm and the Luxemburg norm, respectively. $M \in \Delta_{2}$ means that $M(u)$ satisfies the Δ_{2}-condition for large u, and $M \in \nabla_{2}$ means that $N \in \Delta_{2}$.
S. Chen and Y. Wang testified in [4] that L_{M} always is (S)-locally uniformly nonsquare, so every point on $S\left(L_{M}\right)$ is an S-UNSP, and so S-NSP. S. Chen verified in [5] that a point on $S\left(L_{(M)}\right)$ is an S-UNSP iff $M \in \Delta_{2}$. We give the criteria for the five other cases and list them as follows:

$\\|x\\|=1$	S-UNSP	S-NSP	J-UNSP	J-NSP
L_{M}	always [4]	always [4]	$M \in \nabla_{2}$	always
$L_{(M)}$	$M \in \Delta_{2}[5]$	$R_{M}(x)=1$	$\exists \lambda>1, R_{M}(\lambda x)<\infty$	$\exists \lambda>1, R_{M}(\lambda x)<\infty$

Replacing L_{M} and $L_{(M)}$ by l_{M} and $l_{(M)}$ in the table, we have the same results in Orlicz sequence spaces as in Orlicz function spaces, and so we omit them here.
Theorem 1. For $x \in S\left(L_{(M)}\right)$, TFAE:
(1) x is a (S)-nonsquare point,
(2) $R_{M}(x)=1$.

Proof: $(1) \Rightarrow(2)$. Suppose $R_{M}(x)<1$. Then we know that $M \notin \Delta_{2}$, i.e., there exist $u_{n} \nearrow+\infty$, such that $M\left(\left(1+\frac{1}{n}\right) u_{n}\right)>2^{n} M\left(\left(1+\frac{1}{2 n}\right) u_{n}\right)$.

Take $c>0$ such that $\mu G_{c}>0$, where $G_{c}=\{t \in G:|x(t)| \leq c\}$. Passing to a subsequence, if necessary, we can assume that $c \leq u_{n} / 2 n$ for every n. Take disjoint subsets $\left\{G_{n}\right\}_{n} \subset G_{c}$ such that

$$
M\left(\left(1+\frac{1}{2 n}\right) u_{n}\right) \mu G_{n}=\frac{1}{2^{n}}, \quad(n=1,2, \ldots)
$$

Take an integer n^{\prime} such that $\sum_{n=n^{\prime}}^{\infty} \frac{1}{2^{n}}<1-R_{M}(x)$. Set

$$
y(t)=\left\{\begin{array}{l}
u_{n}, t \in G_{n}, n=n^{\prime}, n^{\prime}+1, n^{\prime}+2, \ldots \\
0, \text { otherwise }
\end{array}\right.
$$

Then $R_{M}(y)=\sum_{n=n^{\prime}}^{\infty} M\left(u_{n}\right) \mu G_{n} \leq \sum_{n=n^{\prime}}^{\infty} \frac{1}{2^{n}} \leq 1$.
For an arbitrary $\lambda>1$, denote $m=\left[\frac{1}{\lambda-1}\right]+n^{\prime}$. Then we have

$$
R_{M}(\lambda y)=\sum_{n=n^{\prime}}^{\infty} M\left(\lambda u_{n}\right) \mu G_{n} \geq \sum_{n=m}^{\infty} M\left(\left(1+\frac{1}{n}\right) u_{n}\right) \mu G_{n}=\infty
$$

i.e., $\|y\|_{(M)}=1$.

Notice that for $\varepsilon=1$ or $\varepsilon=-1$, we have

$$
\begin{aligned}
R_{M}(x+\varepsilon y) & =R_{M}\left(x \chi_{G \backslash \bigcup_{n=n^{\prime}}^{\infty} G_{n}}\right)+R_{M}\left((x+\varepsilon y) \chi_{\bigcup_{n=n^{\prime}}^{\infty} G_{n}}\right) \\
& \leq R_{M}(x)+R_{M}\left((|x|+|y|) \chi_{\bigcup_{n=n^{\prime}}^{\infty} G_{n}}\right) \\
& \leq R_{M}(x)+\sum_{n=n^{\prime}}^{\infty} M\left(\left(1+\frac{1}{2 n}\right) u_{n}\right) \mu G_{n} \leq 1 .
\end{aligned}
$$

