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Note on special arithmetic and geometric means

Horst Alzer

Abstract. We prove: If A(n) and G(n) denote the arithmetic and geometric means of the
first n positive integers, then the sequence n 7→ nA(n)/G(n)− (n− 1)A(n− 1)/G(n− 1)
(n ≥ 2) is strictly increasing and converges to e/2, as n tends to ∞.
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In this paper we denote by A(n) and G(n) the arithmetic and geometric means
of the first n positive integers, that is,

A(n) =
1

n

n
∑

i=1

i =
n+ 1

2
and G(n) =

n
∏

i=1

i1/n = (n!)1/n .

In 1964 H. Minc and L. Sathre [2] published several remarkable inequalities in-
volving G(n). “Probably the most interesting of them, and certainly the hardest
to prove” [2, p. 41], is

(1) 1 < n
G(n+ 1)

G(n)
− (n − 1)

G(n)

G(n − 1)
(n ≥ 2) .

It is the aim of this paper to present a closely related result. We prove the
following counterpart of inequality (1):

(2)
3
√
2
− 1 ≤ n

A(n)

G(n)
− (n − 1)

A(n − 1)
G(n − 1)

<
e

2
(n ≥ 2) .

Both bounds are best possible. The double-inequality (2) is an immediate conse-
quence of the following

Theorem. The sequence

n 7→ n
A(n)

G(n)
− (n − 1)

A(n − 1)
G(n − 1)

(n ≥ 2)

is strictly increasing and converges to e/2, as n tends to ∞.

Proof: In the first part of the proof we show that the function

f(x) = x(x + 1)(Γ(x+ 1))−1/x (0 < x ∈ R)



410 H.Alzer

is strictly convex on [4,∞). In what follows we assume x ≥ 4. Differentiation
yields

(3)

x2(x + 1)
f ′′(x)

f(x)
=2x − 2xΨ(x+ 1) + 2 log Γ(x+ 1) + (x+ 1)(Ψ(x+ 1))2

−
2(x+ 1)

x
Ψ(x+ 1) logΓ(x+ 1) +

x+ 1

x2
(log Γ(x+ 1))2

− x(x + 1)Ψ′(x+ 1) ,

where Ψ = Γ′/Γ designates the logarithmic derivative of the gamma function.
Using the inequalities

0 < (x − 1/2) log(x)− x+ log
√
2π

< log Γ(x) < 1/(12x) + (x − 1/2) log(x)− x+ log
√
2π ,

0 < log(x)− 1/(2x)− 1/(12x2) < Ψ(x) < log(x) − 1/(2x) ,
and

Ψ′(x) < 1/x+ 1/(2x2) + 1/(6x3) ,

(see [1, p. 820 ff.]), we get from (3):
(4)

x2(x+ 1)
f ′′(x)

f(x)
>2x − 2x

[

log(x+ 1)−
1

2(x+ 1)

]

+ 2
[

(x+ 1/2) log(x + 1)− (x+ 1) + log
√
2π

]

+ (x+ 1)

[

log(x+ 1)−
1

2(x+ 1)
−

1

12(x+ 1)2

]2

−
2(x+ 1)

x

[

log(x+ 1)−
1

2(x+ 1)

]

×

×
[

1

12(x+ 1)
+ (x+ 1/2) log(x+ 1)− (x+ 1) + log

√
2π

]

+
x+ 1

x2

[

(x+ 1/2) log(x+ 1)− (x+ 1) + log
√
2π

]2

− x(x+ 1)

[

1

x+ 1
+

1

2(x+ 1)2
+

1

6(x+ 1)3

]

=
1

2
+
1

x

[

25

12
−
3

2
log(2π) + (log

√
2π)2

]

−
1

2(x+ 1)

+
1

x2

[

1− log(2π) + (log
√
2π)2

]

+
1

4(x+ 1)2
+

1

144(x+ 1)3

+
x+ 1

4x2
(log(x+ 1))2 + log(x+ 1)

{

1

x

[

1

2
log(2π)−

5

3

]

−
1

6(x+ 1)
+
1

x2

[

1

2
log(2π)− 1

]}

.
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Since
1− log(2π) + (log

√
2π)2 > 0

and x+ 1

4x2
(log(x+ 1))2 >

1

2x
log(x+ 1)

we conclude from (4):

(5) x2(x+ 1)
f ′′(x)

f(x)
>
1

2
+

a

x
−

1

2(x+ 1)
− log(x+ 1)

[

b

x
+

1

6(x+ 1)
+

c

x2

]

,

where

a =
25

12
−
3

2
log(2π) + (log

√
2π)2 = 0.170 . . . ,

b =
7

6
−
1

2
log(2π) = 0.247 . . . , c = 1−

1

2
log(2π) = 0.081 . . . .

Using log(x+ 1) < x, we obtain from (5):

x2(x+ 1)
f ′′(x)

f(x)
>
1

3
− b +

(

a − c −
1

3

)

1

x

≥
1

3
− b +

(

a − c −
1

3

)

1

4
= 0.024 . . . ,

valid for all x ≥ 4.
Thus, f is strictly convex on [4,∞). From Jensen’s inequality we get

2f(n) < f(n − 1) + f(n+ 1)

for all integers n ≥ 5. This implies that the sequence
n 7→ [f(n)− f(n − 1)] /2 = nA(n)/G(n)− (n − 1)A(n − 1)/G(n − 1)

is strictly increasing for n ≥ 5. The approximate values of nA(n)/G(n) −
(n − 1)A(n − 1)/G(n − 1) for n = 2, 3, 4, 5, are 1.121, 1.180, 1.216, 1.239, respec-
tively. Hence, n 7→ nA(n)/G(n)− (n− 1)A(n− 1)/G(n− 1) is strictly increasing
for all n ≥ 2.
Finally we prove that

(6) lim
n→∞

[nA(n)/G(n)− (n − 1)A(n − 1)/G(n − 1)] = e/2 .

If we set
α(n) = n/G(n) and β(n) = G(n)/G(n − 1) ,

then we have for n ≥ 2:

n
A(n)

G(n)
−(n − 1)

A(n − 1)
G(n − 1)

=
1

2

[

α(n) +
n

n − 1
α(n − 1)−

n

n − 1
α(n)

β(n) − 1
log β(n)

logα(n)

]

.

Since
lim

n→∞
α(n) = e and lim

n→∞
β(n) = 1

we obtain (6). This completes the proof of the Theorem. �
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