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Existence and non-existence of global solutions for

nonlinear hyperbolic equations of higher order*

Chen Guowang, Wang Shubin

Abstract. The existence and uniqueness of classical global solution and blow up of non-
global solution to the first boundary value problem and the second boundary value
problem for the equation

utt − αuxx − βuxxtt = ϕ(ux)x

are proved. Finally, the results of the above problem are applied to the equation arising
from nonlinear waves in elastic rods

utt −
�
a0 + na1(ux)

n−1
�
uxx − a2uxxtt = 0.

Keywords: nonlinear hyperbolic equation, initial boundary value problem, classical
global solution, blow up of solutions

Classification: 35L35

1. Introduction

In the study of strain solitary waves in nonlinear elastic rods there exists a lon-
gitudinal wave equation [1], [2]

(1.1) utt −
[
a0 + na1(ux)

n−1
]
uxx − a2uxxtt = 0,

where a0, a2 > 0 are constants, a1 is an arbitrary real number, n is a natural
number. In [1], [2] the equation (1.1) is reduced approximately to KdV equation

(1.2) ut + uux + µuxxx = 0,

where µ is a constant. In [2], authors study the strain solitary waves of equation
(1.2), but about the equation (1.1) there has not been any discussion. Obviously,
the equation (1.1) is different from the equation (1.2). There are few results in
dealing with the equation (1.1). The existence and uniqueness of the local classical
solutions for the initial value problems and the first boundary value problems of
the equation (1.1) have been proved by Galerkin’s method in [3].

* This project is supported by the National Natural Science Foundation of China and partially
by the Natural Science Foundation of Henan Province.
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In the present paper, we are going to consider the following initial boundary
value problem

utt − αuxx − βuxxtt = ϕ(ux)x, x ∈ (0, 1), t > 0,(1.3)

u(0, t) = u(1, t) = 0, t ≥ 0,(1.4)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, 1],(1.5)

or the initial boundary value problem for the equation (1.3)

ux(0, t) = ux(1, t) = 0, t ≥ 0,(1.6)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, 1],(1.7)

where u(x, t) is an unknown function, α, β > 0 are real constants, ϕ(s) is a given
nonlinear function, u0(x) and u1(x) are given initial functions. Obviously, the
equation (1.1) is a special case of the equation (1.3).
First of all, we reduce the problem (1.3)–(1.5) to an equivalent integral equa-

tion by Green’s function of a boundary value problem for a second order ordinary
differential equation, then making use of the contraction mapping principle we
prove the existence and uniqueness of the local classical solutions for the integral
equation in Section 2. In Section 3, under some conditions by use of a priori esti-
mations of the solution we prove that the integral equation has a unique classical
global solution, i.e. the problem (1.3)–(1.5) has a unique classical global solution.
In Section 4 the conditions of non-existence of global solutions are given. The ex-
istence and non-existence theorems for the problem (1.3), (1.6), (1.7) are given in
Section 5. In Section 6 the existence and non-existence theorems for the problem
(1.1), (1.4), (1.5) and the problem (1.1), (1.6), (1.7) are given.

2. Existence and uniqueness of local solution for the problem
(1.3)–(1.5)

Let K(x, ξ) be the Green’s function of the boundary value problem for the
ordinary differential equation

y − βy′′ = 0, y(0) = y(1) = 0,

where β > 0 is a real number, i.e.

(2.1) K(x, ξ) =
1

√
β sinh

[
1√
β

]






sinh
[
1√
β
(1− ξ)

]
sinh

[
1√
β
x
]
, 0 ≤ x ≤ ξ,

sinh
[
1√
β
ξ
]
sinh

[
1√
β
(1− x)

]
, ξ ≤ x ≤ 1.

Suppose that u0(x) and u1(x) are appropriately smooth and satisfy the bound-
ary condition (1.4), u(x, t) is the classical solution of the problem (1.3)–(1.5), then



Existence and non-existence of global solutions for nonlinear hyperbolic equations . . . 477

the solution of the equation (1.3) satisfying the condition (1.4) satisfies the inte-
gral equation

(2.2) utt(x, t) = α

∫ 1

0
K(x, ξ)uξξ(ξ, t) dξ +

∫ 1

0
K(x, ξ)ϕ(uξ(ξ, t))ξ dξ.

Hence the classical solution of the problem (1.3)–(1.5) should satisfy the integral
equation

(2.3)

u(x, t) = u0(x) + u1(x)t+ α

∫ t

0

∫ 1

0
(t − τ)K(x, ξ)uξξ(ξ, τ) dξ dτ

+

∫ t

0

∫ 1

0
(t − τ)K(x, ξ)ϕ(uξ(ξ, τ))ξ dξ dτ.

