Commentationes Mathematicae Universitatis Carolinae

Martin Klazar
 Two results on a partial ordering of finite sequences

Commentationes Mathematicae Universitatis Carolinae, Vol. 34 (1993), No. 4, 697--705

Persistent URL: http://dml.cz/dmlcz/118626

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Two results on a partial ordering of finite sequences

Martin Klazar

Abstract

In the first part of the paper we are concerned about finite sequences (over arbitrary symbols) u for which $E x(u, n)=O(n)$. The function $E x(u, n)$ measures the maximum length of finite sequences over n symbols which contain no subsequence of the type u. It follows from the result of Hart and Sharir that the containment ababa $\prec u$ is a (minimal) obstacle to $E x(u, n)=O(n)$. We show by means of a construction due to Sharir and Wiernik that there is another obstacle to the linear growth.

In the second part of the paper we investigate whether the above containment of sequences is wqo. It is trivial that it is not but we show that the smaller family of sequences whose alternate graphs contain no k-path is well quasiordered by that containment.

Keywords: : Davenport-Schinzel sequence, extremal problem, linear growth, minimal ob-
stacle to linearity, well quasiordering, alternate graph
Classification: 05D99, 06A07

1. Introduction.

Throughout this paper \mathcal{S} denotes the set of all finite sequences over a fixed infinite universum of symbols S. For any sequence u of \mathcal{S} we use $S(u)$ to denote the set of all symbols occurring in u. The quasiordering (\mathcal{S}, \prec) which is the main subject of the paper is defined as follows. We say that a sequence $u=a_{1} a_{2} \ldots a_{m}$ is contained in another sequence $v=b_{1} b_{2} \ldots b_{n}$ and write $u \prec v$ iff there is an increasing mapping $f:\{1, \ldots, m\} \rightarrow\{1, \ldots, n\}$ and an injection $g: S(u) \rightarrow S(v)$ such that $g\left(a_{i}\right)=b_{f(i)}$ for all $i=1, \ldots, m$. In other words: some subsequence of v differs from u only in names of its symbols.

There are at least two reasons for investigating (\mathcal{S}, \prec) : one is that finite sequences (words) belong to the most basic mathematical concepts and the second is that so called Davenport-Schinzel sequences (from now DS sequences) which play an important role in computational geometry can be naturally defined in terms of \prec. Our results on (\mathcal{S}, \prec) are:

1) Let $E x(u, n)$ be a general extremal function measuring the maximum length of sequences over n symbols not containing a forbidden sequence u and let Lin be the set of all sequences u for which $E x(u, n)=O(n)$. The elements of Lin are called linear sequences, the nonelements are called nonlinear sequences. Exact definitions are given at the beginning of Section 2. It is easy to show that the set Lin is a lower ideal in (\mathcal{S}, \prec). Hence Lin is completely determined by the set B of all minimal (to \prec) nonlinear sequences. The result of Hart and Sharir [6] yields $a b a b a \in B$. We show that the construction [15] of Sharir and Wiernik implies

Theorem A. There are at least two elements in $B: u_{1}=a b a b a$ and $u_{2} \prec$ abcbadadbcd.

Acknowledgement. The idea of the proof that there is a u_{2} is due to Pavel Valtr to whom the author is indebted for valuable discussions. Author thanks also the referee for helpful comments.

Problem. Is B finite?
2) If $\left(\mathcal{S}_{k}, \prec\right)$ were well quasiordering then B as well as all antichains in $\left(\mathcal{S}_{k}, \prec\right)$ would be finite. But there are infinite antichains in ($\left.\mathcal{S}_{k}, \prec\right)$ and hence the wqo method fails. Nevertheless we prove

Theorem B. The quasiordering $\left(\mathcal{S}_{k}, \prec\right)$ is wqo for any k.
Here \mathcal{S}_{k} consists of all sequences $u \in \mathcal{S}$ with the property that the graph $G(u)$ contains no path of the length k. The vertex set of $G(u)$ is $S(u),\{a, b\}$ is an edge of $G(u)$ iff $a b a b$ or $b a b a$ is a subsequence of u. Theorem B implies

Consequence. $B \cap \mathcal{S}_{k}$ is finite for any $k \geq 1$.