On the other hand, for an arbitrary $\lambda>1$, denoting $m=\left[n^{\prime}+\frac{3 \lambda}{2(\lambda-1)}\right]$, we have

$$
\begin{aligned}
R_{M}(\lambda(x+\varepsilon y)) & \geq R_{M}\left(\lambda(x+\varepsilon y) \bigcup_{n=n^{\prime}}^{\infty} G_{n}\right) \\
& \geq R_{M}\left(\lambda(|y|-|x|) \chi_{\bigcup_{n=n^{\prime}}^{\infty} G_{n}}\right) \\
& \geq \sum_{n=n^{\prime}}^{\infty} M\left(\lambda\left(1-\frac{1}{2 n}\right) u_{n}\right) \mu G_{n} \\
& \geq \sum_{n=m^{\prime}}^{\infty} M\left(\left(1+\frac{1}{n}\right) u_{n}\right) \mu G_{n}=\infty
\end{aligned}
$$

whence $\|x+y\|_{(M)}=1,\|x-y\|_{(M)}=1$, which contradicts the fact that x is an (S)-nonsquare point.
$(2) \Rightarrow(1)$. Suppose that x is not an (S)-nonsquare point, i.e., there is $y \in$ $S\left(L_{(M)}\right)$ such that $\|x+y\|_{(M)}=1$ and $\|x-y\|_{(M)}=1$. Then

$$
R_{M}(x+y)+R_{M}(x-y) \leq 2=2 R_{M}(x)
$$

i.e.,

$$
R_{M}(x)-\frac{1}{2}\left(R_{M}(x+y)+R_{M}(x-y)\right) \geq 0
$$

Since $x=\frac{x+y+x-y}{2}$, from the convexity of $M(u)$, we have

$$
R_{M}(x)-\frac{1}{2}\left(R_{M}(x+y)+R_{M}(x-y)\right) \leq 0
$$

Thus

$$
R_{M}\left(\frac{x+y+x-y}{2}\right)=\frac{1}{2}\left(R_{M}(x+y)+R_{M}(x-y)\right)
$$

so $M(u)$ is affine on the segments $\langle x(t)+y(t), x(t)-y(t)\rangle(t \in G$, μ-a.e.). Since $M(u)$ is an N-function, we deduce that $|x(t)| \geq|y(t)|(t \in G, \mu$-a.e.). So $2|y(t)| \leq \mid x(t)+$ $y(t) \mid$, or $2|y(t)| \leq|x(t)-y(t)|$. Therefore, $R_{M}(2 y) \leq R_{M}(x+y)+R_{M}(x-y) \leq 2$, and from $\|y\|_{(M)}=1$ we get $R_{M}(y)=1$.

Replace x by y in the preceding, we get that $M(u)$ is affine on the segments $\langle y(t)+x(t), y(t)-x(t)\rangle(t \in G$, μ-a.e. $)$. Hence, for μ-a.e. $t \in G, M(u)$ is affine on $\langle x(t)-y(t), x(t)+y(t)\rangle$ and $\langle x(t)+y(t), y(t)-x(t)\rangle$, which contradicts $\|x-y\|_{(M)}=1$.

Corollary 1. Any point $x \in S\left(E_{(M)}\right)$ is an (S)-nonsquare one.
Corollary 2. $L_{(M)}$ is (S)-nonsquare iff $M \in \Delta_{2}$.
Theorem 2. For $x \in S\left(L_{(M)}\right)$, TFAE:
(1) x is a (J)-uniformly nonsquare point,
(2) x is a (J)-nonsquare point,
(3) $R_{M}(\lambda x)<\infty$ for some $\lambda>1$.