Therefore any classical solution of the initial boundary value problem (1.3)–(1.5)
is the solution of the integral equation (2.3). By use of the properties of Green’s
function K(x, ξ), it is easy to prove the following lemma.

Lemma 2.1. Suppose that u0(x), u1(x) ∈ C2[0, 1], u0(0) = u0(1) = u1(0) =
u1(1) = 0, ϕ(s) ∈ C1(R), and u(x, t) ∈ C([0, T ];C2[0, 1]) is the solution of (2.3),
then u(x, t) must be the classical solution of the initial boundary value problem
(1.3)–(1.5).

Now we are going to prove the existence of local classical solution for the
integral equation (2.3) by the contraction mapping principle. For this purpose,
we define the function space

X(T ) =
{
u(x, t) |u ∈ C([0, T ];C2[0, 1]), u(0, t) = u(1, t) = 0

}
,

equipped with the norm defined by

‖u‖X(T ) = max
0≤t≤T

{
max
0≤x≤1

|ux(·, t)|+ max
0≤x≤1

|uxx(·, t)|
}

= ‖u‖C([0,T ];C2[0,1]), ∀u ∈ X(T ).

It is easy to see that X(t) is a Banach space.
Let U = ‖u0x‖C1[0,1] + ‖u1x‖C1[0,1]. We define the set

P (U, T ) =
{

u |u ∈ X(T ), ‖u‖X(T ) ≤ 2U + 1
}

.

Obviously, P (U, T ) is nonempty bounded closed convex set for each U, T > 0. We
define the map S as follows

(2.4)

Sw = u0(x) + u1(x)t+ α

∫ t

0

∫ 1

0
(t − τ)K(x, ξ)wξξ(ξ, τ) dξ dτ

+

∫ t

0

∫ 1

0
(t − τ)K(x, ξ)ϕ(wξ(ξ, τ))ξ dξ dτ, ∀w ∈ P (U, T ).

Obviously, S maps X(T ) into X(T ). Our goal is to show that S has a unique
fixed point in P (U, T ) for appropriately chosen T . For this purpose we employ
the contraction mapping principle.
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Lemma 2.2. Suppose that u0, u1 ∈ C2[0, 1], u0(0) = u0(1) = u1(0) = u1(1) = 0
and ϕ(s) ∈ C2(R), then S maps P (U, T ) into P (U, T ) and S : P (U, T )→ P (U, T )
is strictly contractive if T is appropriately small relative to U .

Proof: Integrating by parts with respect to ξ in (2.4), we get

(2.5)

Sw = u0(x) + u1(x)t − α

∫ t

0

∫ 1

0
(t − τ)Kξ(x, ξ)wξ(ξ, τ) dξ dτ

−
∫ t

0

∫ 1

0
(t − τ)Kξ(x, ξ)ϕ(wξ(ξ, τ)) dξ dτ.

Differentiating (2.5) with respect to x, we have

(2.6)

(Sw)x = u0x(x) + u1x(x)t −
α

β

∫ t

0
(t − τ)wx(x, τ) dτ

− α

∫ t

0

∫ 1

0
(t − τ)Kξx(x, ξ)wξ(ξ, τ) dξ dτ

− 1
β

∫ t

0
(t − τ)ϕ(wx(x, τ)) dτ

−
∫ t

0

∫ 1

0
(t − τ)Kξx(x, ξ)ϕ(wx(x, τ)) dξ dτ.

Differentiating (2.6) also with respect to x, we obtain

(2.7)

(Sw)xx = u0xx(x) + u1xx(x)t −
α

β

∫ t

0
(t − τ)wxx(x, τ) dτ

− α

∫ t

0

∫ 1

0
(t − τ)Kξxx(x, ξ)wξ(ξ, τ) dξ dτ

− 1
β

∫ t

0
(t − τ)ϕ(wx(x, τ))x dτ

−
∫ t

0

∫ 1

0
(t − τ)Kξxx(x, ξ)ϕ(wξ(ξ, τ)) dξ dτ.

