Commentationes Mathematicae Universitatis Carolinae

Paola Cavaliere; Anna D'Ottavio; Francesco Leonetti; Maria Longobardi Differentiability for minimizers of anisotropic integrals

Commentationes Mathematicae Universitatis Carolinae, Vol. 39 (1998), No. 4, 685--696

Persistent URL: http://dml.cz/dmlcz/119044

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Differentiability for minimizers of anisotropic integrals

P. Cavaliere, A. D'Ottavio, F. Leonetti, M. Longobardi

Abstract

We consider a function $u: \Omega \rightarrow \mathbb{R}^{N}, \Omega \subset \mathbb{R}^{n}$, minimizing the integral $\int_{\Omega}\left(\left|D_{1} u\right|^{2}+\cdots+\left|D_{n-1} u\right|^{2}+\left|D_{n} u\right|^{p}\right) d x, 2(n+1) /(n+3) \leq p<2$, where $D_{i} u=\partial u / \partial x_{i}$, or some more general functional with the same behaviour; we prove the existence of second weak derivatives $D\left(D_{1} u\right), \ldots, D\left(D_{n-1} u\right) \in L^{2}$ and $D\left(D_{n} u\right) \in L^{p}$.

Keywords: regularity, minimizers, integral functionals, anisotropic growth
Classification: 49N60, 35J60

0. Introduction

We consider the integral functional

$$
\begin{equation*}
I(u)=\int_{\Omega} F(D u(x)) d x \tag{0.1}
\end{equation*}
$$

where Ω is bounded open subset of $\mathbb{R}^{n}, n \geq 2$, and $u: \Omega \rightarrow \mathbb{R}^{N}, N \geq 1$. F satisfies the following growth condition

$$
a \sum_{i=1}^{n}\left|\xi_{i}\right|^{q_{i}}-b \leq F(\xi) \leq c \sum_{i=1}^{n}\left|\xi_{i}\right|^{q_{i}}+d, \quad \forall \xi \in \mathbb{R}^{n N}
$$

with a, b, c, d positive constants and $1<q_{i}, i=1, \ldots, n$. The isotropic case, i.e. $q_{i}=q \forall i$, has been deeply studied, see, for example, [G]. In this paper we study the anisotropic case, in which at least one of the q_{i} 's differs from the others. We recall that in the anisotropic case, minimizers of (0.1) may be singular when no restriction is assumed on the q_{i} 's ([G1], [M]). On the other hand, if the q_{i} 's are close enough, there are regularity results, among them, [M1], [FS], [FS1] deal with scalar minimizers $u: \Omega \rightarrow \mathbb{R}$ of (0.1) and [L], [BL], [BL1], [D] consider (possibly) vector valued minimizers $u: \Omega \rightarrow \mathbb{R}^{N}$. In the present paper we improve on the differentiability result for minimizers of (0.1) contained in [BL1]. As there, the prototype for (0.1) is

$$
\begin{equation*}
I(u)=\int_{\Omega}\left(\frac{1}{2} \sum_{i=1}^{n-1}\left|D_{i} u\right|^{2}+\frac{1}{p}\left|D_{n} u\right|^{p}\right) d x \tag{0.2}
\end{equation*}
$$

where $u: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, D u=\left(D_{1} u, \ldots, D_{n} u\right), D_{i} u=\partial u / \partial x_{i}, 1<p<2$.
This work has been supported by MURST, GNAFA-CNR, INDAM, MURST 60% and MURST 40%.

