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A note on the existence of solution for semilinear

heat equations with polynomial growth nonlinearity*

Wan Se Kim

Abstract. The existence of weak solution for periodic-Dirichlet problem to semilinear heat
equations with superlinear growth non-linear term is treated.
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1. Introduction.

Let Z+, Z and R be the set of all positive integers, integers and real numbers,
respectively, and let Ω = [0, 2π]× [0, π] and I = [0, π]. Let p ∈ [1,∞); by Lp(Ω) we
denote the space of all measurable real valued functions u(t, x) for which |u(t, x)|p

is Lebesgue integrable.
The norm is given by

‖U‖Lp =
[

∫ ∫

Ω
|u(t, x)|p dt dx

]1/p
.

In particular, L2(Ω) is a Hilbert space having the usual inner product 〈 , 〉 and

the usual norm ‖·‖L2 . Let C
k(Ω) be the space of all continuous functions u(t, x)

such that the partial derivatives up to order k with respect to both variables exist
and are continuous on Ω, while C(Ω) is used for C0(Ω) with the usual norm ‖·‖

and we write C∞(Ω) =
⋂∞

k=0C
k(Ω).

Consider the periodic-Dirichlet problem

(1.1) ut(t, x) − uxx(t, x) + g(x, u(t, x)) = h(t, x) in Ω

(1.2)
u(0, x)− u(2π, x) = ut(0, x)− ut(2π, x) = 0 for all x ∈ I

u | ∂I = 0,

where g : I ×R→ R is a Carathéodory function, that is, g(·, u) is measurable on I
for each u ∈ R and g(x, ·) is continuous on R with the continuity uniform with
respect to a.e. x ∈ I. This holds, for example, if g is continuous on I × R, but
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it holds in many other cases; e.g. g(x, u) = p(x)F (u), where p ∈ L∞(I) and F
is continuous. Moreover, we assume that for each d > 0 there exists a constant
Md > 0 such that |g(x, u)| ≤Md for all (x, u) ∈ I ×R with |u| ≤ d and h ∈ L2(Ω).
Let H1(Ω) be the completion of the space C∞(Ω) with respect to the norm given
by

(1.3) ‖u‖21 =

∫ ∫

Ω

[

|u2(t, x)|2 + |ut(t, x)|
2 + |ux(t, x)|

2] dt dx

and H1.2(Ω) be the completion of the space C∞(Ω) with respect to the norm given
by

(1.4) ‖u‖21.2 =

∫ ∫

Ω

[

|u(t, x)|2 + |ut(t, x)|
2 + |ux(t, x)|

2 + |uxx(t, x)|
2] dt dx.

Note that H1(Ω) (H1.2(Ω)) has distributional derivatives ut, ux ∈ L2(Ω)
(ut, ux, uxx ∈ L2(Ω)) and these derivatives can be obtained as limit in L2(Ω) of
the corresponding derivatives of a sequence of C∞(Ω) functions which tend to u in
H1(Ω) (H1.2(Ω)). Moreover if derivatives are interpreted in distributional sense,
the norms in H1(Ω) and H1.2(Ω) are given by (1.3) and (1.4), respectively, and
H1.2(Ω) ⊆ C(Ω), and the imbedding of H1.2(Ω) in C(Ω) is continuous. Let H0.1(Ω)
be the closure in H1(Ω) of all functions u(t, x) in C∞(Ω).
A weak solution to the periodic-Dirichlet problem (1.1), (1.2) on Ω will be

u ∈ H1.2(Ω)∩H0.1(Ω) which satisfies the equation (1.1) a.e. on Ω and the boundary
condition (1.2).
Several authors deal with the periodic-Dirichlet problem for semilinear heat equa-

tions. For example, Brezis and Nirenberg [1], Fuč́ık [2], Nkashama and Willem [3],
Šťastnová and Fuč́ık [5] and the references in [6]. In particular, Sanchez [4] shows
the existence of solutions for some power-like behavior of g by using Leray-Schauder
principle.
In this note, we will investigate the existence of weak solution of the problem

(1.1) (1.2) when g has polynomial growth and satisfies a sign condition. The rate of
growth allowed in g is any polynomial growth; i.e. there exist a(x), b(x) in L∞(Ω)
such that

(H1) |g(x, u)| ≤ a(x)|u|p + b(x) for x ∈ I, |u| ≥ d0 and p > 0.

The sign condition on g used here is that there exists a function ψ : R→ R such
that lim sup|u|→∞ ψ(u)/u = α0 exists with ug(x, u) ≥ −ψ(|u|) for all (x, u) ∈ I×R.

We do not need any restriction on h except h ∈ L2(Ω) and our proof is based on
the use of Fourier series and Leray-Schauder’s continuation theorem by finding an
a priori bound for all possible solutions of the associated equations.

