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Two results on a partial ordering of finite sequences

Martin Klazar

Abstract. In the first part of the paper we are concerned about finite sequences (over
arbitrary symbols) u for which Ex(u, n) = O(n). The function Ex(u, n) measures the
maximum length of finite sequences over n symbols which contain no subsequence of the
type u. It follows from the result of Hart and Sharir that the containment ababa ≺ u is
a (minimal) obstacle to Ex(u,n) = O(n). We show by means of a construction due to
Sharir and Wiernik that there is another obstacle to the linear growth.
In the second part of the paper we investigate whether the above containment of se-

quences is wqo. It is trivial that it is not but we show that the smaller family of sequences
whose alternate graphs contain no k-path is well quasiordered by that containment.

Keywords: : Davenport-Schinzel sequence, extremal problem, linear growth, minimal ob-
stacle to linearity, well quasiordering, alternate graph

Classification: 05D99, 06A07

1. Introduction.

Throughout this paper S denotes the set of all finite sequences over a fixed
infinite universum of symbols S. For any sequence u of S we use S(u) to denote
the set of all symbols occurring in u. The quasiordering (S,≺) which is the main
subject of the paper is defined as follows. We say that a sequence u = a1a2 . . . am

is contained in another sequence v = b1b2 . . . bn and write u ≺ v iff there is an
increasing mapping f : {1, . . . , m} → {1, . . . , n} and an injection g : S(u) → S(v)
such that g(ai) = bf(i) for all i = 1, . . . , m. In other words: some subsequence of v

differs from u only in names of its symbols.
There are at least two reasons for investigating (S,≺): one is that finite sequences

(words) belong to the most basic mathematical concepts and the second is that
so called Davenport-Schinzel sequences (from now DS sequences) which play an
important role in computational geometry can be naturally defined in terms of ≺.
Our results on (S,≺) are:
1) Let Ex(u, n) be a general extremal function measuring the maximum length of
sequences over n symbols not containing a forbidden sequence u and let Lin be the
set of all sequences u for which Ex(u, n) = O(n). The elements of Lin are called
linear sequences, the nonelements are called nonlinear sequences. Exact definitions
are given at the beginning of Section 2. It is easy to show that the set Lin is a lower
ideal in (S,≺). Hence Lin is completely determined by the set B of all minimal
(to ≺) nonlinear sequences. The result of Hart and Sharir [6] yields ababa ∈ B. We
show that the construction [15] of Sharir and Wiernik implies
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Theorem A. There are at least two elements in B: u1 = ababa and u2 ≺
abcbadadbcd.

Acknowledgement. The idea of the proof that there is a u2 is due to Pavel Valtr
to whom the author is indebted for valuable discussions. Author thanks also the
referee for helpful comments.

Problem. Is B finite?

2) If (Sk,≺) were well quasiordering then B as well as all antichains in (Sk ,≺) would
be finite. But there are infinite antichains in (Sk,≺) and hence the wqo method
fails. Nevertheless we prove

Theorem B. The quasiordering (Sk,≺) is wqo for any k.

Here Sk consists of all sequences u ∈ S with the property that the graph G(u)
contains no path of the length k. The vertex set of G(u) is S(u), {a, b} is an edge
of G(u) iff abab or baba is a subsequence of u. Theorem B implies

Consequence. B ∩ Sk is finite for any k ≥ 1.
2. Minimum nonlinear sequences.

For any sequence u = a1a2 . . . am of S the symbol ‖u‖ denotes the cardinality of
S(u) and |u| stands for the length of u. Clearly ‖u‖ ≤ |u| for all u. The sequence
u is called k-regular if ai = aj , i > j implies i − j ≥ k. We define:

Ex(u, n) = max{|v| | u 6≺ v, ‖v‖ ≤ n, v is ‖u‖-regular}.