1. Notation and main results

Let Ω be a bounded open set of $\mathbb{R}^{n}, n \geq 2, u$ be a (possibly) vector-valued function, $u: \Omega \rightarrow \mathbb{R}^{N}, N \geq 1$; we consider integrals

$$
\begin{equation*}
I(u)=\int_{\Omega} F(D u(x)) d x \tag{1.1}
\end{equation*}
$$

where $F: \mathbb{R}^{n N} \rightarrow \mathbb{R}$ is in $C^{1}\left(\mathbb{R}^{n N}\right)$ and satisfies, for some positive constants c and m,

$$
\begin{gather*}
|F(\xi)| \leq c\left(1+\sum_{i=1}^{n-1}\left|\xi_{i}\right|^{2}+\left|\xi_{n}\right|^{p}\right) \tag{1.2}\\
\left|\frac{\partial F}{\partial \xi_{i}^{\alpha}}(\xi)\right| \leq c\left(1+\left|\xi_{i}\right|\right) \quad \text { if } i=1, \ldots, n-1 \tag{1.3}\\
\left|\frac{\partial F}{\partial \xi_{n}^{\alpha}}(\xi)\right| \leq c\left(1+\left|\xi_{n}\right|^{p-1}\right) \tag{1.4}
\end{gather*}
$$

and

$$
\begin{align*}
& \sum_{j=1}^{n} \sum_{\beta=1}^{N}\left(\frac{\partial F}{\partial \xi_{j}^{\beta}}(\nu)-\frac{\partial F}{\partial \xi_{j}^{\beta}}(\lambda)\right)\left(\nu_{j}^{\beta}-\lambda_{j}^{\beta}\right) \tag{1.5}\\
& \quad \geq m \sum_{j=1}^{n-1}\left|\nu_{j}-\lambda_{j}\right|^{2}+m\left(1+\left|\nu_{n}\right|^{2}+\left|\lambda_{n}\right|^{2}\right)^{(p-2) / 2}\left|\nu_{n}-\lambda_{n}\right|^{2}
\end{align*}
$$

for every $\lambda, \nu, \xi \in \mathbb{R}^{n N}, \alpha=1, \ldots, N$. Here, $\lambda=\left\{\lambda_{i}^{\alpha}\right\}, \xi=\left\{\xi_{i}^{\alpha}\right\},\left|\lambda_{i}\right|^{2}=$ $\sum_{\alpha=1}^{N}\left|\lambda_{i}^{\alpha}\right|^{2}$. About p, we assume that

$$
\begin{equation*}
1<p<2 \tag{1.6}
\end{equation*}
$$

We point out that (0.2) verifies (1.2)-(1.5). We say that u minimizes the integral (1.1) if $u: \Omega \rightarrow \mathbb{R}^{N}, u \in W^{1, p}(\Omega)$ with $D_{i} u \in L^{2}(\Omega)$ for $i=1, \ldots, n-1$, and

$$
I(u) \leq I(u+\phi)
$$

for every $\phi: \Omega \rightarrow \mathbb{R}^{N}$ with $\phi \in W_{0}^{1, p}(\Omega)$ and $D_{i} \phi \in L^{2}(\Omega)$ for $i=1, \ldots, n-1$.
We first prove the following differentiability result for $D u$:
Theorem 1. Let $u: \Omega \rightarrow \mathbb{R}^{N}$ satisfy $u \in W^{1, p}(\Omega)$ with $D_{i} u \in L^{2}(\Omega)$ for $i=1, \ldots, n-1$. If F satisfies (1.2)-(1.5), (1.6) and u minimizes the integral (1.1), then for $s=1, \ldots, n-1$

$$
\begin{gather*}
D_{s}\left(D_{i} u\right) \in L_{\mathrm{loc}}^{2}(\Omega), \quad \forall i=1, \ldots, n-1 \tag{1.7}\\
D_{s}\left(D_{n} u\right) \in L_{\mathrm{loc}}^{p}(\Omega) \tag{1.8}\\
D_{s}\left(\left(1+\left|D_{n} u\right|^{2}\right)^{(p-2) / 4} D_{n} u\right) \in L_{\mathrm{loc}}^{2}(\Omega) \tag{1.9}
\end{gather*}
$$

This differentiability result allows us to improve on the integrability of first $n-1$ components $D_{1} u, \ldots, D_{n-1} u$ of the gradient:

Corollary 1. Under the assumptions of Theorem 1 we have

$$
D_{s} u \in L_{\mathrm{loc}}^{\bar{p}^{*}}(\Omega), \quad s=1, \ldots, n-1
$$

where

$$
\bar{p}^{*}=\frac{2 p n}{p(n-3)+2}>2 .
$$

So, by the improved integrability, we can get the existence of second weak derivatives with respect to x_{n} :
Theorem 2. Under the assumptions of Theorem 1, if p verifies the additional restriction

$$
\begin{equation*}
2 \frac{n+1}{n+3} \leq p<2 \tag{1.10}
\end{equation*}
$$

then

$$
\begin{gathered}
D_{n}\left(D_{i} u\right) \in L_{\mathrm{loc}}^{2}(\Omega), \quad \forall i=1, \ldots, n-1, \\
D_{n}\left(D_{n} u\right) \in L_{\mathrm{loc}}^{p}(\Omega), \\
D_{n}\left(\left(1+\left|D_{n} u\right|^{2}\right)^{(p-2) / 4} D_{n} u\right) \in L_{\mathrm{loc}}^{2}(\Omega)
\end{gathered}
$$

Using Sobolev imbedding theorem we get Hölder continuity for u in dimension 2 and 3 :

Corollary 2. Under the assumptions of Theorem 2, we have

$$
\begin{array}{ll}
u \in C_{\mathrm{loc}}^{0, \beta}(\Omega), \quad \forall \beta<1, \quad \text { when } n=2 \\
u \in C_{\mathrm{loc}}^{0,1-1 / p}(\Omega), \quad \text { when } n=3
\end{array}
$$

Remark. The higher differentiability contained in Theorem 1 and 2 was proved in [BL1] under the stronger assumption $2-2 /(n+1)<p<2$.

2. Known results

For a vector-valued function $f(x)$, define the difference

$$
\tau_{s, h} f(x)=f\left(x+h e_{s}\right)-f(x),
$$

where $h \in \mathbb{R}, e_{s}$ is the unit vector in the x_{s} direction, and $s=1,2, \ldots, n$. For $x_{0} \in \mathbb{R}^{n}$, let $B_{R}=B_{R}\left(x_{0}\right)$ be the ball centered at x_{0} with radius R. We now state several lemmas that we need later. In the following $f: \Omega \rightarrow \mathbb{R}^{k}, k \geq 1 ; B_{\rho}$, $B_{R}, B_{2 \rho}$ and $B_{2 R}$ are concentric balls.

Lemma 1. If $0<\rho<R,|h|<R-\rho, 1 \leq t<\infty, s \in\{1, \ldots, n\}, f, D_{s} f \in$ $L^{t}\left(B_{R}\right)$, then

$$
\int_{B_{\rho}}\left|\tau_{s, h} f(x)\right|^{t} d x \leq|h|^{t} \int_{B_{R}}\left|D_{s} f(x)\right|^{t} d x .
$$

(See [G, p. 45], [C, p. 28].)
Lemma 2. Let $f \in L^{t}\left(B_{2 \rho}\right), 1<t<\infty, s \in\{1, \ldots, n\}$; if there exists a positive constant C such that

$$
\int_{B_{\rho}}\left|\tau_{s, h} f(x)\right|^{t} d x \leq C|h|^{t}
$$

for every h with $|h|<\rho$, then there exists $D_{s} f \in L^{t}\left(B_{\rho}\right)$. (See [G, p. 45], [C, p. 26].)