Let us define φ : [0,∞)→ [0,∞) by
ϕ(η) = max

|s|≤η

[
|ϕ(s)|+ |ϕ′(s)|+ |ϕ′′(s)|

]
, ∀ η ≥ 0.

Observe that φ is continuous and nondecreasing on [0,∞). Using the boundedness
of the Green’s functionK(x, ξ) and its derivatives which appear in (2.6) and (2.7),

when T ≤ 1
2 , we get

‖Sw‖X(T ) ≤ U + UT +

(
α

β
+ C1α

)
T 2

2
(2U + 1)

+

[
1

β
(2U + 1) + C2

]
T 2

2
φ(2U + 1)

≤ U + T [C3 + C4φ(2U + 1)](2U + 1),
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where C1, C2, C3 and C4 are constants. If T satisfies

(2.8) T ≤ min
(
1

2
,

1

2[C3 + C4φ(2U + 1)]

)
,

then ‖Sw‖X(T ) ≤ 2U + 1. Therefore, if (2.8) holds, then S maps P (U, T ) into

P (U, T ).
Now we are going to prove that S : P (U, T )→ P (U, T ) is strictly contractive.
Let T > 0 and w1, w2 ∈ P (U, T ) be given. We have

(2.9)

(Sw1 − Sw2)x =

= −α

β

∫ t

0
(t − τ)[w1x(x, τ) − w2x(x, τ)] dτ

− α

∫ t

0

∫ 1

0
(t − τ)Kξx(x, ξ)[w1ξ(ξ, τ) − w2ξ(ξ, τ)] dξ dτ

− 1
β

∫ t

0
(t − τ)[ϕ(w1x(x, τ)) − ϕ(w2x(x, τ))] dτ

−
∫ t

0

∫ 1

0
(t − τ)Kξx(x, τ)[ϕ(w1ξ (ξ, τ)) − ϕ(w2ξ(ξ, τ))] dξ dτ

and

(2.10)

(Sw1 − Sw2)xx =

= −α

β

∫ t

0
(t − τ)[w1xx(x, τ) − w2xx(x, τ)] dτ

− α

∫ t

0

∫ 1

0
(t − τ)Kξxx(x, ξ)[w1ξ(ξ, τ)− w2ξ(ξ, τ)] dξ dτ

− 1
β

∫ t

0
(t − τ)[ϕ′(w1x(x, τ))w1xx(x, τ) − ϕ′(w2x(x, τ))w2xx(x, τ)] dτ

−
∫ t

0

∫ 1

0
(t − τ)Kξxx(ξ, τ)[ϕ(w1ξ(ξ, τ)) − ϕ(w2ξ(ξ, τ))] dξ dτ.

From (2.9) and (2.10) it follows that

‖Sw1 − Sw2‖X(T ) ≤ {C5 + C6φ(2U + 1)}
T 2

2
‖w1 − w2‖X(T ),

where C5 and C6 are constants.
If T satisfies

(2.11) T ≤ min
(
1

2
,

1

2[C3 + C4φ(2U + 1)]
,

1√
C5 + C6φ(2U + 1)

)
,

then
‖Sw1 − Sw2‖X(T ) ≤

1

2
‖w1 − w2‖X(T ).

The lemma is proved. �
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Theorem 2.1. Let the assumptions of Lemma 2.2 hold. Then the integral
equation (2.3) has a unique solution u(x, t) ∈ C([0, T0);C

2[0, 1]), where [0, T0)
is a maximal time interval. Moreover, if

(2.12) sup
t∈[0,T0)

(
‖ux‖C1[0,1] + ‖uxt‖C1[0,1]

)
< ∞,

then T0 =∞.
Proof: It follows from Lemma 2.2 and the contraction mapping principle that,
for appropriately chosen T > 0, S has a unique fixed point u(x, t) ∈ P (U, T )
which is obviously a solution of the integral equation (2.3). It is easy to prove
that for each T ′ > 0, the equation (2.3) has at most one solution which belongs
to X(T ′).
Let [0, T0) be the maximal time interval of existence for u ∈ X(T0). It only

remains to show that if (2.12) is satisfied, then T0 =∞. This can be done in the
usual way: If (2.12) holds and T0 < ∞, we can reapply the contraction mapping
principle extending the solution to an interval [0, T0+ δ], δ > 0, which contradicts
the assumption that [0, T0) is maximal.
Suppose that (2.12) holds and T0 < ∞. For any T ′ ∈ [0, T0), we consider the

integral equation

(2.13)

v(x, t) = u(x, T ′) + ut(x, T ′)t+ α

∫ t

0

∫ 1

0
(t − τ)K(x, ξ)vξξ(ξ, τ) dξ dτ

+

∫ t

0

∫ 1

0
(t − τ)K(x, ξ)ϕ(vξ (x, τ))ξ dξ dτ.

