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Strong sequences, binary families

and Esenin-Volpin’s theorem

Marian Turzaǹski

Abstract. One of the most important and well known theorem in the class of dyadic spaces
is Esenin-Volpin’s theorem of weight of dyadic spaces. The aim of this paper is to prove
Esenin-Volpin’s theorem in general form in class of thick spaces which possesses special
subbases.
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The class of dyadic compact spaces (the continuous images of generalized Cantor
discontinua) which is a natural generalization of the class of compact metric spaces
has a lot of nice properties and is the subject of many papers.

In the 70’s a new approach concerning the theory of dyadic spaces appeared.
A.V. Arhangelskii in [1] introduced the class of dantian spaces and the class of thick
spaces. In 1970 S. Mrȯwka [5] introduced the class of polyadic spaces; the continuous
images of the products of one point compactifications of the discrete spaces, and
in 1958 M.G. Bell [2] defined the class of centered spaces which generalized the class
of polyadic spaces. In paper [5] W. Kulpa and M. Turzaṅski introduced the class
of weakly dyadic spaces. The common feature of these generalizations is that many
theorems which were originally proved for the class of dyadic spaces can be proved
for them too. In paper [8] some connections between different generalizations of
dyadic spaces have been presented. One of the most important and well known
theorem in the class of dyadic spaces is Esenin-Volpin’s theorem of weight of dyadic
spaces. This theorem says that the weight of dyadic spaces is equal to the supremum
of weight in points of this space. This theorem is also true for the class of centered
spaces and dantian spaces. B.A. Efimov [3] proved some interesting generalization of
this theorem. He proved that the weight of dyadic spaces is equal to the supremum
of weights in points of an arbitrary dense subset. This theorem is not true for
the class of polyadic spaces since one point compactification of an arbitrary discrete
space is a polyadic space. The aim of this paper is to prove Esenin-Volpin’s theorem
in general form in class of thick spaces which possesses special subbases.

LetS be a family of sets. A familyS is said to be a binary family (DeGroot [4])
iff for each S

′ such that

1◦ |S ′| < ω
2◦ S ′ is not centered
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there exist sets S1, S2 ∈ S ′ such that S1 ∩ S2 = ∅. A family S is said to have the
condition (I) (A. Szymaṅski and M. Turzaṅski [7]) iff for each S1, S2, S3 ∈ S such
that S1 ∩ S2 = ∅ = S1 ∩ S3 we have S2 ⊆ S3 or S3 ⊆ S2 or S2 ∩ S3 = ∅.
Denote by w(X) = min{card B : B a base for X}+ω, the weight of the space X .

A pairwise disjoint collection of non-empty open sets in X is called cellular family.
The cellularity of X is defined as follows:

c(X) = sup{card V : V a cellular family in X}+ ω.

Let V be a collection of non-empty open sets in X , let p ∈ X . Then V is a local
π-base for p if for each open neighborhood U of p, one has V ⊂ U for some V ∈ V.
If in addition one has p ∈ V for all V ∈ V, then V is a local base for p. Denote by

χ(p,X) = min{card V : V is a local base for p}.

Define the density of X as follows:

d(X) = min{card S : S ⊂ X and cl S = X}.

Example 1. Let D be an arbitrary set. The family {{x} : x ∈ D} ∪ {D − {x} :
x ∈ D} is the binary family which fulfills the condition (I).

Example 2. Let αm denote an Alexandroff one point compactification of a discrete
infinite space m. Then the family S = {{x} : x ∈ m} ∪ {αm− {x} : x ∈ m} is the
binary family which fulfills the condition (I).
For a given set X denote by P(X) the family of subsets of X . Let J be an

infinite set. For each α ∈ J let Xα be a set and Sα ⊆ P(Xα) be a family of
subsets of Xα. Denote by X = Π{Xα : α ∈ J} and S = {P−1

α (U) : U ∈ Sα}.

Fact 1. If for each α ∈ J , Sα is a binary family, then S is a binary family too.