2. Preliminaries.

Let DomL = {u ∈ H1.2(Ω) ∩ H0.1(Ω) | u satisfies (1.2)} and define the linear
operator

L : DomL ⊆ C(Ω)→ L2(Ω) by

Lu = ut − uxx .(2.1)
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Then Ker L = {0} and ImL = L2(Ω). Hence L−1 : L2(Ω)→ DomL exists. Since
we may expand function u and h satisfying (1.2) on Ω in the following form:

u(t, x) =
∑

(l,m)∈Z×Z+

ulm exp(ilt) sin(mx)

h(t, x) =
∑

(l,m)∈Z×Z+

hlm exp(ilt) sin(mx)

with ulm = u−l−m and hlm = h−l−m since u and h are real, the abstract actions

of L and L−1 are determined as follows.

Lu(t, x) =
∑

(l,m)∈Z×Z+

[

li+m2
]

ulm exp(ilt) sin(mx)(2.2)

and

L−1u(t, x) =
∑

(l,m)∈Z×Z+

[

li+m2
]−1

hlm exp(ilt) sin(mx).(2.3)

Since

hlm =
1

2π2

∫ ∫

Ω
h(s, y) exp(−ilt) sin(mx) dt dx,

we can represent L−1 as a convolution product.

(2.4) L−1h(t, x) =

∫ ∫

Ω
k(t, s, x, y)h(s, y) ds dy,

where

k(t, s, xy) =
1

2π2

∑

(l,m)∈Z×Z+

[

li+m2
]

exp
[

il(t− s)
]

sin(mx) sin(my).

Lemma. The operator L−1 : L2(Ω)→ C(Ω) is a compact operator and ‖L−1‖∞ ≤
C‖h‖L2 for some constant C > 0 independently of h.

Proof: Using (2.4) and the convergence
∑

(l,m)∈Z×Z+ [l
2 + m4]−1 and Arzela-

Ascoli theorem, we can prove our assertion.
�
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3. Main results.

Theorem. Let h ∈ L2(Ω) and suppose that (H1) is satisfied and
(H2) for all (x, u) ∈ I × R, ug(x, u) ≥ −ψ(|u|), where ψ : R → R is a function

such that

lim sup
|u|→∞

ψ(u)/u = α0, α0 ∈ R,

exists, then the periodic-Dirichlet problem on Ω for the equation (1.1) has at least
one weak solution.

Proof: Now we see that L−1 : L2(Ω)→ C(Ω) is continuous and compact operator
as a mapping from L2(Ω) into C(Ω). Define a substitution operator N : C(Ω) →
L2(Ω) by Nu(t, x) = −g(x, u(t, x)) + h(t, x) for all u ∈ C(Ω) and (t, x) ∈ Ω. These
definitions have a meaning because H1.2(Ω)∩H1(Ω) are continuously imbedded in
C(Ω). Then u is weak solution of the periodic-Dirichlet problem for (1.1) if and
only if u ∈ DomL and satisfies

Lu = Nu, or equivalently(3.1)

u = L−1Nu.(3.2)

If u ∈ C(Ω) solves the operator equation (3.2), then u ∈ C(Ω) is a weak solution
to the periodic-Dirichlet problem. Since L−1 is compact, and N is continuous and
maps bounded sets into set bounded sets, the composition L−1N : C(Ω)→ C(Ω) is
continuous and compact. By using Leray-Schauder theory if all solutions u to the
family of equations

(3.3) u = λL−1Nu, 0 ≤ λ ≤ 1

are bounded in C(Ω) independently of λ ∈ [0, 1], then (3.1) has a solution.
If (u, λ) solves (3.3), then (u, λ) solves

(3.4) Lu = λNu

and u is a weak solution to the periodic-Dirichlet problem of the equation

ut − uxx + λg(x, u) = λh(t, x) on Ω.

Thus the proof will be completed if we show that the solutions to (3.4) for 0 ≤ λ ≤ 1
are bounded in C(Ω) independently of λ ∈ [0, 1]. Since, if λ = 0, we have only the
trivial solution u ≡ 0, it suffices to show our assertion for 0 ≤ λ ≤ 1.
To this end, let (u, λ) be any solution to (3.4) with 0 ≤ λ ≤ 1. By taking the

inner product with ut on both sides of (3.4), we obtain

〈Lu, ut〉+ λ〈g(x, u), ut〉 = λ〈h, ut〉.

Since u ∈ DomL, there exists a sequence un ∈ C∞(Ω), un satisfy (1.2), such
that the distributional derivatives ut, ux, uxx can be obtained as limits in L

2(Ω) of
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the corresponding derivatives of un which tend to u in H
1.2(Ω). Now integration of

these smooth functions, using the boundary conditions, shows that for each n ∈ Z+,
〈Lun, unt〉 = ‖unt‖L2 . Letting n→ +∞, we obtain 〈Lu, ut〉 = ‖unt‖L2 .
Moreover, since for each n ∈ Z+, the periodicity of un(t, x) in t implies

〈g(x, un), unt〉 = 0, we also have 〈g(x, u), ut〉 = 0. Thus

(3.5) ‖ut‖L2 ≤ ‖h‖L2 .

