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Dimension and ε-translations
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Dedicated to Professor Akihiro Okuyama on his 60th birthday

Abstract. Some theorems characterizing the metric and covering dimension of arbitrary
subspaces in a Euclidean space will be obtained in terms of ε-translations; some of
them were proved in our previous paper [G1] under the additional assumption of the
boundedness of subspaces.
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1. Introduction

In the previous paper [G1] we proved some theorems which characterize the
metric dimension µdim for bounded subspaces in a Euclidean space in terms of
ε-translations. In this paper, these results will be extended for arbitrary (un-
bounded) subspaces and also, we will obtain some results characterizing the cov-
ering dimension dim in terms of some classes of ε-translations such as U -0-
dimensional mappings in the sense of [Z-S] or uniformly 0-dimensional mappings
of Katětov [Ka1].
Throughout this paper, all spaces are assumed to be metric and mappings are

continuous.

2. Metric dimension and ε-translations

Let X ⊆ Rn and ε > 0. Then a mapping f : X → Rn is called an ε-translation
if ‖ x−f(x) ‖< ε for every x ∈ X . The metric dimension µdim X of X is defined
to be the least integer m for which X admits open covers of order ≤ m+ 1 with
arbitrarily small meshes [Sm1]. Suppose U is a locally finite open cover of X
and P = {p

U
: U ∈ U} is an arbitrary set in Rn. Consider the rectilinear closed

(degenerate in general) simplex (p
U0

, . . . , p
Ur
) with vertices p

U0
, . . . , p

Ur
for every

finite number of elements U0, . . . , Ur ∈ U with U0 ∩ · · · ∩ Ur 6= ∅. Let N be
the family of all of these simplexes and we call N the complex determined by U
and P . Then the κ-mapping f : X → ∪N relative to U and P is defined by

f(x) =
∑

U∈U

f
U
(x)p

U
where f

U
(x) =

d(x, X − U)∑
V ∈U

d(x, X − V )
for x ∈ X.
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If for some ε > 0, δ(U ∪ {p
U
}) < ε for every U ∈ U , then f is an ε-translation.

By a simplicial complex K in Rn, we mean a geometric (not necessarily finite)
simplicial complex which is locally finite in Rn at every point in ∪K. Also, a
polyhedron means an underlying space of a simplicial complex. If P = ∪K and
K is a uniform complex in the sense of Smirnov [Sm2], then we call K a uniform
triangulation of P . We note that if a polyhedron P in Rn admits a uniform
triangulation, then P is closed in Rn [Sm2]. The following lemma is an extension
of [Eg, Theorem 3].

Lemma 1. Let X be an arbitrary subspace in Rn with µdim X ≤ m, 0 ≤ m ≤
n− 1. Then for every ε > 0 and every sequence {Hi} of (n−m− 1)-dimensional
planes in Rn, there exists an ε-translation of f : X → P ⊆ Rn − ∪Hi where P is
an m-dimensional polyhedron with a uniform triangulation.

Proof: Take a δ > 0 with 4
√

nδ/3 < ε. For every integer k, we denote by E(k)

the open interval ((k − 23 )δ, (k + 23 )δ) and set
E = {E(k1, . . . , kn) : k1, . . . , kn ∈ Z} where E(k1, . . . , kn) = E(k1)×· · ·E(kn).

Then E is an open cover of Rn by open n-cubes with mesh < ε. For E ∈ E , we
denote by p

E
the center of E and set P = {p

E
: E ∈ E}. Let N be the complex

determined by E and P . Denote by τ(k1, . . . , kn) the closed n-cube {x ∈ Rn :
kiδ ≤ xi ≤ (ki+1)δ , 1 ≤ i ≤ n}, and we set T = {τ(k1, . . . , kn) : k1, . . . , kn ∈ Z}.
Then for every simplex σ ∈ N there exists τ ∈ T such that all vertices of σ are
those of τ . For τ ∈ T , let Vτ be the set of vertices of τ . Then the family of
all (n − 1)-dimensional planes determined by n points from Vτ defines a cellular
decomposition of τ , and applying the barycentric decomposition [AH], we obtain
a simplicial decomposition Kτ of τ . Then K = ∪{Kτ : τ ∈ T } defines a uniform
triangulation of Rn since every Kτ is finite and congruent to each other.
Now let U be an open cover of X with mesh U < δ/3 and ord U ≤ m+1; such

a cover exists since µdim X ≤ m by assumption. Since δ/3 is a Lebesgue number
of E there exists i : U → E such that U ⊆ i(U) for every U ∈ U . Define an open
cover V of X by

V = {V
E
: E ∈ E} where V

E
= ∪{U ∈ U : i(U) = E}.

