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Lipschitz-quotients and the Kunen-Martin Theorem

Yves Dutrieux

Abstract. We show that there is a universal control on the Szlenk index of a Lipschitz-
quotient of a Banach space with countable Szlenk index. It is in particular the case
when two Banach spaces are Lipschitz-homeomorphic. This provides information on the
Cantor index of scattered compact sets K and L such that C(L) is a Lipschitz-quotient of
C(K) (that is the case in particular when these two spaces are Lipschitz-homeomorphic).
The proof requires tools of descriptive set theory.
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In the non-linear classification of Banach spaces, it is an open problem to
know whether two separable Lipschitz-homeomorphic Banach spaces are isomor-
phic. Several partial results appeared recently on the subject. We refer to [10]
(especially Chapters 7 and 11) for an up-to-date account of the theory. In The-
orem 3.18 of [2], it is shown that the class of Asplund spaces is stable under
Lipschitz-quotient (this is false under uniform homeomorphism; see Theorem 1
in [12]). The aim of this paper is to precise this result: we show that there ex-
ists a universal control on the Szlenk index of a Lipschitz-quotient of a Banach
space X , provided X has a countable Szlenk index. For that, we need to esti-
mate the topological complexity of the relation of Lipschitz-quotient and apply
the Kunen-Martin theorem.

1. Analyticity of the relation of Lipschitz quotient

The aim of this section is to prove that the relation of Lipschitz-quotient (see
Definitions 3.1 and 3.2 in [2]) is analytic in a sense which will be made precise
later. First, let us introduce some notation:

Notation. • E will denote the space C(2ω) of all continuous functions on the
Cantor set. Let us recall that E is universal for all separable Banach spaces.

• S will denote the set of all closed subspaces of E. It is shown in Proposi-
tion 2.1 of [3] (see also pages 15 and 16) that the restriction of the Effros
Borel structure on the closed subsets of E makes it into a standard Borel
set.

• If X and Y are two Banach spaces, the fact that Y is a Lipschitz-quotient
of X will be written X →→ℓ Y .
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When we say that the relation of Lipschitz-quotient is analytic, we mean that
the set {(X,Y ) ∈ S2; X →→ℓ Y } is analytic in the standard Borel structure of S
(see Definition 0.4, page 9 in [8]).

We will show the following crucial technical proposition:

Proposition 1. →→ℓ is analytic.

Let us introduce some more notation:

Notation. • The sequence of the vectors xn will be denoted by x.
• When the sequence x is dense in X , we write X = x.
• x and y being two sequences of vectors, we will write x →→ℓ y to mean

that there exist two constants L and C in ω such that

∀ k, l ∈ ω, ‖yk − yl‖ ≤ L ‖xk − xl‖

and such that, for any n, p ∈ ω and any r ∈ Q∗
+ such that

∥∥yp − yn
∥∥ ≤

r/C, there exists a convergent subsequence xϕ = (xϕ(m))m∈ω verifying:

xϕ ∈ BX(xn, r)
ω and yϕ → yp.

The link between →→ℓ for spaces and →→ℓ for sequences is given by the following
lemma:

Lemma 2. Let X and Y be two separable Banach spaces. Then X →→ℓ Y if and
only if there exist two sequences x and y such that X = x, Y = y and x→→ℓ y.

Proof: If there exists a L-Lipschitz and C-co-Lipschitz map f from X to Y then,
taking any dense sequence x and defining y as the image of x by f , we clearly
have

∀ k, l ∈ ω, ‖yk − yl‖ ≤ L ‖xk − xl‖ .

Moreover, let n, p ∈ ω and r ∈ Q∗
+ be such that

∥∥yp − yn
∥∥ ≤ r/C. Then,

yp ∈ f(BX(xn, r)). Since there is a preimage x of yp in BX(xn, r), there exists a
subsequence xϕ of x in the open ball such that xϕ → x. Then yϕ → f(x) = yp.

Conversely, let us suppose that X = x, Y = y and x →→ℓ y with constants
L and C. We can define f : X → Y by f(xn) = yn for all n ∈ ω and f is
L-Lipschitz. Moreover f clearly satisfies:

(1) ∀n, p ∈ ω, ∀ r ∈ Q∗
+,

∥∥yp − yn
∥∥ ≤

r

C
, ∃x ∈ BX(xn, r), f(x) = yp.

Let us state and prove some facts:
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Fact 1. For every x ∈ X , p ∈ ω, r ∈ Q∗
+ and C

′ > C such that the inequality∥∥yp − f(x)
∥∥ ≤ r/C′ holds, there exists z ∈ BX(x, r) such that f(z) = yp.

Let xϕ be a subsequence of x converging to x and verifying, for all n ∈ ω,∥∥∥x− xϕ(n)

∥∥∥ ≤ k, k > 0 being chosen such that Lk + r/C′ ≤ r/C′′, with C′′ > C

and C′′/C ∈ Q. Then we have
∥∥∥yp − f(xϕ(n))

∥∥∥ ≤ r/C′′. By (1), there exists

zn ∈ BX (xϕ(n), Cr/C
′′) such that f(zn) = yp. Since xϕ → x, for n large enough,

zn ∈ B(x, r). Taking z = zn for such an n gives the result.