2. Minimum nonlinear sequences.

For any sequence $u=a_{1} a_{2} \ldots a_{m}$ of \mathcal{S} the symbol $\|u\|$ denotes the cardinality of $S(u)$ and $|u|$ stands for the length of u. Clearly $\|u\| \leq|u|$ for all u. The sequence u is called k-regular if $a_{i}=a_{j}, i>j$ implies $i-j \geq k$. We define:

$$
E x(u, n)=\max \{|v| \mid u \nprec v,\|v\| \leq n, v \text { is }\|u\| \text {-regular }\} .
$$

The function $E x(u, n)$ was introduced in [1] and investigated in [9].
The primary question of Davenport and Schinzel [3] was (though in different notation) the growth rate of the functions $\operatorname{Ex}(a b a b a \ldots, n)$ where $a b a b a \ldots$ is a fixed alternating sequence over two symbols.

They proved $E x(a b a b, n)=2 n-1$ (this is not difficult and is recommended to the reader as an exercise), $E x(a b a b a, n)=O(n \log n / \log \log n)$ and $E x(a b a b a \ldots, n)=$ $O(n . \exp (\sqrt{n}))$ for any fixed alternating sequence ([3] and [4]). This was later improved by Szemerédi [14] to $O\left(n \log ^{*} n\right)$ but no result excluding $E x(a b a b a \ldots, n)=$ $O(n)$ was known.

Hart and Sharir [6] proved that Ex(ababa, n) $=\Theta(n \cdot \alpha(n))$ where $\alpha(n)$ is the functional inverse to the Ackermann function and grows to infinity extremely slowly. Their method was later generalized and sharp upper and lower bounds on the functions $\operatorname{Ex}(a b a b a \ldots, n)$ were found [2], [13]. In [8] their method was used to obtain a strong upper bound of this kind for any function $\operatorname{Ex}(u, n)$.

We recall two lemmas of [9].
Lemma 2.1. $E x(u, n)$ is finite for any fixed sequence u and any integer $n \geq 1$.
Lemma 2.2. The set Lin is a lower ideal in $(\mathcal{S}, \prec):$ if $v \in \operatorname{Lin}$ and $u \prec v$ then $u \in$ Lin.

According to [6], $a b a b a \notin L i n$. On the other hand, it is easy to see that $b a b a$, $a a b a, a b b a$ and $a b a a$ are linear. Thus $a b a b a \in B$. In the rest of this section we show
that there is another obstacle to linearity. The powerful tool that will be used is a simple but ingenious construction of [15]. We recall it briefly and then we prove Theorem A.

We shall define, by double induction on the integers $i, j \geq 1,2$-regular sequences $u(i, j) \in \mathcal{S}$. A sequence $v \in \mathcal{S}$ is called j-block if $v=x_{1} x_{2} \ldots x_{j}$ for j distinct symbols x_{i}. Sequences $u=u(i, j)$ satisfy $u=b^{1} c^{1} b^{2} c^{2} \ldots b^{k} c^{k}$ where any b^{r} is a j block, c^{r} is an intermediate (possibly empty) sequence and $k=k(i, j)$ is an integer valued function which will be defined later. Moreover, it is required

$$
S(u)=\bigcup_{r=1}^{k} S\left(b^{r}\right) \text { and } S\left(b^{1} c^{1} \ldots b^{r-1} c^{r-1}\right) \cap S\left(b^{r}\right)=\emptyset, r=2 \ldots k
$$

Observe that $\|u(i, j)\|=j . k(i, j)$. Let $b^{r}=b_{0}^{r} y^{r}$ where y^{r} is the last occurrence in the block b^{r}. Let

$$
d(u)=b_{0}^{1} y^{1} y^{1} c^{1} b_{0}^{2} y^{2} y^{2} c^{2} \ldots b_{0}^{k} y^{k} y^{k} c^{k}
$$