The function Ex(u, n) was introduced in [1] and investigated in [9].
The primary question of Davenport and Schinzel [3] was (though in different

notation) the growth rate of the functions Ex(ababa . . . , n) where ababa . . . is a fixed
alternating sequence over two symbols.
They proved Ex(abab, n) = 2n−1 (this is not difficult and is recommended to the

reader as an exercise), Ex(ababa, n) = O(n log n/ log logn) and Ex(ababa . . . , n) =
O(n.exp(

√
n)) for any fixed alternating sequence ([3] and [4]). This was later im-

proved by Szemerédi [14] to O(n log∗ n) but no result excluding Ex(ababa . . . , n) =
O(n) was known.
Hart and Sharir [6] proved that Ex(ababa, n) = Θ(n.α(n)) where α(n) is the

functional inverse to the Ackermann function and grows to infinity extremely slowly.
Their method was later generalized and sharp upper and lower bounds on the
functions Ex(ababa . . . , n) were found [2], [13]. In [8] their method was used to
obtain a strong upper bound of this kind for any function Ex(u, n).
We recall two lemmas of [9].

Lemma 2.1. Ex(u, n) is finite for any fixed sequence u and any integer n ≥ 1.
Lemma 2.2. The set Lin is a lower ideal in (S,≺): if v ∈ Lin and u ≺ v then
u ∈ Lin.

According to [6], ababa 6∈ Lin. On the other hand, it is easy to see that baba,
aaba, abba and abaa are linear. Thus ababa ∈ B. In the rest of this section we show
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that there is another obstacle to linearity. The powerful tool that will be used is
a simple but ingenious construction of [15]. We recall it briefly and then we prove
Theorem A.

We shall define, by double induction on the integers i, j ≥ 1, 2-regular sequences
u(i, j) ∈ S. A sequence v ∈ S is called j-block if v = x1x2 . . . xj for j distinct

symbols xi. Sequences u = u(i, j) satisfy u = b1c1b2c2 . . . bkck where any br is a j-
block, cr is an intermediate (possibly empty) sequence and k = k(i, j) is an integer
valued function which will be defined later. Moreover, it is required

S(u) =

k⋃

r=1

S(br) and S(b1c1 . . . br−1cr−1) ∩ S(br) = ∅, r = 2 . . . k.

Observe that ‖u(i, j)‖ = j.k(i, j). Let br = br
0y

r where yr is the last occurrence in
the block br. Let

d(u) = b10y
1y1c1b20y

2y2c2 . . . bk
0y

kykck

denote the sequence obtained from u by doubling last occurrences in all j-blocks.
The construction proceeds as follows.

l. If i = 1, j ≥ 1 then u(1, j) = b1 = x1x2 . . . xj and k(1, j) = 1.
2. If i > 1, j = 1 then u(i, 1) = u(i − 1, 2) and the only change is that the
2-blocks in u(i − 1, 2) are viewed now as pairs of neighbouring 1-blocks in
u(i, 1). Hence k(i, 1) = 2.k(i − 1, 2).

3. If i > 1, j > 1 then put J = k(i, j − 1), K = k(i − 1, J), u = u(i, j − 1) and
v = u(i − 1, J) = B1C1 . . . BKCK whereBr = xr

1 . . . xr
J is the r-th J-block

of v. The sequences u∗1, u
∗

2, . . . , u∗K are K disjoint copies of the sequence

d(u), all are disjoint of v. Let u∗r = b10y
1y1c1 . . . bJ

0 y
JyJcJ where bs

0y
s is the

copy of the s-th (j − 1)-block of u. Then define

ur = b10y
1xr
1y
1c1 . . . bJ

0 y
Jxr

JyJcJ .

The J old (j−1)-blocks in u∗r and xr
1, x

r
2, . . . , xr

J yield J new j-blocks in ur.
Finally

u(i, j) = u1x
1
JC1u2x

2
JC2 . . . uKxK

J CK

and the j-blocks in u(i, j) are the JK new blocks in u1, . . . , uK . Hence

k(i, j) = J.K = k(i, j − 1).k(i − 1, k(i, j − 1)).