By virtue of (2.12), ‖ux(·, T ′)‖C1[0,1]+‖uxt(·, T ′)‖C1[0,1] is uniformly bounded

in T ′ ∈ [0, T0), which allows us to choose T ∗ ∈ (0, T0), such that for each
T ′ ∈ [0, T0), the integral equation (2.13) has a unique solution v(x, t) ∈ X(T ∗).
The existence of such a T ∗ follows from Lemma 2.2 and the contraction mapping
principle. In particular (2.8) and (2.11) reveal that T ∗ can be selected indepen-
dently of T ′ ∈ [0, T0). Set T ′ = T0 − T ∗

2 , let v denote the corresponding solution

of (2.13), and define û(x, t) : [0, 1]× [0, T0 + T ∗

2 ]→ R by

(2.14) û(x, t) =

{
u(x, t), t ∈ [0, T ′],

v(x, t − T ′), t ∈
[
T ′, T0 + T ∗

2

]
.

By construction, û(x, t) is a solution of (2.3) on [0, T0 +
T ∗

2 ], and by local
uniqueness, û extends u. This violates the maximality of [0, T0). Hence if (2.12)
holds, T0 =∞.
This completes the proof of the theorem. �
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3. The classical global solution of the problem (1.3)–(1.5)

Lemma 3.1. Suppose that u0(x), u1(x) ∈ H10 [0, 1], ϕ(s) ∈ C1(R), then the
classical solution of the problem (1.3)–(1.5) satisfies the following identity

(3.1)

E(t) ≡ ‖ut‖2L2[0,1] + α‖ux‖2L2[0,1] + β‖uxt‖2L2[0,1]

+ 2

∫ 1

0

∫ ux

0
ϕ(s) ds dx

= ‖u1‖2L2[0,1] + α‖u0x‖2L2[0,1] + β‖uxt‖2L2[0,1]

+ 2

∫ 1

0

∫ u0x

0
ϕ(s) ds dx

≡ E(0), ∀ t ∈ [0, T ].

Proof: Multiplying both sides of the equation (1.3) by ut, integrating the prod-
uct with respect to x over [0, 1] and integrating by parts we get

(3.2)

d

dt

(
‖ut‖2L2[0,1] + α‖ux‖2L2[0,1] + β‖uxt‖2L2[0,1]

+ 2

∫ 1

0

∫ ux

0
ϕ(s) ds dx

)
= 0.

Integrating (3.2) with respect to t, we obtain (3.1). The lemma is proved. �

Theorem 3.1. Suppose that the condition of Theorem 2.1 and the following
condition

(3.3) |ϕ(s)| ≤ A

∫ s

0
ϕ(y) dy +B

hold, where A and B are positive constants. Then the problem (1.3)–(1.5) has
a unique classical global solution u(x, t).

Remark 3.1. The function ϕ(s) satisfying (3.3) exists. For example, ϕ(s) = es

satisfies the inequality (3.3). ϕ(s) = rsn is the second example, where r > 0 is
a real number and n is a natural number. When n is an odd number, ϕ(s) = rsn

satisfies the inequality (3.3), i.e.

(3.4) |rsn| ≤ n

∫ s

0
ryn dy +

r

n+ 1
.

In fact, taking p = n+1
n , p

′ = n+ 1 and using Young’s inequality we have

|rsn| = r|sn| ≤ r

( |s|np

p
+
1

p′

)
= r

n

n+ 1
sn+1 +

r

n+ 1

= n

∫ s

0
ryn dy +

r

n+ 1
.