Proof: $(3) \Rightarrow(1)$. Take $c>1$ large enough such that $R_{M}\left(x \chi_{G_{1}}\right) \geq \frac{7}{8} R_{M}(x)$, where $G_{1}=\left\{t \in G: \frac{1}{c} \leq|x(t)| \leq c\right\}$. Choose $d, d>2 c$, in such way that $\frac{M(c)}{M(d)} \leq \frac{1}{8} R_{M}(x)$. Set $\sigma=\operatorname{Sup}_{1 / c \leq u \leq d}\left(2 M\left(\frac{u}{2}\right) / M(u)\right), 0<\sigma<1$. Denoting $\delta=\frac{3}{8}(1-\sigma) R_{M}(x)$ and taking $\varepsilon>0$ small enough, we get

$$
R_{M}((1+\varepsilon) x) \leq R_{M}(x)+\frac{3}{8}(1-\sigma) R_{M}(x)=R_{M}(x)+\delta
$$

In the following, we shall show that for any $y \in S\left(L_{(M)}\right)$, it holds

$$
\begin{equation*}
\operatorname{Min}\left\{\left\|\frac{x+y}{2}\right\|_{(M)},\left\|\frac{x-y}{2}\right\|_{(M)}\right\} \leq 1-\frac{\varepsilon}{2(1+\varepsilon)} . \tag{*}
\end{equation*}
$$

Denote $G_{2}=\{t \in G:|y(t)| \leq d\}$. Then

$$
M(d) \mu\left(G \backslash G_{2}\right) \leq R_{M}\left(y \chi_{G \backslash G_{2}}\right) \leq R_{M}(y) \leq 1, \text { i.e., } \mu\left(G \backslash G_{2}\right) \leq \frac{1}{M(d)}
$$

Thus

$$
R_{M}\left(x \chi_{G_{1} \backslash G_{2}}\right) \leq M(c) \mu\left(G_{1} \backslash G_{2}\right) \leq M(c) \mu\left(G \backslash G_{2}\right) \leq \frac{M(c)}{M(d)} \leq \frac{1}{8} R_{M}(x)
$$

Defining $D=G_{1} \cap G_{2}$, we get

$$
\frac{7}{8} R_{M}(x) \leq R_{M}\left(x \chi_{G_{1}}\right)=R_{M}\left(x \chi_{G_{1} \backslash G_{2}}\right)+R_{M}\left(x \chi_{D}\right) \leq \frac{1}{8} R_{M}(x)+R_{M}\left(x \chi_{D}\right)
$$

i.e.,

$$
\begin{equation*}
R_{M}\left(x \chi_{D}\right) \geq \frac{3}{4} R_{M}(x) \tag{1}
\end{equation*}
$$

Hence

$$
\begin{align*}
& 2+\delta-R_{M}\left(\frac{(1+\varepsilon) x+y}{2}\right)-R_{M}\left(\frac{(1+\varepsilon) x-y}{2}\right) \\
& \geq R_{M}(x)+\delta+R_{M}(y)-R_{M}\left(\frac{(1+\varepsilon) x+y}{2}\right)-R_{M}\left(\frac{(1+\varepsilon) x-y}{2}\right) \\
& \geq R_{M}((1+\varepsilon) x)+R_{M}(y)-\left[R_{M}\left(\frac{(1+\varepsilon) x+y}{2}\right)+R_{M}\left(\frac{(1+\varepsilon) x-y}{2}\right)\right] \tag{2}\\
& \geq R_{M}\left((1+\varepsilon) x \chi_{D}\right)+R_{M}\left(y \chi_{D}\right) \\
& \quad-\left[R_{M}\left(\frac{(1+\varepsilon) x+y}{2} \chi_{D}\right)+R_{M}\left(\frac{(1+\varepsilon) x-y}{2} \chi_{D}\right)\right] .
\end{align*}
$$

Denote $D_{1}=\{t \in D: x(t) y(t) \geq 0\}$ and $D_{2}=D \backslash D_{1}$. Then