denote the sequence obtained from u by doubling last occurrences in all j-blocks. The construction proceeds as follows.
l. If $i=1, j \geq 1$ then $u(1, j)=b^{1}=x_{1} x_{2} \ldots x_{j}$ and $k(1, j)=1$.
2. If $i>1, j=1$ then $u(i, 1)=u(i-1,2)$ and the only change is that the 2 -blocks in $u(i-1,2)$ are viewed now as pairs of neighbouring 1-blocks in $u(i, 1)$. Hence $k(i, 1)=2 . k(i-1,2)$.
3. If $i>1, j>1$ then put $J=k(i, j-1), K=k(i-1, J), u=u(i, j-1)$ and $v=u(i-1, J)=B^{1} C^{1} \ldots B^{K} C^{K}$ where $B^{r}=x_{1}^{r} \ldots x_{J}^{r}$ is the r-th J-block of v. The sequences $u_{1}^{*}, u_{2}^{*}, \ldots, u_{K}^{*}$ are K disjoint copies of the sequence $d(u)$, all are disjoint of v. Let $u_{r}^{*}=b_{0}^{1} y^{1} y^{1} c^{1} \ldots b_{0}^{J} y^{J} y^{J} c^{J}$ where $b_{0}^{s} y^{s}$ is the copy of the s-th $(j-1)$-block of u. Then define

$$
u_{r}=b_{0}^{1} y^{1} x_{1}^{r} y^{1} c^{1} \ldots b_{0}^{J} y^{J} x_{J}^{r} y^{J} c^{J} .
$$

The J old $(j-1)$-blocks in u_{r}^{*} and $x_{1}^{r}, x_{2}^{r}, \ldots, x_{J}^{r}$ yield J new j-blocks in u_{r}. Finally

$$
u(i, j)=u_{1} x_{J}^{1} C^{1} u_{2} x_{J}^{2} C^{2} \ldots u_{K} x_{J}^{K} C^{K}
$$

and the j-blocks in $u(i, j)$ are the $J K$ new blocks in u_{1}, \ldots, u_{K}. Hence

$$
k(i, j)=J . K=k(i, j-1) \cdot k(i-1, k(i, j-1))
$$

Briefly spoken, sufficiently many copies of $d(u)$ and a copy of $d(v)$ are merged together so that the order is preserved and so that the resulting sequence is again 2-regular.
For the proof of the following lemma we refer to [15].

Lemma 2.3. $|u(i, j)| /\|u(i, j)\|>i-2 / j$ for all $i, j \geq 1$. Moreover: there is an increasing sequence $\left\{j_{i}\right\}_{i=1}^{\infty}$ of integers such that $\left|u\left(i, j_{i}\right)\right| \geq c .\left\|u\left(i, j_{i}\right)\right\| . \alpha\left(\left\|u\left(i, j_{i}\right)\right\|\right)$ for $i=1,2 \ldots$ and an absolute constant $c>0$.

Suppose $u \in \mathcal{S}$ is a sequence. We define the digraph $D(u)=(V, E)$ by $V=S(u)$ and $(a, b) \in E$ iff there is a b-occurrence in u which is not the first b-occurrence in u and which lies between two a-occurrences. Briefly: either $b a b a$ or $a b b a$ is a subsequence of u. Now we generalize the argument of Sharir and Wiernik (they considered only the case $w=a b a b a)$.
Theorem 2.4. Suppose $w \in \mathcal{S}$ is 2-regular and such that the digraph $D(w)$ is strongly connected. Then w is nonlinear and moreover $\operatorname{Ex}(w, n)=\Omega(n . \alpha(n))$.
Proof: We prove by double induction that $w \nprec u(i, j)$ for all $i, j \geq 1$. Cases $i=1$ or $j=1$ are obvious. Now consider the sequence $u(i, j)=u_{1} x_{J}^{1} C^{\overline{1}} u_{2} x_{J}^{2} C^{2} \ldots$ $u_{K} x_{J}^{K} C^{K}$ where i and j are greater than 1 . We use the above notation. Suppose on the contrary that $w \prec u(i, j)$ and that w^{*} is the subsequence of $u(i, j)$ which differs from w only in names of symbols. For any $x \in S\left(w^{*}\right)$ the symbol x is an element either of some $S\left(u_{r}^{*}\right)$ or of $S(d(v))$. In the former case x is called local and in the latter case global.