Next we prove that ‖u‖L2 ≤ M1 for some M1 > 0 independently of [0, 1]. Since
lim sup|u|→∞ ψ(u)/u = α0, for α ≥ 0 with α > α0, there exists r0 > 0 such that

ψ(u)/u ≤ α with |u| > r0. So ψ(u) ≤ αu for all |u| ≤ r0. Thus

∫ ∫

|u|>r0

ug(x, u) dt dx ≥ −21/2απ‖u‖L2 .

Since g is a Carathéodory function on I ×R, there exists a constant Mr0 > 0 such
that |g(x, u)| ≤Mr0 for u with |u| ≤ r0 for x ∈ I. Hence

∣

∣

∣

∫ ∫

|u|≤r0

ug(x, u) dt dx
∣

∣

∣
≤ 2π2r0Mr0 .

Thus

〈g(x, u), u〉 =

∫ ∫

|u|>r0

ug(x, u) dt dx+

∫ ∫

|u|≤r0

ug(x, u) dt dx

≥ −21/2απ‖u‖L2 − 2π
2r0Mr0 .

By taking the inner product with u on both sides of (3.4), we have, by the similar
argument

‖unx‖
2
L2 + λ〈g(x, u), u〉 = λ〈h, u〉

since
〈ut, u〉 = 0 and 〈uxx, u〉 = ‖unx‖

2
L2 .

Thus

(3.6)
‖ux‖

2
L2 ≤ −〈g(x, u), u〉+ 〈h, u〉

≤
[

2−1/2απ + ‖h‖L2
]

‖u‖L2 + 2π
2r0Mr0 .

But since ‖u‖L2 ≤ c1‖ux‖L2 for all u ∈ DomL and for some c1 > 0,

‖u‖2L2 ≤ C21
[

2−1/2απ + ‖h‖L2
]

‖u‖L2 + 2π
2r0Mr0 .

Therefore, there exists a constant M1 independently of λ ∈ (0, 1] such that

(3.7) ‖u‖L2 ≤M1 .
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Hence, by (3.6), there exists a constant M2 independently of λ ∈ (0, 1] such that

(3.8) ‖u‖L2 ≤M2 .

Hence, we have u ∈ H1(Ω) and ‖u‖H1 ≤ L1 for some constant independently of
λ ∈ (0, 1]. Since L2(Ω) ⊆ Lq(Ω) where 1 ≤ q ≤ 2 and since H1(Ω) is embedded in
Lq(Ω) where 2 ≤ q ≤ ∞ (see e.g. [2], [6]), ‖u‖Lq ≤ L2(q) where L2(q) may depend
on L1 and q ≥ 1 but is independent of λ ∈ (0, 1].
Next, we will estimate the L2-bound for g(·, u). For |u| ≤ d0 + 1, x ∈ I, we have

|g(x, u)| ≤ sup
x∈I

|u|≤d0+1

|g(x, u)| ≤M3

for some M3 > 0 since g is a Carathéodory function. For |u| > d0 + 1, x ∈ I, we
have, by (H1),

|g(x, u)| = (1/|u|)|ug(x, u)| ≤ (1/d0)
[

a(x)|u|p+1 + b(x)|u|
]

.

Therefore, we have

|g(x, u)| ≤ sup
x∈I

|u|≤d0+1

|g(x, u)|+ sup
x∈I

|u|>d0+1

(1/|u|)|ug(x, u)|

≤ (1/d0)
[

a(x)|u|p+1 + b(x)|u|
]

+M3 .

Hence

‖g(·, u)‖2L2 ≤M4‖u‖
2p+2
L2p+2

+M5‖u‖
p+2
Lp+2

+M6‖u‖
p+1
Lp+1 +M7‖u‖

2
L2 +M8‖u‖L2 +M9

for some appropriate constants M4, M9.
Since ‖u‖Lq ≤ L2(q) for q ≥ 1, ‖g(·, u)‖L2 ≤ L0 for some L0 independently of

λ ∈ [0, 1].
So if (u, λ) is any solution to (3.3), then, by Lemma,

‖u‖∞ ≤ ‖L−1Nu‖∞ ≤ C‖g(·, u)‖L2 + ‖h‖L2 ≤ C(L0 + ‖h‖L2)

and this completes our proof. �

Corollary. For any h ∈ L2(Ω) and F ∈ L∞(I) the boundary value problem

ut − uxx + F (x) sgn (u)|u|
p = h(t, x), p > 0

u(0, x)− u(2π, x) = ut(0, x)− ut(2π, x) = 0 for all x ∈ I

u | ∂I = 0

has at least one weak solution.
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