Fact 2. If for each α ∈ J family Sα fulfills the condition (I), then S fulfills the
condition (I).

Fact 3. If for each α ∈ J and for each chain L ⊆ Sα there is |L| < m then for
each chain L ⊆ S there is |L| < m.

Fact 4. Let f be a function from a set X onto a set Y . If S ⊆ P(Y ) is a binary
family, then {f−1(U) : U ∈ S} is a binary family too.

Fact 5. Let f be a function from a set X onto a set Y . If S ⊆ P(Y ) fulfills the
condition (I), then {f−1(U) : U ∈ S} fulfills the condition (I) too.

Fact 6. Let f be a function from a set X onto a set Y . If S ⊆ P(Y ) and each
chain in cs has cardinality less than m, then each chain in {f−1(U) : U ∈ S} has
cardinality less than m too.

Fact 7. Let f be an open map from a space X onto a space Y . If S is a π-subbase
in Y , then {f−1(U) : U ∈ S} is a π-subbase in X .
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Observation. From the facts mentioned above and from Examples 1 and 2 it
follows that generalized Cantor discontinuum, product of discrete spaces, product
of spaces which are one point compactification of discrete spaces are examples of
spaces with subbases which are binary families and which fulfil the condition (I).
In the canonical subbase in generalized Cantor discontinuum each chain is finite.
Let B be a family of sets. A subfamily L ⊆ B is called a linked system iff any

two members of it meet.
Let S be a finite subfamily contained in B. A pair (S,H) where H ⊆ B will

be called connected if S ∪ H is a linked system. A sequence (Sϕ, Hϕ) ϕ < α,
consisting of connected pairs is called a strong sequence if Sλ∪Hϕ is not a linked
system whenever λ > ϕ. (Compare with [9].)

Theorem 1. Let κ < m be infinite cardinal numbers,m regular. LetS be a binary
family which fulfills the condition (I) and such that every chain in S has cardinality
less than κ. If for S there exists a strong sequence Z = {(Zβ , Hβ) : β < m} such
that |Hβ | < m for each β < m, then the familyS contains a subfamily of cardinality
m consisting of pairwise disjoint sets.

Proof: Since m is an uncountable regular cardinal number, we may assume that
for all β < m each finite subfamily Zβ has the same cardinality n. For each ζ > 1
Zζ ∪H1 is not a linked system. It means that for each ζ > 1 there exists Sζ ⊆ H1,
Sζ finite, such that Zζ ∪Sζ is not a linked system. Since S is the binary family and
Sζ , Zζ are finite and linked, there exist Aζ ∈ Sζ and Bζ ∈ Zζ such that Aζ∩Bζ = ∅.
Since |H1| < m and m is regular, hence there exists a set Aζ0 ∈ H1 such that

|{Bζ : Bζ ∩Aζ0 = ∅}| = m.

Denote by W = {Bζ : Bζ ∩ Aζ0 = ∅}. If W contains less than m different elements,
then there exists a set B1 ∈ W which is a common element for m sets Zζ . Since
a subsequence of a strong sequence is a strong sequence we can take all these pairs
for which B1 belongs to each Zζ and repeat the procedure. If once more we have
a set W which contains fewer than m elements, then after n steps we have all first
elements in pairs in a strong sequence equal, a contradiction. Hence we can assume
that W contains m different elements.

(∗) For each two sets Bζ , Bι from W we have, by (I), Bζ ⊆ Bι or Bι ⊆ Bζ or
Bζ ∩Bι = ∅.

Suppose that each maximal family consisting of pairwise disjoint sets in W has
cardinality less than m. Let R1 ⊆ W be a maximal family consisting of pairwise
disjoint sets. Let S1 = {U ∈ W : there exists V ∈ R1, V ⊆ U}. Let |R1| < m.
Then |S1| < m. By (∗) for each U ∈ W−S1 there exists V ∈ R1 such that U ⊆ V .
Suppose that for some α < m there were defined families Rβ ,Sβ such that

1◦ if γ < δ < α, then Rδ ≺ Rγ ,
2◦ |Rβ | < m for each β < α,
3◦ Rγ ⊆ W −

⋃
{Sβ : β < α} and |Sβ | < m for β < α.