Lemma 3. For every $\gamma \in(-1 / 2,0)$ we have

$$
(2 \gamma+1)|a-b| \leq \frac{\left|\left(1+|a|^{2}\right)^{\gamma} a-\left(1+|b|^{2}\right)^{\gamma} b\right|}{\left(1+|a|^{2}+|b|^{2}\right)^{\gamma}} \leq \frac{c(k)}{2 \gamma+1}|a-b|,
$$

for all $a, b \in \mathbb{R}^{k}$. (See [AF].)
Lemma 4. Let Q be an open cube of $\mathbb{R}^{n}, f \in W^{1,1}(Q)$, with $D_{i} f \in L^{p_{i}}(Q)$, $p_{i} \geq 1, i=1, \ldots, n$ and

$$
\frac{1}{\bar{p}}=\frac{1}{n} \sum_{i=1}^{n} \frac{1}{p_{i}}
$$

If $\bar{p}<n$ and $p_{i}<\bar{p}^{*}=\bar{p} n /(n-\bar{p}) \forall i=1, \ldots, n$, then $f \in L^{\bar{p}^{*}}(Q)$. (See [T], [AF1].)

3. Proof of Theorem 1

Since u minimizes the integral (1.1) with growth conditions as in (1.2)-(1.4), u solves the Euler equation

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u(x)) D_{i} \phi^{\alpha}(x) d x=0 \tag{3.1}
\end{equation*}
$$

for all functions $\phi: \Omega \rightarrow \mathbb{R}^{N}$, with $\phi \in W_{0}^{1, p}(\Omega)$ and $D_{1} \phi, \ldots, D_{n-1} \phi \in L^{2}(\Omega)$. Let $R>0$ be such that $\overline{B_{4 R}} \subset \Omega$ and let B_{ρ} and B_{R} be concentric balls with $0<\rho<R \leq 1$. Fix s, take $0<|h|<R$ and let $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a "cut off" function
in $C_{0}^{2}\left(B_{R}\right)$ with $0 \leq \eta \leq 1$ in \mathbb{R}^{n} and $\eta \equiv 1$ on B_{ρ}. Using $\phi=\tau_{s,-h}\left(\eta^{2} \tau_{s, h} u\right)$ in (3.1) we get, as usual,

$$
\begin{aligned}
0=\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \int & \frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u) \tau_{s,-h}\left(D_{i}\left(\eta^{2} \tau_{s, h} u^{\alpha}\right)\right) d x \\
& =\sum_{i=1}^{n} \sum_{\alpha=1}^{N} \int \tau_{s, h}\left(\frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u)\right)\left(2 \eta D_{i} \eta \tau_{s, h} u^{\alpha}+\eta^{2} \tau_{s, h} D_{i} u^{\alpha}\right) d x
\end{aligned}
$$

so that

$$
\begin{align*}
&(I)=\int_{B_{R}} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \tau_{s, h}\left(\frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u)\right) \tau_{s, h} D_{i} u^{\alpha} \eta^{2} d x \tag{3.2}\\
&=-\int_{B_{R}} \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \tau_{s, h}\left(\frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u)\right) 2 \eta D_{i} \eta \tau_{s, h} u^{\alpha} d x=(I I)
\end{align*}
$$

We apply (1.5) so that

$$
\begin{aligned}
& m \int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u(x)\right|^{2} \eta^{2}(x) d x \\
& +m \int_{B_{R}}\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{(p-2) / 2}\left|\tau_{s, h} D_{n} u(x)\right|^{2} \eta^{2}(x) d x \leq(I)
\end{aligned}
$$

Set

$$
\begin{equation*}
V\left(\xi_{n}\right)=\left(1+\left|\xi_{n}\right|^{2}\right)^{(p-2) / 4} \xi_{n}, \quad \forall \xi \in \mathbb{R}^{n N} \tag{3.3}
\end{equation*}
$$

Using Lemma 3 we find

$$
\begin{align*}
& C_{2}\left|\tau_{s, h} D_{n} u(x)\right| \leq \frac{\left|\tau_{s, h} V\left(D_{n} u(x)\right)\right|}{\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{(p-2) / 4}} \tag{3.4}\\
& \leq C_{3}\left|\tau_{s, h} D_{n} u(x)\right|
\end{align*}
$$

for some positive constants C_{2}, C_{3} depending only on N and p. Then

$$
\begin{equation*}
m \int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+m \int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \leq C_{4}(I) \tag{3.5}
\end{equation*}
$$