$$
\begin{aligned}
& R_{M}\left(\frac{(1+\varepsilon) x+y}{2} \chi_{D}\right)+R_{M}\left(\frac{(1+\varepsilon) x-y}{2} \chi_{D}\right) \\
&= R_{M}\left(\frac{(1+\varepsilon) x+y}{2} \chi_{D_{1}}\right)+R_{M}\left(\frac{(1+\varepsilon) x+y}{2} \chi_{D_{2}}\right) \\
&+R_{M}\left(\frac{(1+\varepsilon) x-y}{2} \chi_{D_{1}}\right)+R_{M}\left(\frac{(1+\varepsilon) x-y}{2} \chi_{D_{2}}\right) \\
& \leq \frac{R_{M}\left((1+\varepsilon) x \chi_{D_{1}}\right)+R_{M}\left(y \chi_{D_{1}}\right)}{2}+R_{M}\left(\frac{\max (|(1+\varepsilon) x|,|y|)}{2} \chi_{D_{2}}\right) \\
&+R_{M}\left(\frac{\max (|(1+\varepsilon) x|,|y|)}{2} \chi_{D_{1}}\right)+\frac{R_{M}\left((1+\varepsilon) x \chi_{D_{2}}\right)+R_{M}\left(y \chi_{D_{2}}\right)}{2} \\
&= \frac{R_{M}\left((1+\varepsilon) x \chi_{D}\right)+R_{M}\left(y \chi_{D}\right)}{2}+R_{M}\left(\frac{\max (|(1+\varepsilon) x|,|y|)}{2} \chi_{D}\right) .
\end{aligned}
$$

While $t \in D, \frac{1}{c} \leq \frac{1+\varepsilon}{c} \leq \max (|(1+\varepsilon) x|,|y|) \leq d$, we have

$$
\begin{aligned}
& R_{M}\left(\frac{(1+\varepsilon) x+y}{2} \chi_{D}\right)+R_{M}\left(\frac{(1+\varepsilon) x-y}{2} \chi_{D}\right) \\
& \leq \frac{1}{2}\left(R_{M}\left((1+\varepsilon) x \chi_{D}\right)+R_{M}\left(y \chi_{D}\right)\right)+\frac{\sigma}{2} R_{M}\left(\max (|(1+\varepsilon) x|,|y|) \chi_{D}\right) \\
& \leq \frac{(1+\sigma)}{2}\left(R_{M}\left((1+\varepsilon) x \chi_{D}\right)+R_{M}\left(y \chi_{D}\right)\right) .
\end{aligned}
$$

Combining (1) and (2), we get

$$
\begin{aligned}
& 2+\delta-R_{M}\left(\frac{(1+\varepsilon) x+y}{2}\right)-R_{M}\left(\frac{(1+\varepsilon) x-y}{2}\right) \\
& \geq \frac{1-\sigma}{2}\left(R_{M}\left((1+\varepsilon) x \chi_{D}\right)+R_{M}\left(y \chi_{D}\right)\right) \\
& \geq \frac{1-\sigma}{2} R_{M}\left((1+\varepsilon) x \chi_{D}\right) \geq \frac{3}{8}(1-\sigma) R_{M}(x)=\delta
\end{aligned}
$$

i.e.,

$$
2-R_{M}\left(\frac{(1+\varepsilon) x+y}{2}\right)-R_{M}\left(\frac{(1+\varepsilon) x-y}{2}\right) \geq 0 .
$$

Thus

$$
\operatorname{Min}\left\{R_{M}\left(\frac{(1+\varepsilon) x+y}{2}\right), R_{M}\left(\frac{(1+\varepsilon) x-y}{2}\right)\right\} \leq 1
$$

If $R_{M}\left(\frac{(1+\varepsilon) x+y}{2}\right) \leq 1$, we have $\left\|\frac{(1+\varepsilon) x+y}{2}\right\|_{(M)} \leq 1$, i.e., $\left\|\frac{x+\frac{y}{1+\varepsilon}}{2}\right\|_{(M)} \leq \frac{1}{1+\varepsilon}$. Notice that

$$
\left|\left\|\frac{x+y}{2}\right\|_{(M)}-\left\|\frac{x+\frac{y}{1+\varepsilon}}{2}\right\|_{(M)}\right| \leq\left\|\frac{x+y}{2}-\frac{x+\frac{y}{1+\varepsilon}}{2}\right\|_{(M)}=\frac{1}{2}\left(1-\frac{1}{1+\varepsilon}\right)=\frac{\varepsilon}{2(1+\varepsilon)} .
$$

Therefore we get

$$
\left\|\frac{x+y}{2}\right\|_{(M)} \leq \frac{1}{1+\varepsilon}+\frac{\varepsilon}{2(1+\varepsilon)}=\frac{2+\varepsilon}{2(1+\varepsilon)}=1-\frac{\varepsilon}{2(1+\varepsilon)}
$$