482 Chen Guowang,Wang Shubin

Proof of Theorem 3.1: By virtue of Theorem 2.1, we are only required to
prove that (2.12) holds. Integrating by parts in (2.3), we obtain

(3.5)

u(x, t) = u0(x) + u1(x)t − α

∫ t

0

∫ 1

0
(t − τ)Kξ(x, ξ)uξ(ξ, τ) dξ dτ

−
∫ t

0

∫ 1

0
(t − τ)Kξ(x, ξ)ϕ(uξ(ξ, τ)) dξ dτ.

It follows from (3.5) that

(3.6)

ux(x, t) = u0x(x) + u1x(x)t −
α

β

∫ t

0
(t − τ)ux(x, τ) dτ

− α

∫ t

0

∫ 1

0
(t − τ)Kξx(x, ξ)uξ(ξ, τ) dξ dτ

− 1
β

∫ t

0
(t − τ)ϕ(ux(x, τ)) dτ

−
∫ t

0

∫ 1

0
(t − τ)Kξx(x, ξ)ϕ(uξ(ξ, τ)) dξ dτ,

(3.7)

uxtt(x, t) = −α

β
ux(x, t)− α

∫ 1

0
Kξx(x, ξ)uξ(ξ, t) dξ

− 1
β

ϕ(ux(x, t))−
∫ 1

0
Kξx(x, ξ)ϕ(uξ(ξ, t)) dξ.

Multiplying both sides of (3.7) by uxt we get

(3.8)

d

dt

[
u2xt +

α

β
u2x +

2

β

∫ ux

0
ϕ(s) ds

]
= 2
[
−α

∫ 1

0
Kξx(x, ξ)uξ(ξ, t) dξ

−
∫ 1

0
Kξx(x, ξ)ϕ(uξ(ξ, t)) dξ

]
uxt.

Let us denote u21x(x) +
α
β u20x(x) +

2
β |
∫ u0x(x)
0 ϕ(s) ds| by E1(x). Integrating both

sides of (3.8) with respect to t and making use of the conditions (3.3) and (3.1),
we can obtain

u2xt +
α

β
u2x +

2

β

∫ ux

0
ϕ(s) ds

≤ E1(x) + 2

∫ t

0

[
−α

∫ 1

0
Kξx(x, ξ)uξ(ξ, τ) dξ(3.9)

−
∫ 1

0
Kξx(x, ξ)ϕ(uξ(ξ, τ)) dξ

]
uxt dτ
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≤ E1(x) +

∫ t

0

{[∫ 1

0
4αK2ξx(x, ξ) dξ

] 1
2

[∫ 1

0
αu2x(x, τ) dx

] 1
2

+ C7

∫ 1

0
|ϕ(ux(x, τ))| dx

}
|uxt| dτ

≤ E1(x) +

∫ t

0

{
C8 + α

∫ 1

0
u2x(x, τ) dx

+ C7

∫ 1

0

[
A

∫ ux(x,τ)

0
ϕ(s) ds +B

]
dx
}
|uxt| dτ

≤ E1(x) +

∫ t

0

{
C9 + C10E(0)

}
|uxt| dτ

≤ E1(x) +
1

4
[C9 + C10E(0)]

2T +

∫ t

0
u2xt dτ.

Multiplying both sides of (3.9) by A, adding the product to 2B
β
and using (3.3),

we get

(3.10) Au2xt +
Aα

β
u2x +

2

β
|ϕ(ux)| ≤ M1(T ) +A

∫ t

0
u2xt dτ,

where M1(T ) is a constant dependent on T .
It follows from (3.10) by Gronwall’s inequality that

Au2xt +
Aα

β
u2x +

2

β
|ϕ(ux)| ≤ M1(T )e

AT .

Therefore

(3.11) sup
0≤t≤T

‖ux‖C[0,1] + sup
0≤t≤T

‖uxt‖C[0,1] + sup
0≤t≤T

‖ϕ(ux)‖C[0,1] ≤ M2(T ).

Differentiating (3.6) with respect to x, we obtain

(3.12)

uxx(x, t) = u0xx(x) + u1xx(x)t −
α

β

∫ t

0
(t − τ)uxx(x, τ) dτ

− α

∫ t

0

∫ 1

0
(t − τ)Kξxx(x, ξ)uξ(ξ, τ) dξ dτ

− 1
β

∫ t

0
(t − τ)ϕ′(ux(x, τ))uxx(x, τ) dτ

−
∫ t

0

∫ 1

0
(t − τ)Kξxx(x, ξ)ϕ(uξ(ξ, τ)) dξ dτ.