Then V is a star-finite open cover of X and ord V ≤ m+1. Let L be the complex
determined by V and P and g : X → ∪L the κ-mapping relative to V and P .
Note that ∪L ⊆ ∪K(m) where K(m) is the m-skeleton of K and that g is a λ-
translation where λ = mesh E , because δ(V

E
∪ {p

E
}) ≤ δ(E) for E ∈ E . Let

V0 = {pi} be the set of vertices in K(m) . Since K is uniform, so is K(m) . Hence
by [Sm2, Corollary to Theorem 2] there exists an ε′ > 0 satisfying the condition:

if {qi} ⊆ Rn and ‖ pi − qi ‖< ε′ for every i, then there exist a uniform

complex K′ with vertices in {qi} and an isomorphism ϕ : K(m) → K′

sending each simplex (pi0 , . . . , pir) to (qi0 , . . . , qir ).
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We may assume that λ+ ε′ < ε. Moreover, by [Ku, p. 307] we can choose {qi} so
that {qi} is in general position relative to {Hi} i.e., σ∩(∪Hi) = ∅ for every simplex
σ whose vertices are in {qi} and dimσ ≤ m. Then the polyhedron P = ∪K′ is

disjoint from ∪Hi and the homeomorphism h : ∪K(m) → P induced from ϕ, which
is linear on each simplex, is an ε′-translation. Then f = h◦g : X → P is a desired
ε-translation since ‖ x− f(x) ‖≤‖ x− g(x) ‖ + ‖ g(x)− h(g(x)) ‖< λ+ ε′ < ε for
every x ∈ X . �

Let m, n be integers with 0 ≤ m ≤ n − 1. The space Nn
m is defined to be

the set of points in Rn at most m of whose coordinates are rationals. Then we
have dimNn

m = µdim Nn
m = m[E]. The space Snm, which was defined in [G2] by

modifying the space Sn,m in [G1], satisfies the relations:

Nn
m ⊆ Snm, µdim Snm = m and dimSnm = min{2m, n− 1}.

Note that dimX ≤ 2µdim X for everyX by [Ka2]. Hence, among those subspaces
in Rn of metric dimension m, Snm is of the maximal difference with its covering
dimension.
The following theorem is an extension of [G1, Theorem 1] which was proved

under the additional condition of the boundedness of X .

Theorem 2. Let X be an arbitrary subspace in Rn and m an integer with 0 ≤
m ≤ n − 1. Then the following conditions are equivalent.
(a) µdim X ≤ m.
(b) For every ε > 0 and every polyhedron P in Rn of dimension ≤ n−m− 1,
there exists an ε-translation f : X → Rn with f(X)∩P (or Cl(f(X))∩P ) =
∅.

(c) For every ε > 0 and every polyhedron P with a uniform triangulation in
R

n of dimension ≤ n − m − 1, there exists an ε-translation f : X → Rn

with f(X) ∩ P (or Cl(f(X)) ∩ P ) = ∅.
Proof: Since every polyhedron admits a triangulation consisting of countably
many simplexes, (a) implies (b) by Lemma 1. Obviously (b) implies (c).
Assume that the condition (c) is satisfied. Then for every ε > 0, as was proved

essentially in [G1, Theorem 1], there exists an ε-translation of X into an m-
dimensional polyhedron; it needs only to observe that the polyhedron Bi,n−m−1
in [G1] allows a uniform triangulation. Hence by [Sm1, Corollary 2] we have
µdim X ≤ m. �

The following theorem which extends [G1, Theorem 2], can be proved similarly
by use of Lemma 1 and its proof is omitted.

Theorem 3. For every subspaceX in Rn and every integerm with 0 ≤ m ≤ n−1,
the following conditions are equivalent.

(a) µdim X ≤ m.
(b) For every ε > 0 there exists an ε-translation f of X into anm-dimensional
polyhedron P (with a uniform triangulation) such that P ⊆ Nn

m.
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(c) For every ε > 0 there exists an ε-translation f of X into anm-dimensional
polyhedron P (with a uniform triangulation) such that P ⊆ Snm.

3. Covering dimension and ε-translations

Let U be an open cover of a space X and A ⊆ X . Then we write U-dimA ≤ 0
if there exists a pairwise disjoint open collection U0 in X such that ∪U0 ⊇ A and
U0 refines U . A mapping f : X → Y is called U-0-dimensional (or U-dim f ≤ 0)
if for some open cover V of Y, U-dim f−1(V ) ≤ 0 for every V ∈ V [Z-S].
Lemma 4. Let U be a countable star-finite open cover of a spaceX with ord U ≤
k + 1 and N the complex determined by U and P = {p

U
: U ∈ U} ⊆ Rn. If N

consists of non-degenerate simplexes and is locally finite in Rn at every point in