It is an easy observation that if (a, b) is an edge in $D\left(w^{*}\right)=D(w)$ and a is local then b is local too and all b-occurrences appear in the same u_{r}^{*} as those of a. Because of the strong connectivity of $D(w)$ either all symbols in $S\left(w^{*}\right)$ are local or all of them are global. In the former case w^{*} is a subsequence of some u_{r}^{*}, thus $w \prec d(u)$ and $w \prec u=u(i, j-1)$ which is a contradiction. In the latter case $w \prec d(v)$ and $w \prec v=u(i-1, J)$ which is a contradiction again.

We are not done yet because $u(i, j)$ are 2 -regular and we need them to be $\|w\|$ regular. Let $k=\|w\|$. The sequence ababa clearly satisfies the hypothesis of the theorem and thus $a b a b a \nprec u(i, j)$ for all i and j. Let $\operatorname{Ex}(a b a b a, k-1)=h$ (Lemma 2.1). We apply on $u(i, j)=a_{0} a_{1} \ldots a_{m}$ the following greedy procedure.

First we put $v(i, j)=a_{0}$ and we try to add elements a_{i} to $v(i, j)$. If the sequence $v(i, j) a_{i}$ is k-regular then we put $v(i, j):=v(i, j) a_{i}$ and we try to add a_{i+1}. If not then a_{i} is omitted and we continue also with a_{i+1}. We obtain a k-regular subsequence $v(i, j)$ of $u(i, j)$ satisfying

$$
|v(i, j)| \geq \frac{|u(i, j)|}{h+1}
$$

because any interval in $u(i, j)$ consisting of omitted elements has length at most h. The previous lemma implies $E x(w, n)=\Omega(n \cdot \alpha(n))$ for infinitely many values n. It is not too difficult to prove that $E x(w, n)=\Omega(n \cdot \alpha(n))$ for all n, one has to use the superaditivity of $E x(w, n)$ and the definition of the numbers $\left\{j_{i}\right\}_{i=1}^{\infty}$ of the previous lemma. See [2] for similar calculation.

Theorem A. There are at least two elements in $B: u_{1}=a b a b a$ and $u_{2} \prec$ abcbadadbcd.

Proof: We know already that $a b a b a \in B$. Now consider the sequence $v_{1}=$ abcbadadbcd. Again $E x\left(v_{1}, n\right)=\Omega(n \cdot \alpha(n))$ according to Theorem 2.4 because there
is a Hamiltonian cycle $a b d c$ in $D\left(v_{1}\right)$. But an easy check shows that $a b a b a \nprec v_{1}$. Hence there must be a sequence $u_{2} \prec v_{1}, u_{2} \neq a b a b a, u_{2} \in B$.

3. (\mathcal{S}, \prec) and wqo.

First we demonstrate an infinite antichain in (\mathcal{S}, \prec). Let $u \in \mathcal{S}$ be a sequence. The graph $G=(V, E)$ is defined by $V=S(u)$ and by $\{a, b\} \in E$ iff abab or baba is a subsequence of u. It is well-known that there are infinite antichains in the set of all finite graphs (\mathcal{G}, \subset) ordered by the relation "be a subgraph": for instance all i-cycles $C_{i}, i \geq 3$. It is an immediate observation that $u \prec v$ implies $G(u) \subset G(v)$. The fact that (\mathcal{G}, \subset) is not wqo reflects back to (\mathcal{S}, \prec) :

$$
u_{3}=a b a c b c a c, u_{4}=a b a c b c d c d a d, u_{5}=a b a c b c d c d e d e a e, \ldots
$$

is an infinite antichain in (\mathcal{S}, \prec) because $G\left(u_{i}\right)=C_{i}$. However, it is not difficult to prove [12] that the smaller family $\left(\mathcal{G}_{k}, \subset\right)$, where \mathcal{G}_{k} consists of all k-path free graphs (no path of k edges), is wqo. It is interesting that this property reflects back to (\mathcal{S}, \prec) as well. We now recall some things about wqo and after that Theorem B will be proved. For the proofs and for more basics we refer to [10].

Any binary relation $\left(Q, \leq_{Q}\right)$ which is transitive and reflexive is called a quasiordering or, shortly, qo. Notation $x<_{Q} y$ means that $x \leq_{Q} y \& y \not Z_{Q} x$. A qo $\left(Q, \leq_{Q}\right)$ is a well quasiordering or, shortly, wqo if it has the property characterized by the following lemma.