LetRα ⊆ W−
⋃
{Sβ : β < α} be a maximal family consisting of pairwise disjoint

sets and |Rα| < m. By (∗) Rα ≺ Rβ for each β < α and let

Sα = {U ∈ W : there exists V ∈ Rα such that V ⊆ U}.
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Hence a chain of families Rα has been defined. Let us take Rγ such that |γ| = κ.
Let U ∈ Rγ . For each λ < γ there exists Uλ ∈ Rλ such U ⊆ Uλ. By (∗) for each
two Uλ, Uψ such that U ⊆ Uλ and U ⊆ Uψ there is Uλ ⊆ Uψ when ψ < λ. Hence
a chain of length κ has been defined. A contradiction. �

A pairwise disjoint collection of non-empty open sets in S is called cellular
family. The cellularity of S is defined as follows: c(S) = sup{card V : V

a cellular family in S}+ ω.

Theorem 2. Let S be a binary family which fulfills the condition (I) and such that
the supremum cardinality of chains in S is less than c(S). Then for each regular
cardinal number κ such that c(S) < κ ≤ |S| and for each family A ⊆ S such that
|A| = κ there exists a family A ′ ⊆ A, |A ′| = κ and A ′ a linked system.

Proof: Let us assume that each linked system subfamily of A has cardinality less
than κ. Let H1 ⊆ A be an arbitrary maximal linked system family. We have
|H1| < κ. Let Z1 ∈ H1. A pair ({Z1}, H1) is a connected pair. Let us take an
arbitrary element Z2 ∈ A −H1. From the maximality of H1 the family H1 ∪ {Z2}
is not a linked system. Let us take an arbitrary maximal linked system family
H2 ⊆ A such that Z2 ∈ H2. Then the pair ({Z2}, H2) is the next pair in a strong
sequence. Suppose that a strong sequence ({Zϕ}, Hϕ) ϕ < α has been defined for
some α < κ. Since κ is regular and α < κ, hence A −

⋃
{Hϕ : ϕ < α} 6= ∅. Let

us take an arbitrary Zα ∈ A −
⋃
{Hϕ : ϕ < α}. For each ϕ < α we have that

({Zα} ∪Hϕ) is not a linked system. Hence we can define the next connected pair.
For this purpose we take an arbitrary maximal linked system Hα ⊆ A such that
Zα ∈ Hα. Hence the strong sequence ({Zϕ}, Hϕ) ϕ < κ has been defined. From
Theorem 1 it follows that we have κ pairwise disjoint sets in S, a contradiction.

�

A family {(Aζ , Bζ) : ζ < β} of ordered pairs of subsets of X , with Aζ ∩Bζ = ∅
for ζz < β is called an independent family (of length β) if for every finite subset
F of ω and every function ε : F → {−1,+1} we have

⋂

ζ∈F

εζAζ 6= ∅

(where (+1)Aζ = Aζ , (−1)Aζ = Bζ). It is clear that the existence of a continuous

function from X onto {0, 1}β is equivalent to the existence of an independent family
{(Aζ , Bζ) : ζ < β} of length β such that Aζ , Bζ are closed in X for ζ < β.

Theorem 3. Let X be a compact zero dimensional space. Let S be a family
consisting of clopen sets which fulfills the following properties:

1◦ S is a binary family.
2◦ S fulfills a condition (I).
3◦ For each U ∈ S there exists V ∈ S such that U ∩ V = ∅.
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Then for each regular cardinal number κ such that c(X) < κ ≤ |S| there exists
a function from X onto Dκ.