∪N , then U-dim f ≤ 0 for the κ-mapping f determined by U and P .
Proof: By [Ku, p. 239], there exists a geometric realization K of the nerve of U
in R2k+1. Let Q = {q

U
: U ∈ U} where q

U
is the vertex of K corresponding to

U ∈ U , and let π : K → N be the mapping sending each simplex (q
U0

, . . . , q
Ur
)

to (p
U0

, . . . , p
Ur
). Since K is locally finite, π induces a mapping p : ∪K → ∪N

uniquely which is linear on each simplex in K. Clearly we have f = p ◦ g for the
κ-mapping g relative to U and Q.
Let y ∈ ∪N . Then y is contained in the interior of only finitely many simplexes

in N , say σ1, . . . , σs. Since p is homeomorphic on each simplex, p−1(y) consists of
exactly s points. For every zi ∈ p−1(y), we choose a simplex τi ∈ K such that zi is
in the interior of τi, 1 ≤ i ≤ s. Let Wi be the open star of τi in K, and then {Wi :
1 ≤ i ≤ s} is pairwise disjoint. For, if otherwise, there would be a simplex τ ∈ K
with distinct faces τi and τj . But this contradicts that p is homeomorphic on τ .
Let L be the subcomplex of K such that ∪L = ∪K − ∪{Wi : 1 ≤ i ≤ s}. Since
N is locally finite by assumption, Vy = ∪N − p(∪L) is an open neighborhood
of y such that f−1(Vy) = g−1p−1(Vy) ⊆ ∪{g−1(Wi) : 1 ≤ i ≤ s}. Since g is a

κ-mapping, {g−1(Wi) : 1 ≤ i ≤ s} refines U . This means U-dim f−1(Vy) ≤ 0
and hence U-dim f ≤ 0. �

Theorem 5. Let X be an arbitrary subspace in Rn and k an integer with 0 ≤
k ≤ n. Then dimX ≤ k iff for every finite open cover U of X , there exists an
ε-translation f : X → Rn such that U-dim f ≤ 0 and f(X) (or Cl(f(X))) ⊆ Nn

k .

Proof: Necessity. Let ε > 0 and U = {U1, . . . , Ur} be an open cover of X . Let
E be the cover of Rn by open n-cubes with mesh < ε in the proof of Lemma 1.
Since dimX ≤ k, there exists an open cover V = {V (k1, . . . , kn; j) : k1, . . . , kn ∈
Z, 1 ≤ j ≤ r} such that ord V ≤ k + 1 and V (k1, . . . , kn; j) ⊆ E(k1, . . . , kn) ∩ Uj

for every ki and j. As in the proof of Lemma 1, we can take P = {p
V
: V ∈ V}

in Rn such that
P is in general position in Rn,
p

V
∈ E(k1, . . . , kn) for V = V (k1, . . . , kn; j), and

∪N ⊆ Nn
k where N is the complex determined by V and P .
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Then N consists of non-degenerate simplexes and is locally finite in Rn. Hence
the κ-mapping f relative to V and P is U -0-dimensional by Lemma 4 and is a
desired ε-translation since δ(V ∪{p

V
}) < mesh E < ε. The proof of the sufficiency

is almost evident. �

Let X ⊆ Rn and ε > 0. We denote by Tε(X) the collection of all ε-translations
of X into Rn and set T (X) = ∪{Tε(X) : ε > 0}. Then T (X) is complete relative
to the metric defined by d(f, g) = sup{‖ f(x) − g(x) ‖: x ∈ X}.

Theorem 6. Let X be a bounded subspace in Rn with 0 ≤ k ≤ n. Then
dimX ≤ k iff for every ε > 0 there exists a uniformly 0-dimensional ε-translation
f : X → Rn such that f(X) (or Cl(f(X))) ⊆ Nn

k .

Proof: The sufficiency of the theorem follows from the fact that every uniformly
0-dimensional mapping does not decrease the dimension [Ka1, Theorem 3.3].
Assume that dimX ≤ k and ε > 0. Let {Hi} be a sequence of (n − k − 1)-

dimensional planes in Rn such that Rn −Nn
k = ∪Hi. We set

Si = {f ∈ T(X) : Cl(f(X)) ∩ Hi = ∅} for i ∈ N, and
T = {f ∈ T(X) : f is uniformly 0-dimensional }.

Then Si is dense and open in T(X), and T is a dense Gδ-set in T(X) [Ka1,
Theorem 2.15]. Hence ∩Si ∩ T is dense in T(X), and there exists f ∈ ∩Si ∩ T
with d(1X , f) < ε. Then f is an ε-translation of X with Cl(f(X)) ⊆ Nn

k . �

We don’t know whether Theorem 6 is valid for unbounded subspace X .
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