Lemma 3.1. Suppose $\left(Q, \leq_{Q}\right)$ is a qo. Then the following conditions are equivalent.

1. For any infinite sequence $\left(q_{0}, q_{1}, \ldots\right) \subseteq Q$ there are indices $i<j$ such that $q_{i} \leq_{Q} q_{j}$.
2. For any infinite sequence $\left(q_{0}, q_{1}, \ldots\right) \subseteq Q$ there are indices $0 \leq i_{0}<i_{1}<\ldots$ such that $q_{i_{0}} \leq_{Q} q_{i_{1}} \leq_{Q} \ldots$
3. There is no strictly descending infinite chain $x_{0}>_{Q} x_{1}>_{Q} \ldots$ in Q and no infinite antichain.

Sequences satisfying 1. are called good, other sequences are called bad. Thus the definition of wqo can be stated in this form: a qo $\left(Q, \leq_{Q}\right)$ is wqo iff there is no bad (infinite) sequence in Q. A strict partial ordering $\left(Q,<^{*}\right)$ is called well founded iff there are no infinite descending chains in $\left(Q,<^{*}\right)$. We say that $\left(Q,<^{*}\right)$ is stronger than a qo $\left(Q, \leq_{Q}\right)$ if $x \leq_{Q} y$ whenever $x<^{*} y$. We prove Theorem B by means of the following fundamental lemma.

Lemma 3.2 Nash-Williams [11]. Suppose a well founded strict partial ordering $\left(Q,<^{*}\right)$ is stronger than a qo $\left(Q, \leq_{Q}\right)$ which is not wqo. Then there is an infinite sequence $A=\left(q_{0}, q_{1}, \ldots\right) \subseteq Q$ such that

1. A is bad in $\left(Q, \leq_{Q}\right)$.
2. $\left(W_{A}, \leq_{Q}\right)$ is wqo where $W_{A}=\left\{x \in Q \mid x<^{*} q_{i}\right.$ for some $\left.i\right\}$.

Sequence A is called a minimum bad sequence.

For finite structures, $<_{Q}$ is usually well founded and one can put $<^{*}=<_{Q}$. This is the case here and in sequel we take tacitly $<^{*}=<_{Q}$. Now we give an overview of basic constructions for creating new wqo's. Suppose $\left(Q_{0}, \leq_{Q_{0}}\right)$ and $\left(Q_{1}, \leq_{Q_{1}}\right)$ are qo. The product qo $\left(Q_{0} \times Q_{1}, \leq_{p r}\right)$ is defined by

$$
\left(a_{0}, a_{1}\right) \leq_{p r}\left(b_{0}, b_{1}\right) \text { iff } a_{i} \leq_{Q_{i}} b_{i} \text { for } i=0,1
$$

The sum qo $\left(Q_{0}+Q_{1}, \leq_{+}\right)$is defined by

$$
Q_{0}+Q_{1}=\left(Q_{0} \times\{0\}\right) \cup\left(Q_{1} \times\{1\}\right),(a, i) \leq_{+}(b, j) \text { iff } i=j \text { and } a \leq_{Q_{i}} b
$$

An easy consequence of Lemma 3.1 is that if $\left(Q_{i}, \leq_{Q_{i}}\right), i=0,1$ are wqo then both the product qo and the sum qo are wqo as well.

We shall use in sequel the wqo $N=(N, \leq)$ consisting of positive integers with the standard order and the trivial discrete wqo T_{n} consisting of n elements which are mutually incomparable.

Suppose $\left(Q, \leq_{Q}\right)$ is a qo. The elements of the structure $\left(S E Q(Q), \leq_{H}\right)$ are all finite sequences over Q. More specifically, elements of $S E Q(Q)$ are of the form (I, p) where I is a finite linear ordering and $p: I \rightarrow Q$ is a mapping.

We put $(I, p) \leq_{H}(J, r)$ (Higman ordering) iff there is an increasing injection $f: I \rightarrow J$ such that $p(x) \leq_{Q} r(f(x))$ for any $x \in I$. We shall need the following classical result which easily follows from Lemma 3.2.