for some positive constant C_{4}, depending only on N and p. We use the left-hand side of (3.4), Hölder's inequality with $2 /(2-p)$ and $2 / p$ in order to get

$$
\begin{aligned}
& \int_{B_{R}}\left|\tau_{s, h} D_{n} u(x)\right|^{p} \eta^{p}(x) d x \\
& \leq C_{2}^{-p} \int_{B_{R}}\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{p(2-p) / 4}\left|\tau_{s, h} V\left(D_{n} u(x)\right)\right|^{p} \eta^{p}(x) d x \\
& \quad \leq C_{2}^{-p}\left(\int_{B_{R}}\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{p / 2} d x\right)^{(2-p) / 2} \times \\
& \\
& \quad \times\left(\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u(x)\right)\right|^{2} \eta^{2}(x) d x\right)^{p / 2}
\end{aligned}
$$

Now, splitting the integral and changing variables yield

$$
\begin{aligned}
& C_{2}^{-p}\left(\int_{B_{R}}\left(1+\left|D_{n} u(x)\right|^{2}+\left|D_{n} u\left(x+h e_{s}\right)\right|^{2}\right)^{p / 2} d x\right)^{(2-p) / 2} \\
& \leq C_{5}\left(\int_{B_{2 R}}\left(1+\left|D_{n} u(y)\right|^{p}\right) d y\right)^{(2-p) / 2}=C_{6}
\end{aligned}
$$

for some positive constants C_{5} and C_{6}, independent of h, so that

$$
\begin{equation*}
C_{6}^{-2 / p}\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p} \leq \int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x \tag{3.6}
\end{equation*}
$$

then, using (3.6), (3.5) and (3.2) we arrive at

$$
\begin{array}{r}
\frac{m}{2} C_{6}^{-2 / p}\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p}+\frac{m}{2} \int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x \tag{3.7}\\
+m \int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \leq C_{4}(I)=C_{4}(I I)
\end{array}
$$

We recall that, from (3.2)

$$
(I I)=-\int \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \tau_{s, h}\left(\frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u)\right) 2 \eta D_{i} \eta \tau_{s, h} u^{\alpha} d x
$$

now we shift the difference operator $\tau_{s, h}$ from $\left(\partial F / \partial \xi_{i}^{\alpha}\right)(D u)$ to $2 \eta D_{i} \eta \tau_{s, h} u^{\alpha}$ ([N]):

$$
\begin{align*}
(I I)=-\int \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \tau_{s, h} & \left(\frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u)\right) 2 \eta D_{i} \eta \tau_{s, h} u^{\alpha} d x \tag{3.8}\\
& =-\int \sum_{i=1}^{n} \sum_{\alpha=1}^{N} \frac{\partial F}{\partial \xi_{i}^{\alpha}}(D u) \tau_{s,-h}\left(2 \eta D_{i} \eta \tau_{s, h} u^{\alpha}\right) d x
\end{align*}
$$

We use the growth conditions (1.3), (1.4) and Cauchy-Schwartz's inequality in (3.8) in order to get

$$
\begin{align*}
C_{4}(I I) \leq C_{7}\left(\int _ { B _ { 2 R } } \left(1+\sum_{i=1}^{n-1}\left|D_{i} u\right|^{2}\right.\right. & \left.\left.+\left|D_{n} u\right|^{2 p-2}\right) d x\right)^{1 / 2} \times \tag{3.9}\\
& \times\left(\int_{B_{2 R}}\left|\tau_{s,-h}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{2} d x\right)^{1 / 2}
\end{align*}
$$

for some positive constant C_{7} independent of h. Since $0<2 p-2<p$,

$$
\begin{equation*}
\left(\int_{B_{2 R}}\left(1+\sum_{i=1}^{n-1}\left|D_{i} u\right|^{2}+\left|D_{n} u\right|^{2 p-2}\right) d x\right)^{1 / 2}=C_{8}<\infty \tag{3.10}
\end{equation*}
$$