Briefly spoken, sufficiently many copies of d(u) and a copy of d(v) are merged
together so that the order is preserved and so that the resulting sequence is
again 2-regular.

For the proof of the following lemma we refer to [15].
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Lemma 2.3. |u(i, j)|/‖u(i, j)‖ > i − 2/j for all i, j ≥ 1. Moreover: there is an
increasing sequence {ji}∞i=1 of integers such that |u(i, ji)| ≥ c.‖u(i, ji)‖.α(‖u(i, ji)‖)
for i = 1, 2 . . . and an absolute constant c > 0.

Suppose u ∈ S is a sequence. We define the digraph D(u) = (V, E) by V = S(u)
and (a, b) ∈ E iff there is a b-occurrence in u which is not the first b-occurrence
in u and which lies between two a-occurrences. Briefly: either baba or abba is
a subsequence of u. Now we generalize the argument of Sharir and Wiernik (they
considered only the case w = ababa).

Theorem 2.4. Suppose w ∈ S is 2-regular and such that the digraph D(w) is
strongly connected. Then w is nonlinear and moreover Ex(w, n) = Ω(n.α(n)).

Proof: We prove by double induction that w 6≺ u(i, j) for all i, j ≥ 1. Cases
i = 1 or j = 1 are obvious. Now consider the sequence u(i, j) = u1x

1
JC1u2x

2
JC2 . . .

uKxK
J CK where i and j are greater than 1. We use the above notation. Suppose

on the contrary that w ≺ u(i, j) and that w∗ is the subsequence of u(i, j) which
differs from w only in names of symbols. For any x ∈ S(w∗) the symbol x is an
element either of some S(u∗r) or of S(d(v)). In the former case x is called local and
in the latter case global.
It is an easy observation that if (a, b) is an edge in D(w∗) = D(w) and a is local

then b is local too and all b-occurrences appear in the same u∗r as those of a. Because
of the strong connectivity of D(w) either all symbols in S(w∗) are local or all of
them are global. In the former case w∗ is a subsequence of some u∗r , thus w ≺ d(u)
and w ≺ u = u(i, j − 1) which is a contradiction. In the latter case w ≺ d(v) and
w ≺ v = u(i − 1, J) which is a contradiction again.
We are not done yet because u(i, j) are 2-regular and we need them to be ‖w‖-

regular. Let k = ‖w‖. The sequence ababa clearly satisfies the hypothesis of
the theorem and thus ababa 6≺ u(i, j) for all i and j. Let Ex(ababa, k − 1) = h
(Lemma 2.1). We apply on u(i, j) = a0a1 . . . am the following greedy procedure.
First we put v(i, j) = a0 and we try to add elements ai to v(i, j). If the sequence

v(i, j)ai is k-regular then we put v(i, j) := v(i, j)ai and we try to add ai+1. If
not then ai is omitted and we continue also with ai+1. We obtain a k-regular
subsequence v(i, j) of u(i, j) satisfying

|v(i, j)| ≥ |u(i, j)|
h+ 1

because any interval in u(i, j) consisting of omitted elements has length at most h.
The previous lemma implies Ex(w, n) = Ω(n · α(n)) for infinitely many values n.
It is not too difficult to prove that Ex(w, n) = Ω(n · α(n)) for all n, one has to
use the superaditivity of Ex(w, n) and the definition of the numbers {ji}∞i=1 of the
previous lemma. See [2] for similar calculation. �

Theorem A. There are at least two elements in B: u1 = ababa and u2 ≺
abcbadadbcd.

Proof: We know already that ababa ∈ B. Now consider the sequence v1 =
abcbadadbcd. Again Ex(v1, n) = Ω(n·α(n)) according to Theorem 2.4 because there
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is a Hamiltonian cycle abdc in D(v1). But an easy check shows that ababa 6≺ v1.
Hence there must be a sequence u2 ≺ v1, u2 6= ababa, u2 ∈ B. �

3. (S,≺) and wqo.
First we demonstrate an infinite antichain in (S,≺). Let u ∈ S be a sequence.