Theorem 3.3 Higman [7]. If $\left(Q, \leq_{Q}\right)$ is wqo then $\left(S E Q(Q), \leq_{H}\right)$ is wqo as well.
To prove Theorem B it is convenient to work with a generalization of (\mathcal{S}, \prec). Let $\left(Q, \leq_{Q}\right)$ be a qo. Recall that S is a fixed infinite universum of symbols.
Definition 3.4. We define $R(Q)$ as consisting of the triples $u=(I, p, q)$ where I is a finite linear ordering and $p: \operatorname{Dom}(p) \rightarrow S$ and $q: \operatorname{Dom}(q) \rightarrow Q$ are two labelings whose domains partition I. The qo in $\left(R(Q), \leq_{R}\right)$ is defined by

$$
\begin{gathered}
(I, p, q) \leq_{R}(J, r, s) \text { iff }(\operatorname{Dom}(p), p) \prec(\operatorname{Dom}(r), r) \text { via } f\lceil\operatorname{Dom}(p) \text { and } \\
(\operatorname{Dom}(q), q) \leq_{H}(\operatorname{Dom}(s), s) \text { via } f\lceil\operatorname{Dom}(q)
\end{gathered}
$$

for some increasing injection $f: I \rightarrow J$.
We use $S(u)$ to denote (V, E) is defined, for an element $u=(I, p, q)$ of $R(Q)$, by $V=S(u)=\operatorname{Rng}(p)$ and $\{a, b\} \in E$ iff $p(x)=p(z)=a, p(y)=p(t)=b$ or $p(x)=p(z)=b, p(y)=p(t)=a$ for some four elements $x<y<z<t$ of I. The set $R(Q, k)$ consists of all triples u of $R(Q)$ for which $G(u) \in \mathcal{G}_{k}$. To prove Theorem B we shall need two easy graph lemmas.

Lemma 3.5. If $G=(V, E)$ is a connected graph whose longest path P has length k then the graph $H=G\left\lceil(V(G) \backslash V(P))\right.$ belongs to \mathcal{G}_{k}.
Proof: Suppose Q is a k-path in H and T is a $P-Q$ path joining P and Q in G. These three paths contain obviously a $\left(2 .\left\lceil\frac{k}{2}\right\rceil+1\right)$-path which is a contradiction.

Suppose $u=(I, p, q) \in R(Q)$ is a sequence such that $\min I \in \operatorname{Dom}(p)$, let $p(\min I)=v$. Let H be the component in $G(u)$ containing v. We define the graph decomposition of I as $I=J^{0} \cup K^{0} \cup J^{1} \cup K^{1} \cup \ldots \cup J^{r} \cup K^{r}$ where $J^{0}<K^{0}<J^{1}<$ $K^{1}<\ldots$ and any J^{j} is a maximum nonempty interval in I such that $J^{j} \subset \operatorname{Dom}(p)$ and $p(x) \in V(H)$ for any $x \in J^{j}$. Let $u^{j}\left(\right.$ resp. $\left.v^{j}\right)$ be u restricted on I^{j} (resp. K^{j}).
Lemma 3.6. Let u and the graph decomposition be as above. Then $S\left(v^{j}\right)$ are mutually disjoint for $j=0,1, \ldots, r$.
Proof: Let $w \in S\left(v^{i}\right) \cap S\left(v^{j}\right)$ for some $0 \leq i<j \leq r$. Consider the subsets of $V(H)$

$$
X=\bigcup_{a=0}^{a=i} S\left(u^{a}\right) \cup \bigcup_{a=j+1}^{a=r} S\left(u^{a}\right) \text { and } Y=\bigcup_{a=i+1}^{a=j} S\left(u^{a}\right)
$$

There exists a $t \in X \cap Y$ otherwise there would be no edge in $G(u)$ between X and Y. Thus $\{t, w\}$ is an edge and $w \in V(H)$ which is a contradiction.

We prove Theorem B in the following general form.
Theorem 3.7. $\left(R(Q, k), \leq_{R}\right)$ is wqo for any wqo $\left(Q, \leq_{Q}\right)$ and any positive integer k.