Now we apply Lemma 1 :

$$
\begin{align*}
& \text { 11) }\left(\int_{B_{2 R}}\left|\tau_{s,-h}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{2} d x\right)^{1 / 2} \tag{3.11}\\
& \leq|h|\left(\int_{B_{3 R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{2} d x\right)^{1 / 2}=|h|\left(\int_{B_{R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{2} d x\right)^{1 / 2}
\end{align*}
$$

since $\eta=0$ outside B_{R}. Taking into account (3.7), (3.9), (3.10) and (3.11), we arrive at

$$
\begin{array}{r}
\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p}+\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \tag{3.12}\\
\leq C_{9}|h|\left(\int_{B_{R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{2} d x\right)^{1 / 2}=(I I I)
\end{array}
$$

for some positive constant C_{9}, independent of h. Now, using the Young's inequality, for every $\epsilon>0$ we have

$$
\begin{equation*}
(I I I) \leq \frac{C_{9}^{2}|h|^{2}}{\epsilon}+\epsilon \int_{B_{R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{2} d x \tag{3.13}
\end{equation*}
$$

The integral in the previous inequality is dealt with as follows:

$$
\begin{align*}
\int_{B_{R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{2} d x \leq 2 \int_{B_{R}} & \left|D_{s}(2 \eta D \eta) \tau_{s, h} u\right|^{2} d x \tag{3.14}\\
& +2 \int_{B_{R}}\left|2 \eta D \eta \tau_{s, h} D_{s} u\right|^{2} d x=(A)+(B)
\end{align*}
$$

Now Lemma 4 allows us to use Lemma 1 to get for some positive constants C_{10} and C_{11}, independent of h,

$$
\begin{equation*}
(A) \leq C_{10}|h|^{2} \int_{B_{2 R}}\left|D_{s} u\right|^{2} d x=C_{11}|h|^{2} \tag{3.15}
\end{equation*}
$$

which holds true just for $s=1, \ldots, n-1$, since $D_{1} u, \ldots, D_{n-1} u \in L^{2}$ but $D_{n} u \in$ $L^{p}, p<2$. On the other hand, we have, for $s=1, \ldots, n-1$,

$$
\begin{equation*}
(B) \leq C_{12} \int_{B_{R}}\left|\tau_{s, h} D_{s} u\right|^{2} \eta^{2} d x \leq C_{12} \sum_{i=1}^{n-1} \int_{B_{R}}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \tag{3.16}
\end{equation*}
$$

for a positive constant C_{12}, independent of h. We insert (3.15) and (3.16) into (3.14), use the resulting inequality in (3.13) and keep in mind (3.12). Then

$$
\begin{aligned}
\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p} & +\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+\int_{B_{R}}^{n-1} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \\
& \leq \frac{C_{13}|h|^{2}}{\epsilon}+\epsilon C_{13}\left(|h|^{2}+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x\right)
\end{aligned}
$$

for some positive constant C_{13}, independent of h and ϵ, so taking $\epsilon=1 /\left(2 C_{13}\right)$, we finally get

$$
\begin{gathered}
\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \leq C_{14}|h|^{2} \\
\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x \leq C_{14}^{p / 2}|h|^{p}
\end{gathered}
$$

for some positive constant C_{14}, independent of h. Since $\eta=1$ on $B_{\rho} \subset B_{R}$, we can apply Lemma 2 and, after recalling (3.3) for the definition of $V\left(D_{n} u\right)$, we get (1.7), (1.8), (1.9), so we end the proof.

4. Proof of Corollary 1

Since we can change the order for distributional derivatives, so $D_{i} D_{s} u=$ $D_{s} D_{i} u$, using the result of Theorem 1 we get

$$
\begin{gathered}
D_{i} D_{s} u \in L_{\mathrm{loc}}^{2}(\Omega), \quad i=1, \ldots, n-1, \\
D_{n} D_{s} u \in L_{\mathrm{loc}}^{p}(\Omega)
\end{gathered}
$$

for every $s \in\{1, \ldots, n-1\}$. Applying Lemma 4 with $p_{1}=\cdots=p_{n-1}=2, p_{n}=p$ we obtain $\bar{p}=(2 p n) /[p(n-1)+2]<n$ thus $\bar{p}^{*}=(2 p n) /[p(n-3)+2]$ and

$$
D_{s} u \in L_{\mathrm{loc}}^{\bar{p}^{*}}(\Omega) \quad \forall s=1, \ldots, n-1
$$

This ends the proof.