The graph G = (V, E) is defined by V = S(u) and by {a, b} ∈ E iff abab or baba
is a subsequence of u. It is well-known that there are infinite antichains in the set
of all finite graphs (G,⊂) ordered by the relation “be a subgraph”: for instance all
i-cycles Ci, i ≥ 3. It is an immediate observation that u ≺ v implies G(u) ⊂ G(v).
The fact that (G,⊂) is not wqo reflects back to (S,≺):

u3 = abacbcac, u4 = abacbcdcdad, u5 = abacbcdcdedeae, . . .

is an infinite antichain in (S,≺) because G(ui) = Ci. However, it is not difficult
to prove [12] that the smaller family (Gk,⊂), where Gk consists of all k-path free
graphs (no path of k edges), is wqo. It is interesting that this property reflects back
to (S,≺) as well. We now recall some things about wqo and after that Theorem B
will be proved. For the proofs and for more basics we refer to [10].

Any binary relation (Q,≤Q) which is transitive and reflexive is called a qua-
siordering or, shortly, qo. Notation x <Q y means that x ≤Q y&y 6≤Q x. A qo
(Q,≤Q) is a well quasiordering or, shortly, wqo if it has the property characterized
by the following lemma.

Lemma 3.1. Suppose (Q,≤Q) is a qo. Then the following conditions are equiva-
lent.

1. For any infinite sequence (q0, q1, . . . ) ⊆ Q there are indices i < j such that
qi ≤Q qj .

2. For any infinite sequence (q0, q1, . . . ) ⊆ Q there are indices 0 ≤ i0 < i1 < . . .
such that qi0 ≤Q qi1 ≤Q . . . .

3. There is no strictly descending infinite chain x0 >Q x1 >Q . . . in Q and no
infinite antichain.

Sequences satisfying 1. are called good, other sequences are called bad. Thus the
definition of wqo can be stated in this form: a qo(Q,≤Q) is wqo iff there is no bad
(infinite) sequence in Q. A strict partial ordering (Q, <∗) is called well founded iff
there are no infinite descending chains in (Q, <∗). We say that (Q, <∗) is stronger
than a qo (Q,≤Q) if x ≤Q y whenever x <∗ y. We prove Theorem B by means of
the following fundamental lemma.

Lemma 3.2 Nash-Williams [11]. Suppose a well founded strict partial ordering
(Q, <∗ ) is stronger than a qo (Q,≤Q) which is not wqo. Then there is an infinite
sequence A = (q0, q1, . . . ) ⊆ Q such that

1. A is bad in (Q,≤Q).
2. (WA,≤Q) is wqo where WA = {x ∈ Q | x <∗ qi for some i}.
Sequence A is called a minimum bad sequence.
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For finite structures, <Q is usually well founded and one can put <∗=<Q. This
is the case here and in sequel we take tacitly <∗=<Q. Now we give an overview of
basic constructions for creating new wqo’s. Suppose (Q0,≤Q0) and (Q1,≤Q1) are
qo. The product qo (Q0 × Q1,≤pr) is defined by

(a0, a1) ≤pr (b0, b1) iff ai ≤Qi
bi for i = 0, 1.

The sum qo (Q0 +Q1,≤+) is defined by

Q0 +Q1 = (Q0 × {0}) ∪ (Q1 × {1}), (a, i) ≤+ (b, j) iff i = j and a ≤Qi
b.