If $R_{M}\left(\frac{(1+\varepsilon) x-y}{2}\right) \leq 1$, we have similarly

$$
\left\|\frac{x-y}{2}\right\|_{(M)} \leq 1-\frac{\varepsilon}{2(1+\varepsilon)} .
$$

$(1) \Rightarrow(2)$. Trivial.
$(2) \Rightarrow(3)$. Suppose that $R_{M}(\lambda x)=\infty$ for any $\lambda>1$. Take $\xi_{1}>\xi_{2}>\ldots$ with $\xi_{n} \rightarrow 1$.
Since $R_{M}\left(\xi_{1} x\right)=\infty, \exists c_{1}>0, R_{M}\left(\xi_{1} x \chi_{G_{1}}\right) \geq 1$ where $G_{1}=\left\{t \in G:|x(t)| \leq c_{1}\right\}$, since $R_{M}\left(\xi_{1} x \chi_{G \backslash G_{1}}\right)=\infty, \exists c_{1}^{\prime}>0, R_{M}\left(\xi_{1} x \chi_{G_{1}^{\prime}}\right) \geq 1$ where $G_{1}^{\prime}=\left\{t \in G \backslash G_{1}\right.$: $\left.|x(t)| \leq c_{1}^{\prime}\right\}$, since $R_{M}\left(\xi_{2} x \chi_{G \backslash G_{1} \backslash G_{1}^{\prime}}\right)=\infty, \exists c_{2}>0, R_{M}\left(\xi_{2} x \chi_{G_{2}}\right) \geq 1$ where $G_{2}=\left\{t \in G \backslash G_{1} \backslash G_{1}^{\prime}:|x(t)| \leq c_{2}\right\}$, since $R_{M}\left(\xi_{2} x \chi_{G \backslash G_{1} \backslash G_{1}^{\prime} \backslash G_{2}}\right)=\infty, \exists c_{2}^{\prime}>0$, $R_{M}\left(\xi_{2} x \chi_{G_{2}^{\prime}}\right) \geq 1$ where $G_{2}^{\prime}=\left\{t \in G \backslash G_{1} \backslash G_{1}^{\prime} \backslash G_{2}:|x(t)| \leq c_{2}^{\prime}\right\} \ldots$
Continuing this process in such a way, we get the disjoint subsets $G_{1}, G_{1}^{\prime}, G_{2}, G_{2}^{\prime}, \ldots$ satisfying

$$
R_{M}\left(\xi_{n} x \chi_{G_{n}}\right) \geq 1, \quad R_{M}\left(\xi_{n} x \chi_{G_{n}^{\prime}}\right) \geq 1 \quad(n=1,2, \ldots)
$$

Set

$$
y=x \chi_{G_{1} \cup G_{2} \cup \ldots}, \quad z=x \chi_{G_{1}^{\prime} \cup G_{2}^{\prime} \cup \ldots} .
$$

Then $x=y+z, y z=0, R_{M}(y) \leq R_{M}(x) \leq 1, R_{M}(z) \leq R_{M}(x) \leq 1$. But for any integer m,

$$
R_{M}\left(\xi_{m} y\right)=\sum_{n=1}^{\infty} R_{M}\left(\xi_{m} x \chi_{G_{n}}\right) \geq \sum_{n=m}^{\infty} R_{M}\left(\xi_{n} x \chi_{G_{n}}\right)=\infty
$$

so $\|y\|_{(M)}=1$. Similarly, $\|z\|_{(M)}=1$. Set $x^{\prime}=y-z$. From $|x(t)|=\left|x^{\prime}(t)\right|$, we get $\left\|x^{\prime}\right\|_{(M)}=\|x\|_{(M)}=1$. On the other hand

$$
\left\|\frac{x+x^{\prime}}{2}\right\|_{(M)}=\|y\|_{(M)}=\left\|\frac{x-x^{\prime}}{2}\right\|_{(M)}=\|z\|_{(M)}=1
$$

which contradicts the fact that x is a (J)-nonsquare point.
Corollary 1. Every point $x \in S\left(E_{(M)}\right)$ is a (J)-uniformly nonsquare one, and so also a (J)-nonsquare.