Proof: An independent family will be defined. Let A ⊆ S be an arbitrary sub-
family such that |A| = κ. From Theorem 2 it follows that there is B ⊆ A such
that |B| = κ and B is centered. By 3◦, for each A ∈ B there exists Ac ∈ S
such that A ∩ Ac = ∅. Let C = {A ∈ S : A ∩ B = ∅ for some B ∈ B}. Let us
observe that |C| = κ. Suppose no, then there exists an element A ∈ C such that
|{B ∈ B : B ∩ A = ∅}| = κ. Since B is centered, hence, by 2◦, we have that
{B ∈ B : B ∩A = ∅} is a chain. A contradiction because κ > c(X).
Since |C| > c(X), hence, by Theorem 2, there exists C′ ⊆ C such that C′ is

centered and |C′| = κ. Let B ′ be a subfamily of B such that for each B ∈ B ′

there exists C ∈ C′ such that B ∩ C 6= ∅. Denote the family B ′ by A 0
1 and the

family C′ by A 1
1 and let us order the family A 0

1. Then we have also an order in

the family A 1
1 such that if A

0
1 ∈ A 0

1 and A
1
1 ∈ A 1

1, then A
0
1 ∩A

1
1 = ∅. Let (A01, A

1
1)

be the first pair of independent family. Let us consider the sets

T = {A1α ∈ A
1
1 : A

0
1 ∩A

1
α = ∅ and α 6= 1}

and

V = {A0α ∈ A
0
1 : A

0
α ∩A11 = ∅ and α 6= 1}.

Denote by T1 = {α < κ : A1α ∈ T } and by V1 = {α < κ : A0α ∈ V }. Let us observe
that |T1| < κ and |V1| < κ. Suppose that for α < β where β < κ we have:

1◦ an independent family {(A0α, A
1
α) : α < β},

2◦ families A 0
α,A

1
α such that for each α < β and each selector iα defined an

independent family {(A0γ , A
1
γ) : γ < α}, the family iα{(A0γ , A

1
γ) : γ < α} ∪ A 1

α

where i ∈ {0, 1} is a centered family,

3◦ sets of ordinals Vα, Tα such that if for each γ ∈ Vα there is A
0
γ ∩ A1α = ∅

and for each γ ∈ Tα there is A
1
γ ∩ A0α = ∅ and |Vα| < κ, |Tα| < κ. Let us define

T = {γ < κ : β ≤ γ} and γ /∈
⋃
{Tα ∪ Vα : α < β}. We have |T | = κ. Let us

consider the sets A
0
β = {A0α ∈ A

0
1 : α ∈ T } and A

1
β = {A1α ∈ A

1
1 : α ∈ T }.

Let us take the smallest α ∈ T ; name it β, and pair (A0β , A
1
β) is the next pair in

independent family. �

Lemma 1. Let m be an uncountable cardinal number. Let S be a family of sets
closed with respect to the finite non-empty intersections which fulfills the following
conditions:

1◦ S is a binary family,
2◦ S fulfills the condition (I),
3◦ supremum cardinality of chains in S is less than m
4◦ c(S) ≤ m.
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Let B = {H ⊆ S : H is centered and |H | ≤ m}. For each S′ ⊆ S and B′ ⊆ B such
that

(∗) if Z ⊆ S ′, Z centered and finite, then there exists H ∈ B′ such that Z ∪H
is centered,

there exists B′′ ⊆ B′ such that |B′′| ≤ m and B′′ fulfills (∗).

Proof: Let m < |B′|. Suppose that B′′ does not exist. Let H1 ∈ B′ be an
arbitrary element and Z1 ⊆ S′ be such that |Z1| < ω and Z1 ∪H1 is centered. The
pair (Z1, H1) is the first pair of a strong sequence. Suppose that for some λ < m+

the strong sequence has been defined; (Zψ, Hψ) : ψ < λ. Let Bλ = {Hψ;ψ < λ}.
There is |Bλ| ≤ m. Hence there exists Zλ ⊆ S′ such that for each H ∈ Bλ,
Zλ ∪ H is not centered. On the other hand B′ fulfills the condition (∗), hence
there exists Hλ ∈ B′ such that Zλ ∪Hλ is centered. So we have a strong sequence
{(Zλ, Hλ) : λ < m+}. From Theorem 1 it follows that there exists m+ pairwise
disjoint sets. A contradiction. �

According to Arhangelskii [1], a compact Hausdorff space is called thick if for
each cardinal number m there exists a dense subset Xm such that

(∗∗) if M ⊆ Xm and |M | ≤ m, then cl M ⊆ Xm and wcl M ≤ m.