Proof: We shall proceed by double induction on k and $\left(Q, \leq_{Q}\right)$. Let $k=1$ and let $\left(Q, \leq_{Q}\right)$ be an arbitrary wqo. Suppose $\left(R(Q, 1), \leq_{R}\right)$ is not wqo. Consider the minimum bad sequence

$$
A=\left(u_{0}, u_{1}, \ldots\right) \subset R(Q, 1), \quad u_{i}=\left(I_{i}, p_{i}, q_{i}\right)
$$

which is ensured by Lemma 3.2. Denote $x_{i}=\min I_{i}$. One can suppose that either $x_{i} \in \operatorname{Dom}\left(q_{i}\right)$ for all i or $x_{i} \in \operatorname{Dom}\left(p_{i}\right)$ for all i. In the former case consider triples $v_{i}=\left(J_{i}, p_{i}^{*}, q_{i}^{*}\right)$ where $J_{i}=I_{i} \backslash\left\{x_{i}\right\}, p_{i}^{*}=p_{i}\left\lceil J_{i}\right.$ and $q_{i}^{*}=q_{i}\left\lceil J_{i}\right.$. The sequence

$$
\left(\left(q_{0}\left(x_{0}\right), v_{0}\right),\left(q_{1}\left(x_{1}\right), v_{1}\right), \ldots\right) \subset Q \times W_{A}
$$

is a good sequence because $Q \times W_{A}$ is wqo and thus A is good as well which is a contradiction.

In the latter case consider the corresponding graph decomposition $I_{i}=J_{i}^{0} \cup K_{i}^{0} \cup$ $J_{i}^{1} \cup K_{i}^{1} \cup \ldots \cup J_{i}^{r_{i}} \cup K_{i}^{r_{i}}$. The component H is now just a single point. Let v_{i}^{j} be the restriction of u_{i} to K_{i}^{j}. According to the previous lemma $v_{i}^{j}, j=0,1, \ldots, r_{i}$ can be treated independently. We define $s_{i}=\left(\left\{0,1, \ldots, r_{i}\right\}, n_{i}\right) \in S E Q\left(N \times W_{A}\right)$ by $n_{i}(j)=\left(\left|J_{i}^{j}\right|, v_{i}^{j}\right)$. The sequence

$$
\left(s_{0}, s_{1}, \ldots\right) \subset S E Q\left(N \times W_{A}\right)
$$

is, according to Higman theorem, a good sequence. It is not difficult to see that this implies that A is a good sequence as well. This is a contradiction again. We conclude that $\left(R(Q, 1), \leq_{R}\right)$ is wqo.

Now suppose that $k>1$, that $\left(R(Q, k-1), \leq_{R}\right)$ is wqo for any wqo $\left(Q, \leq_{Q}\right)$ and that $\left(R(Q, k), \leq_{R}\right)$ is not wqo for some wqo $\left(Q, \leq_{Q}\right)$. Let

$$
A=\left(u_{0}, u_{1}, \ldots\right) \subset R(Q, k), u_{i}=\left(I_{i}, p_{i}, q_{i}\right)
$$

be a minimum bad sequence. One can suppose that min $I_{i}=x_{i} \in \operatorname{Dom}\left(p_{i}\right)$ for all i, the other possibility is treated as for $k=1$.

Let $H_{i} \subset S\left(u_{i}\right)$ be the component in $G\left(u_{i}\right)$ which contains $p_{i}\left(x_{i}\right)$. Let $W_{i} \subset$ $V\left(H_{i}\right)$ be the vertex set of the longest path in H_{i}. Consider the graph decomposition $I_{i}=J_{i}^{0} \cup K_{i}^{0} \cup J_{i}^{1} \cup K_{i}^{1} \cup \ldots \cup J_{i}^{r_{i}} \cup K_{i}^{r_{i}}$. Let v_{i}^{j} be the restriction of u_{i} to K_{i}^{j}.