Corollary 2. $L_{(M)}$ is (J)-locally uniformly nonsquare $\left((J)\right.$-nonsquare) iff $M \in \Delta_{2}$. Proof: When $M \in \Delta_{2}, L_{(M)}=E_{(M)}$, it is Corollary 1. When $M \notin \Delta_{2}$, take y as in the proof of Theorem $1,(1) \Rightarrow(2)$, which is also not a (J)-uniformly nonsquare point. From $\|y\|_{(M)}=1$, we get that $L_{(M)}$ is not (J)-locally uniformly nonsquare.

Theorem 3. For $x \in S\left(L_{M}\right)$, TFAE:
(1) x is a (J)-uniformly nonsquare point,
(2) $M \in \nabla_{2}$.

Proof: $(2) \Rightarrow(1)$. See [4].
(1) $\Rightarrow(2)$. Take $d>0, \mu G_{d}>0$, where $G_{d}=\{t \in G:|x(t)| \leq d\}$. For any integer n, choose $y_{n} \in E_{M},\left\|y_{n}\right\|_{(M)}=1$ and $\int_{G} x(t) y_{n}(t) d \mu>1-\frac{1}{n}$. If supposing $M \notin \nabla_{2}$ (equivalently $N \notin \Delta_{2}$), there exists $v_{n}>0$ large enough such that
(i) $N\left(v_{n}\right) \mu G_{d}>\frac{1}{n}$,
(ii) when $e \subset G, \mu e \leq \frac{1}{n N\left(v_{n}\right)}$, then $\int_{G \backslash e} x(t) y_{n}(t) d \mu>1-\frac{1}{n}$,
(iii) $N\left(\left(1+\frac{1}{n}\right) v_{n}\right)>n N\left(v_{n}\right)$.

By (i), there is $G_{n} \subset G_{d}$ such that $N\left(v_{n}\right) \mu G_{n}=\frac{1}{n}$. By (ii), we get $\int_{G \backslash G_{n}} x y_{n} d \mu>$ $1-\frac{1}{n}$. Notice that $R_{N}\left(v_{n} \chi_{G_{n}}\right)=N\left(v_{n}\right) \mu G_{n}=\frac{1}{n}$,

$$
R_{N}\left(\left(1+\frac{1}{n}\right) v_{n} \chi_{G_{n}}\right)=N\left(\left(1+\frac{1}{n}\right) v_{n}\right) \mu G_{n}>1
$$

whence we have $1 \geq\left\|v_{n} \chi_{G_{n}}\right\|_{(N)} \geq \frac{1}{1+\frac{1}{n}}$.
Since $v_{n} \chi_{G_{n}}$ is a simple function of $L_{(N)}$, there exists $u_{n} \chi_{G_{n}} \in L_{M}$, satisfying $\left\|u_{n} \chi_{G_{n}}\right\|_{M}=1$ and such that

$$
\int_{G} u_{n} \chi_{G_{n}} \cdot v_{n} \chi_{G_{n}} d \mu=u_{n} v_{n} \mu G_{n}=\left\|v_{n} \chi_{G_{n}}\right\|_{(N)} \geq \frac{1}{1+\frac{1}{n}}
$$

Set $y_{N}^{\prime}(t)=\frac{1}{1+\frac{1}{n}}\left(v_{n} \chi_{G_{n}}(t)+y_{n}(t) \chi_{G \backslash G_{n}}(t)\right)$. Then

$$
R_{N}\left(y_{n}^{\prime}\right) \leq \frac{1}{1+\frac{1}{n}}\left(N\left(v_{n}\right) \mu G_{n}+R_{m}\left(y_{n}\right)\right)=1
$$