5. Proof of Theorem 2

Corollary 1 guarantees that

$$
D_{1} u, \ldots, D_{n-1} u \in L_{\mathrm{loc}}^{\bar{p} *}(\Omega)
$$

Moreover the additional restriction (1.10) implies that $\bar{p}^{*} \geq p /(p-1)$, thus

$$
\begin{equation*}
D_{1} u, \ldots, D_{n-1} u \in L_{\mathrm{loc}}^{p /(p-1)}(\Omega) \tag{5.1}
\end{equation*}
$$

Now we proceed as in the proof of Theorem 1 until (3.8). Then, using the growth conditions (1.3), (1.4) and the Hölder's inequality with $p /(p-1)$ and p, we get

$$
\begin{aligned}
& C_{4}(I I) \leq C_{15}\left(\int_{B_{2 R}}\left(1+\sum_{i=1}^{n-1}\left|D_{i} u\right|^{p /(p-1)}+\left|D_{n} u\right|^{p}\right) d x\right)^{(p-1) / p} \times \\
& \times\left(\int_{B_{2 R}}\left|\tau_{s,-h}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{1 / p}
\end{aligned}
$$

for some positive constant C_{15} independent of h. The previous inequality is exactly (5.5) in [BL1] and from now the proof goes on as there. For the convenience of reader we quote the main steps. We use the higher integrability result stated in (5.1):

$$
\left(\int_{B_{2 R}}\left(1+\sum_{i=1}^{n-1}\left|D_{i} u\right|^{p /(p-1)}+\left|D_{n} u\right|^{p}\right) d x\right)^{(p-1) / p}=C_{16}<\infty
$$

Applying Lemma 1 with $t=p$

$$
\begin{aligned}
& \left(\int_{B_{2 R}}\left|\tau_{s,-h}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{1 / p} \leq|h|\left(\int_{B_{3 R}}\left|D_{s}\left(2 \eta D \eta \tau_{s, h} u\right)\right|^{p} d x\right)^{1 / p} \\
& \quad \leq|h|\left(\int_{B_{R}}\left|D_{s}(2 \eta D \eta) \tau_{s, h} u\right|^{p} d x\right)^{1 / p}+|h|\left(\int_{B_{R}}\left|2 \eta D \eta \tau_{s, h} D_{s} u\right|^{p} d x\right)^{1 / p} \\
& =|h|\{(A)+(B)\}
\end{aligned}
$$

Using again Lemma 1, we get

$$
(A) \leq C_{17}\left(\int_{B_{2 R}}\left|D_{s} u\right|^{p} d x\right)^{1 / p}|h|=C_{18}|h|
$$

for some positive constants C_{17} and C_{18}, independent of h. On the other hand, using Hölder's inequality, we have

$$
\begin{aligned}
(B) & \leq C_{19}\left(\int_{B_{R}}\left|\tau_{s, h} D_{s} u\right|^{p} \eta^{p} d x\right)^{1 / p} \leq C_{19}\left(\sum_{i=1}^{n} \int_{B_{R}}\left|\tau_{s, h} D_{i} u\right|^{p} \eta^{p} d x\right)^{1 / p} \\
& \leq C_{20}\left(\sum_{i=1}^{n-1} \int_{B_{R}}\left|\tau_{s, h} D_{i} u\right|^{p} \eta^{p} d x\right)^{1 / p}+C_{20}\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{1 / p} \\
& \leq C_{21}\left(\sum_{i=1}^{n-1} \int_{B_{R}}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x\right)^{1 / 2}+C_{20}\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{1 / p}
\end{aligned}
$$