It follows from (3.12) that

|uxx(x, t)| ≤ max
0≤x≤1

|u0xx(x)| + max
0≤x≤1

|u1xx|T + C11T
2 + C12T

∫ t

0
|uxx(x, τ)| dτ.



484 Chen Guowang,Wang Shubin

Making use of Gronwall’s inequality, we have

(3.13) sup
0≤t≤T

‖uxx(·, t)‖C[0,1] ≤ M3(T ).

Differentiating (3.12) with respect to t, we obtain

(3.14)

uxxt(x, t) = u1xx(x) −
α

β

∫ t

0
uxx(x, τ) dτ

− α

∫ t

0

∫ 1

0
Kξxx(x, ξ)uξ(ξ, τ) dξ dτ

− 1
β

∫ t

0
ϕ′(ux(x, τ))uxx(x, τ) dτ

−
∫ t

0

∫ 1

0
Kξxx(x, ξ)ϕ(uξ(ξ, τ)) dξ dτ.

It follows from (3.14) that

(3.15) sup
0≤t≤T

‖uxxt(·, t)‖C[0,1] ≤ M4(T ).

From (3.11), (3.13) and (3.15) it follows that

sup
0≤t≤T

(
‖ux‖C1[0,1] + ‖uxt‖C1[0,1]

)
< ∞.

By virtue of Theorem 2.1 and Lemma 2.1 we know that the problem (1.3)–(1.5)
has a unique classical global solution u(x, t). Theorem 3.1 is proved. �

4. Blow-up of solutions of the problem (1.3)–(1.5)

In this section we are going to consider blow-up of solutions of the problem
(1.3)-(1.5).

Theorem 4.1. Suppose that the following conditions hold:

(1)
∫ 1
0 (u0u1 + βu0xu1x) dx > 0,

(2) E(0) ≤ 0,
(3) ϕ ∈ C1(R), ϕ(s)s ≤ 2(2δ + 1)

∫ s
0 ϕ(y) dy + 2δαs2,

where δ > 0 is a constant. Then the classical solutions of the problem (1.3)–(1.5)
must blow up in finite time.

Proof: The proof is made by use of so called “concavity” arguments. Assume
that u(x, t) is the classical solution of the problem (1.3)–(1.5) on [0, 1] × [0, T ].
Let

F (t) =

∫ 1

0
(u2 + βu2x) dx.
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We have

F ′(t) = 2
∫ 1

0
(uut + βuxuxt) dx,

F ′′(t) = 2
∫ 1

0
(u2t + βu2xt) dx+ 2

∫ 1

0
(uutt + βuxuxtt) dx

= 2

∫ 1

0
(u2t + βu2xt) dx+ 2

∫ 1

0
u(utt − βuxxtt) dx.

Using Cauchy’s inequality, we see that

(4.1) [F ′(t)]2 ≤ 4
[∫ 1

0
(u2 + βu2x) dx

] [∫ 1

0
(u2t + βu2xt) dx

]
.

Therefore, using (1.3) and (4.1), we find that

(4.2)

FF ′′ − (1 + δ)(F ′)2 ≥ F
{[
2

∫ 1

0
(u2t + βu2xt) dx

+ 2

∫ 1

0
u(αuxx + ϕ(ux)x) dx

]
− 4(1 + δ)

[ ∫ 1

0
(u2t + βu2xt) dx

]}

= 2F
[
−
∫ 1

0
(αu2x + ϕ(ux)ux) dx − (2δ + 1)

∫ 1

0
(u2t + βu2xt) dx

]
.

Thus from (4.2), (3.1) and the conditions (2), (3) it follows that

FF ′′ − (1 + δ)(F ′)2 ≥ 2F
[
−2(2δ + 1)

∫ 1

0

∫ ux

0
φ(s) ds dx

− (2δ + 1)α
∫ 1

0
u2x dx − (2δ + 1)

∫ 1

0
(u2t + βu2xt) dx

]

= −2F (2δ + 1)E(0) ≥ 0, t ∈ [0, T ].

We see that F (t) > 0 for all t ∈ [0, T ] and that from the condition (1), F ′(0) > 0.
From “concavity” arguments (see [4], [5]) we know that there exists a constant t0
such that

lim
t→t−

0

(
‖u‖2L2[0,1] + β‖ux‖2L2[0,1]

)
= +∞

and

T < t0 =
‖u0‖2L2[0,1] + β‖u0x‖2L2[0,1]
2δ
∫ 1
0 (u0u1 + βu0xu1x) dx

.