Again $v_{i}^{j}, j=0,1, \ldots, r_{i}$ are independent each to the other. The sequence u_{i} is transformed into the sequence u_{i}^{*} in the following manner. Any K_{i}^{j} is contracted into one point k_{i}^{j} which is labeled by v_{i}^{j}. The wqo Q^{*} is defined by $Q^{*}=T_{k}+W_{A}$. The elements of the trivial wqo T_{k} are the vertices of W_{i}. Now they are viewed as labels for the q-labeling. Formally:

$$
\begin{gathered}
u_{i}^{*}=\left(I_{i}^{*}, p_{i}^{*}, q_{i}^{*}\right) \text { where } I_{i}^{*}=J_{i}^{0} \cup\left\{k_{i}^{0}\right\} \cup J_{i}^{1} \cup\left\{k_{i}^{1}\right\} \cup \ldots \cup J_{i}^{r_{i}} \cup\left\{k_{i}^{r_{i}}\right\} \text { and } \\
J_{i}^{0}<\left\{k_{i}^{0}\right\}<J_{i}^{1}<\left\{k_{i}^{1}\right\}<\ldots
\end{gathered}
$$

Further

$$
\begin{aligned}
& \operatorname{Dom}\left(p_{i}^{*}\right)=p_{i}^{-1}\left(V\left(H_{i}\right) \backslash W_{i}\right) \text { and } \\
\operatorname{Dom}\left(q_{i}^{*}\right)= & I_{i}^{*} \backslash \operatorname{Dom}\left(p_{i}^{*}\right)=p_{i}^{-1}\left(W_{i}\right) \cup\left\{k_{i}^{0}\right\} \cup \ldots \cup\left\{k_{i}^{r_{i}}\right\} .
\end{aligned}
$$

Finally

$$
p_{i}^{*}(x)=p_{i}(x), q_{i}^{*}(x)=p_{i}(x) \text { if } x \in p_{i}^{-1}\left(W_{i}\right) \text { and } q_{i}^{*}(x)=v_{i}^{j} \text { if } x=k_{i}^{j}
$$

Clearly, according to the Lemma $3.5, u_{i}^{*}=\left(I_{i}^{*}, p_{i}^{*}, q_{i}^{*}\right) \in R\left(Q^{*}, k-1\right)$. The sequence

$$
\left(u_{0}^{*}, u_{1}^{*}, \ldots\right) \subset R\left(Q^{*}, k-1\right)
$$

is good according to the induction hypothesis. This implies that A is good as well contradicting our assumption.

References

[1] Adamec R., Klazar M., Valtr P., Generalized Davenport-Schinzel sequences with linear upper bound, Discrete Math. 108 (1992), 219-229.
[2] Agarwal P.K., Sharir M., Shor P., Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences, J. Comb. Theory A 52 (1989), 228-274.
[3] Davenport H., Schinzel A., A combinatorial problem connected with differential equations, Amer. J. Math. 87 (1965), 684-689.
[4] Davenport H., A combinatorial problem connected with differential equations II, Acta Arith. 17 (1971), 363-372.
[5] Graphs and Orders, (I. Rival, ed.) D. Reidel Publishing Company, Dordrecht, 1985.
[6] Hart S., Sharir M., Nonlinearity of Davenport-Schinzel sequences and of generalized path compression schemes, Combinatorica 6 (1986), 151-177.
[7] Higman H., Orderi divisibility in abstract algebras, Proc. London Math. Society 2 (1952), 326-336.
[8] Klazar M., A general upper bound in Extremal theory of sequences, Comment. Math. Univ. Carolinae 33 (1992), 737-747.
[9] Klazar M., Valtr P., Linear sequences, submitted.
[10] Milner E.C., Basic wqo and bqo theory, in [5].
[11] Nash-Williams C.St.J.A., On well-quasi-ordering finite trees, Math. Proc. Cambridge Philos. Soc. 59 (1963), 833-835.
[12] Robertson N., Seymour P., Graph minors - a survey, Surveys in Combinatorics (Glasgow 1985) (I. Anderson, ed.), Cambridge Univ. Press, 153-171.
[13] Sharir M., Almost linear upper bounds on the length of general Davenport-Schinzel sequences, Combinatorica 7 (1987), 131-143.
[14] Szemerédi E., On a problem by Davenport and Schinzel, Acta Arith. 25 (1974), 213-224.
[15] Wiernik A., Sharir M., Planar realization of nonlinear Davenport-Schinzel, Discrete Comput. Geometry 3 (1988), 15-47.

Department of Applied Mathematics, Malostranské nám. 25, 11800 Praha 1, Czech Republic