So, we have

$$
\begin{aligned}
& \left\|u_{n} \chi_{G_{n}}+x\right\|_{M} \geq \int_{G}\left(u_{n} \chi_{G_{n}}(t)+x(t)\right) y_{n}^{\prime}(t) d \mu \\
& \geq \frac{1}{1+\frac{1}{n}}\left(\int_{G_{n}}\left(u_{n}+x(t)\right) v_{n} d \mu+\int_{G \backslash G_{n}} x(t) y_{n}(t) d \mu\right) \\
& \geq \frac{1}{1+\frac{1}{n}}\left(u_{n} v_{n} \mu G_{n}-d v_{n} \mu G_{n}+\int_{G \backslash G_{n}} x(t) y_{n}(t) d \mu\right) \\
& \geq \frac{1}{1+\frac{1}{n}}\left(\frac{1}{1+\frac{1}{n}}-\frac{d}{n}+1-\frac{1}{n}\right),
\end{aligned}
$$

whence $\lim _{n \rightarrow \infty}\left\|u_{n} \chi_{G_{n}}+x\right\|_{M}=2$.
Replace $y_{n}^{\prime}(t)$ by $y_{n}^{\prime \prime}(t)=\frac{1}{1+\frac{1}{n}}\left(v_{n} \chi_{G_{n}}(t)-y_{n}(t) \chi_{G \backslash G_{n}}(t)\right)$. We get
$\lim _{n \rightarrow \infty}\left\|u_{n} \chi_{G_{n}}-x\right\|_{M}=2$, which is a contradiction with the fact that x is a (J) uniformly nonsquare point.

Corollary 1. L_{M} is (J)-locally uniformly nonsquare iff $M \in \nabla_{2}$.
Theorem 4. Every point $x \in S\left(L_{M}\right)$ is a (J)-nonsquare point.
Proof: For $x, y, \in S\left(L_{M}\right)$. There are $k, h>0$ such that

$$
\|x\|_{M}=\frac{1}{k}\left(1+R_{M}(k x)\right), \quad\|y\|_{M}=\frac{1}{h}\left(1+R_{M}(h y)\right) .
$$

Assume that $\|x \pm y\|_{M}=2$. Then

$$
\begin{aligned}
2=\frac{1}{k}\left(1+R_{M}(k x)\right)+ & \frac{1}{h}\left(1+R_{M}(h y)\right) \geq \\
& \geq \frac{k+h}{k \cdot h}\left(1+R_{M}\left(\frac{h}{k+h} k x \pm \frac{k}{k+h}\right)\right) \geq\|x \pm y\|_{M}=2
\end{aligned}
$$

i.e.,
$M\left(\frac{h}{k+h} k x(t) \pm \frac{k}{k+h} h y(t)\right)=\frac{h}{k+h} M(k x(t))+\frac{k}{k+h} M(h y(t)) \quad(t \in G, \mu$-a.e. $)$,
so $M(u)$ is affine on $\langle h y(t), k x(t)\rangle$ and $\langle k x(t),-h y(t)\rangle(t \in G, \mu$-a.e.), which contradicts the fact that $M(u)$ is an N-function.

Corollary. L_{M} is always (J)-nonsquare.

References

[1] James R.C., Uniformly nonsquare Banach spaces, Ann. Math. 80:3 (1964), 542-550.
[2] Schäffer J.J., Geometry of Sphere in Normed Spaces, Lect. Not. Pure Appl. Math. 20 (1976).
[3] Wu C., Wang T., Chen S., Wang Y., Geometry of Orlicz spaces, Printing House H.I.T., Harbin, 1986.
[4] Chen S., Wang Y., On the definition of nonsquareness in normed spaces, China Ann. Math. 9A, 3 (1988), 330-334.
[5] Chen S., Nonsquareness of Orlicz spaces, ibid. 6A, 5 (1985), 607-613.
[6] Wang Y., Chen S., Nonsquareness, B-convexity and flatness of Orlicz spaces with Orlicz norm, Prace Mat. 28 (1988), 155-165.
[7] Hudzik H., Uniformly non-1 $n_{n}^{(1)}$ Orlicz spaces with Luxemburg norm, Studia Math. 81, 3 (1985), 271-284.
[6] _ Locally Uniformly Non-1 $1_{n}^{(1)}$ Orlicz Spaces, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-numero 10 (1985), 49-56.

Harbin Univ. Sci. Tech., Math. Dep., P.O.Box 610, Harbin 150080, China
Beijing Graduate School, Wuhan Polytechnic University, GuanZhuang, Beijing, China

[^0]: *This subject is supported by NSF of China.