As was proved by Arhangelskii [1], continuous image, cartesian product and space
of closed subsets of thick space is thick. (for more information about thick spaces
and their connections with the class of dyadic spaces see [8].)

Lemma 2. Let X be thick space. If χ(x,X) ≤ κ, then x belongs to each Xm
satisfying (∗∗) for m ≥ κ.

Theorem 4. Let X be a zero-dimensional thick space. Let S be a binary subbase
which fulfills the condition (I), each chain in S has cardinality less than c(X) and
such that for each U ∈ S the set XU ∈ S. Let a Hausdorff space Y be a continuous
image of the space X . If c(X) ≤ sup{χ(y, Y ) : y ∈ M} where M is an arbitrary
dense subset of Y , then wY = sup{χ(y, Y ) : y ∈M}.

Proof: Denote by f a continuous function from X onto Y . The space X is thick,
hence for each cardinal number m there exists a dense subset Xm such that

(∗∗) if M ⊆ Xm and |M | ≤ m, then cl M ⊆ Xm and wcl M ≤ m.

LetM be an arbitrary dense subset of Y . Let sup{χ(y, Y ) : y ∈M} = m ≥ ω. Since
χ(y, Y ) ≤ m, hence there exists a base B(y) in a point y such that card B(y) ≤ m.
Let U ∈ B(y). Then f−1(y) ⊂ f−1(U). There exists a clopen set VU such that
f−1(y) ⊂ VU ⊂ f−1(U). Denote by ∧S a base generated by S. There exist
Ui ∈ ∧S, i = 1 . . . n, such that VU = U1 ∪ · · · ∪ Un. f−1(y) = f−1(

⋂
{U :

U ∈ B(y)} =
⋂
{f−1(U) : U ∈ B(y))} =

⋂
{VU : U ∈ B(y))}. Denote by

g : B(y) → {{U1, . . . .Un} : U ∈ B(y))} a selector and let Hg =
⋂
{g(U) : U ∈

B(y))}. Then f−1(y) =
⋃
{Hg : g is a selector}. Let g(U) = V1 ∩ · · · ∩ Vn. De-

note by sg (U) = {V1, . . . , Vn} and by Hg = {V : V ∈ sg (U) and U ∈ B(y)}.
The set f−1(M) =

⋃
{f−1(y) : y ∈ M}. Now we have the situation that a family

C = {HG : where g are selectors for all B(y) for all y ∈M} fulfills the assumption of
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the previous Lemma 1. Hence there exists a subfamily C′ ⊂ C such that |C′| ≤ m.
Since each element from C′ is a centered family of cardinality not greater than m,
hence the intersection of this family has (by Lemma 2) a common point with Xm.
Take one point from the intersection for each family from C′ and denote this set of
points by P . Since P ⊂ Xm and |P | ≤ m, hence wcl P ≤ m. Since f(cl P ) = Y ,
hence wY ≤ m. �

Corollary 1 (Esenin-Volpin’s theorem, Efimov’s version). If X is a dyadic space,
then

w(X) = sup{χ(x,X) : x ∈M} where M is an arbitrary dense subset of X .

Since the class of thick spaces is a common generalization of several generalizations
of dyadic spaces, we can formulate the Efimov’s version of Esenin-Volpin for different
classes of space. For example

Corollary 2. If X is polyadic space such that c(X) ≤ χ(x,X) for each x ∈ X ,
then w(X) = sup{χ(x,X) : x ∈M where M is an arbitrary dense subset of X}.
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