An easy consequence of Lemma 3.1 is that if (Qi,≤Qi
), i = 0, 1 are wqo then both

the product qo and the sum qo are wqo as well.
We shall use in sequel the wqo N = (N,≤) consisting of positive integers with

the standard order and the trivial discrete wqo Tn consisting of n elements which
are mutually incomparable.
Suppose (Q,≤Q) is a qo. The elements of the structure (SEQ(Q),≤H) are all

finite sequences over Q. More specifically, elements of SEQ(Q) are of the form
(I, p) where I is a finite linear ordering and p : I → Q is a mapping.
We put (I, p) ≤H (J, r) (Higman ordering) iff there is an increasing injection

f : I → J such that p(x) ≤Q r(f(x)) for any x ∈ I. We shall need the following
classical result which easily follows from Lemma 3.2.

Theorem 3.3 Higman [7]. If (Q,≤Q) is wqo then (SEQ(Q),≤H) is wqo as well.

To prove Theorem B it is convenient to work with a generalization of (S,≺). Let
(Q,≤Q) be a qo. Recall that S is a fixed infinite universum of symbols.

Definition 3.4. We define R(Q) as consisting of the triples u = (I, p, q) where I is
a finite linear ordering and p : Dom(p)→ S and q : Dom(q)→ Q are two labelings
whose domains partition I. The qo in (R(Q),≤R) is defined by

(I, p, q) ≤R (J, r, s) iff (Dom(p), p) ≺ (Dom(r), r) via f⌈Dom(p) and

(Dom(q), q) ≤H (Dom(s), s) via f⌈Dom(q)

for some increasing injection f : I → J .

We use S(u) to denote (V, E) is defined, for an element u = (I, p, q) of R(Q),
by V = S(u) = Rng(p) and {a, b} ∈ E iff p(x) = p(z) = a, p(y) = p(t) = b or
p(x) = p(z) = b, p(y) = p(t) = a for some four elements x < y < z < t of I. The set
R(Q, k) consists of all triples u of R(Q) for which G(u) ∈ Gk. To prove Theorem B
we shall need two easy graph lemmas.

Lemma 3.5. If G = (V, E) is a connected graph whose longest path P has length
k then the graph H = G⌈(V (G)\V (P )) belongs to Gk.

Proof: Suppose Q is a k-path in H and T is a P -Q path joining P and Q in G.
These three paths contain obviously a (2.⌈k

2⌉+ 1)-path which is a contradiction.
�
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Suppose u = (I, p, q) ∈ R(Q) is a sequence such that min I ∈ Dom(p), let
p(min I) = v. Let H be the component in G(u) containing v. We define the graph
decomposition of I as I = J0∪K0∪J1∪K1∪ . . .∪Jr ∪Kr where J0 < K0 < J1 <
K1 < . . . and any Jj is a maximum nonempty interval in I such that Jj ⊂ Dom(p)
and p(x) ∈ V (H)for any x ∈ Jj . Let uj (resp. vj) be u restricted on Ij (resp. Kj).

Lemma 3.6. Let u and the graph decomposition be as above. Then S(vj) are
mutually disjoint for j = 0, 1, . . . , r.

Proof: Let w ∈ S(vi) ∩ S(vj) for some 0 ≤ i < j ≤ r. Consider the subsets of
V (H)

X =
a=i⋃

a=0

S(ua) ∪
a=r⋃

a=j+1

S(ua) and Y =

a=j⋃

a=i+1

S(ua).

There exists a t ∈ X ∩ Y otherwise there would be no edge in G(u) between X
and Y . Thus {t, w} is an edge and w ∈ V (H) which is a contradiction. �

We prove Theorem B in the following general form.

Theorem 3.7. (R(Q, k),≤R) is wqo for any wqo (Q,≤Q) and any positive inte-
ger k.