Theorem 4.1 is proved. �
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5. Initial boundary value problem (1.3), (1.6), (1.7)

This section is concerned with the problem (1.3), (1.6), (1.7). We consider
problem (1.3), (1.6), (1.7) by the method used in Sections 1–4. Observe that

K(x, ξ) =
1√

β sinh 1√
β






cosh x√
β
cosh 1−ξ√

β
, x ≤ ξ,

cosh 1−x√
β
cosh ξ√

β
, x > ξ,

is the Green’s function of the boundary value problem for the ordinary differential
equation

y − βy′′ = 0, y′(0) = y′(1) = 0,

where β > 0 is a real number.
The following theorems can be proved analogously as Theorems 3.1 and 4.1

above.

Theorem 5.1. Assume that the following conditions hold:

(1) u0(x), u1(x) ∈ C2[0, 1] and u0x(0) = u0x(1) = u1x(0) = u1x(1) = 0,
(2) ϕ(s) ∈ C2(R), ϕ(0) = 0 and |ϕ(s)| ≤ A

∫ s
0 ϕ(y) dy +B,

where A, B > 0 are constants. Then the problem (1.3), (1.6), (1.7) has a unique
classical global solution u(x, t).

Theorem 5.2. Assume that the following conditions hold:

(1)
∫ 1
0 (u0u1 + βu0xu1x) dx > 0,

(2) E(0) ≤ 0,
(3) ϕ ∈ C1(R), ϕ(0) = 0 and ϕ(s)s ≤ 2(2δ + 1)

∫ s
0 ϕ(s) ds+ 2δαs2,

where δ > 0 is a constant.
Then the classical solutions of the problem (1.3), (1.6), (1.7) must blow up in
finite time.

6. On the problems (1.1), (1.4), (1.5) and (1.1), (1.6), (1.7)

Here we apply the results of the problem (1.3), (1.4), (1.5) to the problem (1.1),
(1.4), (1.5) and the results of the problem (1.3), (1.6), (1.7) to the problem (1.1),
(1.6), (1.7).

Theorem 6.1. Suppose that

u0(x), u1(x) ∈ C2[0, 1], u0(0) = u0(1) = u1(0) = u1(1) = 0, a0, a2 > 0.

(1) If n is an odd number, a1 > 0, then the problem (1.1), (1.4), (1.5) has
a unique classical global solution u(x, t).

(2) If n (n 6= 1) is an odd number, a1 < 0,

‖u1‖2L2[0,1] + a0‖u0x‖2L2[0,1] + a2‖u1x‖2L2[0,1]

+
2a1

n+ 1

∫ 1

0
(u0x)

n+1 dx ≡ Ê(0) ≤ 0



Existence and non-existence of global solutions for nonlinear hyperbolic equations . . . 487

and the condition ∫ 1

0
(u0u1 + a2u0xu1x) dx > 0

holds, then the classical solutions of the problem (1.1), (1.4), (1.5) must blow up
in finite time.

(3) If n is an even number, a1 6= 0, Ê(0) ≤ 0 and the condition∫ 1

0
(u0u1 + a2u0xu1x) dx > 0

holds, then the classical solutions of the problem (1.1), (1.4), (1.5) must blow up
in finite time.

Theorem 6.2. Suppose that u0(x), u1(x) ∈ C2[0, 1], u0x(0) = u0x(1) = u1x(0) =
u1x(1) = 0, a0, a2 > 0.

(1) If n is an odd number, a1 > 0, then the problem (1.1), (1.6), (1.7) has
a unique classical global solution u(x, t).

(2) If n (n 6= 1) is an odd number, a1 < 0, Ê(0) ≤ 0 and the condition
∫ 1

0
(u0u1 + a2u0xu1x) dx > 0

holds, then the classical solutions of the problem (1.1), (1.6), (1.7) must blow up
in finite time.

(3) If n is an even number, a1 6= 0, Ê(0) ≤ 0 and the condition∫ 1

0
(u0u1 + a2u0xu1x) dx > 0

holds, then the classical solutions of the problem (1.1), (1.6), (1.7) must blow up
in finite time.
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