for some positive constants C_{19}, C_{20} and C_{21}, independent of h. Eventually, we get

$$
\begin{aligned}
& \left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p}+\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \\
& \leq \frac{C_{22}|h|^{2}}{\epsilon}+\epsilon C_{22}\left(|h|^{2}+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x+\left(\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x\right)^{2 / p}\right)
\end{aligned}
$$

for some positive constant C_{22}, independent of h and ϵ, so taking $\epsilon=1 /\left(2 C_{22}\right)$, we finally have

$$
\begin{gathered}
\int_{B_{R}}\left|\tau_{s, h} V\left(D_{n} u\right)\right|^{2} \eta^{2} d x+\int_{B_{R}} \sum_{i=1}^{n-1}\left|\tau_{s, h} D_{i} u\right|^{2} \eta^{2} d x \leq C_{23}|h|^{2} \\
\int_{B_{R}}\left|\tau_{s, h} D_{n} u\right|^{p} \eta^{p} d x \leq C_{23}^{p / 2}|h|^{p}
\end{gathered}
$$

for some positive constant C_{23}, independent of h, where s may also assume the value n. Application of Lemma 2 ends the proof.

References

[AF] Acerbi E., Fusco N., Regularity for minimizers of non-quadratic functionals: the case $1<p<2$, J. Math. Anal. Appl. 140 (1989), 115-135.
[AF1] Acerbi E., Fusco N., Partial regularity under anisotropic (p, q) growth conditions, J. Differential Equations 107 (1994), 46-67.
[BL] Bhattacharya T., Leonetti F., Some remarks on the regularity of minimizers of integrals with anisotropic growth, Comment. Math. Univ. Carolinae 34 (1993), 597-611.
[BL1] Bhattacharya T., Leonetti F., On improved regularity of weak solutions of some degenerate, anisotropic elliptic systems, Ann. Mat. Pura Appl. 170 (1996), 241-255.
[C] Campanato S., Sistemi ellittici in forma divergenza. Regolarità all'interno., Quaderni Scuola Normale Superiore, Pisa, 1980.
[D] D'Ottavio A., A remark on a paper by Bhattacharya and Leonetti, Comment. Math. Univ. Carolinae 36 (1995), 489-491.
[FS] Fusco N., Sbordone C., Local boundedness of minimizers in a limit case, Manuscripta Math. 69 (1990), 19-25.
[FS1] Fusco N., Sbordone C., Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations 18 (1993), 153-167.
[G] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies 105, Princeton University Press, Princeton 1983.
[G1] Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987), 245-248.
[L] Leonetti F., Higher integrability for minimizers of integral functionals with nonstandard growth, J. Differential Equations 112 (1994), 308-324.
[M] Marcellini P., Un example de solution discontinue d'un probleme variationnel dans ce cas scalaire, preprint, Istituto Matematico "U. Dini", Universita' di Firenze, 1987/88, n. 11.
[M1] Marcellini P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal. 105 (1989), 267-284.
[N] Naumann J., Interior integral estimates on weak solutions of certain degenerate elliptic systems, Ann. Mat. Pura Appl. 156 (1990), 113-125.
[Ni] Nirenberg L., Remarks on strongly elliptic differential equations, Comm. Pure Appl. Math. 8 (1955), 649-675.
[T] Troisi M., Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche di Mat. 18 (1969), 3-24.

Paola Cavaliere, Maria Longobardi:
Facoltà di Scienze, Università di Salerno, via S. Allende, 84081 Baronissi (SA), Italy

E-mail: cavalier@matna3.dma.unina.it
longob@matna3.dma.unina.it
Anna D'Ottavio, Francesco Leonetti:
Dipartimento di Matematica Pura ed Applicata, Università di L'Aquila, 67100 L'Aquila, Italy
E-mail: dottavio@axscaq.aquila.infn.it
leonetti@univaq.it
(Received October 21, 1997)