Proof: We shall proceed by double induction on k and (Q,≤Q). Let k = 1 and
let (Q,≤Q) be an arbitrary wqo. Suppose (R(Q, 1),≤R) is not wqo. Consider the
minimum bad sequence

A = (u0, u1, . . . ) ⊂ R(Q, 1), ui = (Ii, pi, qi)

which is ensured by Lemma 3.2. Denote xi = min Ii. One can suppose that either
xi ∈ Dom(qi) for all i or xi ∈ Dom(pi) for all i. In the former case consider triples
vi = (Ji, p

∗

i , q
∗

i ) whereJi = Ii\{xi}, p∗i = pi⌈Ji and q∗i = qi⌈Ji. The sequence

( (q0(x0), v0), (q1(x1), v1), . . . ) ⊂ Q × WA

is a good sequence because Q × WA is wqo and thus A is good as well which is
a contradiction.
In the latter case consider the corresponding graph decomposition Ii = J0i ∪K0i ∪

J1i ∪ K1i ∪ . . . ∪ Jri

i ∪ Kri

i . The component H is now just a single point. Let v
j
i

be the restriction of ui to K
j
i . According to the previous lemma v

j
i , j = 0, 1, . . . , ri

can be treated independently. We define si = ({0, 1, . . . , ri}, ni) ∈ SEQ(N × WA)

by ni(j) = (|Jj
i |, v

j
i ). The sequence

(s0, s1, . . . ) ⊂ SEQ(N × WA)

is, according to Higman theorem, a good sequence. It is not difficult to see that
this implies that A is a good sequence as well. This is a contradiction again. We
conclude that (R(Q, 1),≤R) is wqo.
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Now suppose that k > 1, that (R(Q, k− 1),≤R) is wqo for any wqo (Q,≤Q) and
that (R(Q, k),≤R) is not wqo for some wqo (Q,≤Q). Let

A = (u0, u1, . . . ) ⊂ R(Q, k), ui = (Ii, pi, qi)

be a minimum bad sequence. One can suppose that min Ii = xi ∈ Dom(pi) for all
i, the other possibility is treated as for k = 1.
Let Hi ⊂ S(ui) be the component in G(ui) which contains pi(xi). Let Wi ⊂

V (Hi) be the vertex set of the longest path inHi. Consider the graph decomposition

Ii = J0i ∪ K0i ∪ J1i ∪ K1i ∪ . . . ∪ Jri

i ∪ Kri

i . Let vj
i be the restriction of ui to Kj

i .

Again v
j
i , j = 0, 1, . . . , ri are independent each to the other. The sequence ui is

transformed into the sequence u∗i in the following manner. Any K
j
i is contracted

into one point kj
i which is labeled by vj

i . The wqo Q∗ is defined by Q∗ = Tk +WA.
The elements of the trivial wqo Tk are the vertices of Wi. Now they are viewed as
labels for the q-labeling. Formally:

u∗i = (I
∗

i , p∗i , q
∗

i ) where I∗i = J0i ∪ {k0i } ∪ J1i ∪ {k1i } ∪ . . . ∪ Jri

i ∪ {kri

i } and
J0i < {k0i } < J1i < {k1i } < . . . .

Further

Dom(p∗i ) = p−1i (V (Hi)\Wi) and

Dom(q∗i ) = I∗i \Dom(p∗i ) = p−1i (Wi) ∪ {k0i } ∪ . . . ∪ {kri

i }.

Finally

p∗i (x) = pi(x), q
∗

i (x) = pi(x) if x ∈ p−1i (Wi) and q∗i (x) = vj
i if x = kj

i .

Clearly, according to the Lemma 3.5, u∗i = (I
∗

i , p∗i , q
∗

i ) ∈ R(Q∗, k−1). The sequence

(u∗0, u
∗

1, . . . ) ⊂ R(Q∗, k − 1)

is good according to the induction hypothesis. This implies that A is good as well
contradicting our assumption. �
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[14] Szemerédi E., On a problem by Davenport and Schinzel, Acta Arith. 25 (1974), 213–224.
[15] Wiernik A., Sharir M., Planar realization of nonlinear Davenport-Schinzel, Discrete Comput.

Geometry 3 (1988), 15–47.

Department of Applied Mathematics, Malostranské nám. 25, 118 00 Praha 1, Czech
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