Fact 2. f is surjective.

Let y ∈ Y and let yϕ be a subsequence such that
∥∥∥y − yϕ(n)

∥∥∥ ≤ 2−n−1/C′

(C′ > C), for all n ∈ ω. Applying Fact 1, one can define by induction a sequence

z such that z0 = xϕ(0), ‖zk+1 − zk‖ ≤ 2−k and f(zk) = yϕ(k) for all k ∈ ω. The

limit z of z satisfies f(z) = y.

Fact 3. For every C′ > C, f is C′-co-Lipschitz.

The proof is similar to the proof of Fact 2 and will be omitted.
Finally, f is a Lipschitz-quotient map from X to Y and X →→ℓ Y . �

We now give a characterization of the condition x →→ℓ y which is useful for
our purpose. We denote by G the set of all infinite subsets of ω. As a Gδ set of
a compact set, it is a Polish space. Let us also define

G = Gω×ω×Q∗

+ .

Lemma 3. Let x and y be two sequences of vectors. The condition x →→ℓ y is

equivalent to the existence of P ∈ G such that the conjunction of the following
two conditions holds:

1. There exists L ∈ ω such that

∀ k, l ∈ ω, ‖yk − yl‖ ≤ L ‖xk − xl‖ .

This first condition will be denoted by L(x,y).
2. There exists C ∈ ω that satisfies: for any n, p ∈ ω and r ∈ Q∗

+ such that∥∥yp − yn
∥∥ ≤ r/C, we have ‖xm − xn‖ ≤ r for all m ∈ Pn,p,r and

∀ q ∈ ω, ∃Q ∈ 2<ω; ∀m′,m ∈ Pn,p,r\Q, ‖xm′ − xm‖ +
∥∥ym − yp

∥∥ ≤ 1/q.

This second condition will be denoted by C(x,y, P ).
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Proof: It is an easy reformulation of the condition x→→ℓ y: for a given (n, p, r),
Pn,p,r is the set {ϕ(m); m ∈ ω} where xϕ is the subsequence of the definition of
x→→ℓ y. �

Lemma 4. Let A be the set

{
(X,Y,x,y, P ) ∈ S2 × (Eω)2 × G; X = x, Y = y, L(x,y), C(x,y, P )

}
.

Then A is a Borel set.

Proof: It is enough to see that the sets

B = {(X,x) ∈ E × Eω ; X = x}, C = {(x,y) ∈ (Eω)2; L(x,y)}

and D = {(x,y, P ) ∈ (Eω)2 × G; C(x,y, P )}

are Borel sets.
It is easy to check that C is an Fσ.
Let us define O a countable basis of the topology of E. Recall that the Effros

Borel structure on the closed subsets of E is generated by the basis:

(
{F ⊆ E; O ∩ F 6= ∅}

)

O∈O
.

X = x is equivalent to the two conditions:

(i) xn ∈ O implies O ∩X 6= ∅, for all n ∈ ω and all O ∈ O.

(ii) For all O ∈ O, O∩X 6= ∅ implies that there exists n ∈ ω such that xn ∈ O.

Then, it is easy to see that B is a Borel set.
D is the union over C of the intersection over n, p, r of:

{
∥∥yn − yp

∥∥ > r/C} ∪
[ ⋂

m∈ω

(
{m /∈ Pn,p,r} ∪ {‖xm − xn‖ ≤ r}

)
∩

( ⋂

q∈ω

⋃

Q∈2<ω

⋂

m,m′∈ω

[
{m /∈ Pn,p,r or m′ /∈ Pn,p,r}∪

{‖xm′ − xm‖ +
∥∥ym − yp

∥∥ ≤ 1/q}
])]

.

Therefore, D is a Borel set. �

The set {(X,Y ); X →→ℓ Y } being the projection on the first two coordinates
of the set A, it is analytic. This concludes the proof of our technical proposition.

�
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Before investigating the consequences of Proposition 1, let us add some more
details on the Lipschitz-homeomorphisms between Banach spaces. In Theorem 2.4
of [3], Benôıt Bossard proved that the linear isomorphism relation is analytic and
non Borel. It is therefore natural to ask whether the Lipschitz-homeomorphism
relation is also non Borel.

Notation. Let X and Y be two subspaces of E. When X and Y are Lipschitz-
homeomorphic, we write X ∼ℓ Y .

Proposition 5. The relation ∼ℓ is analytic and non Borel.

Proof: The proof of the analyticity of ∼ℓ is similar to (and technically simpler
than) the proof of the analyticity of →→ℓ. It will thus be omitted.

Let us show that ∼ℓ is non Borel. Let us introduce C = ω<ω and the group
G = 2C. G is isomorphic to the Cantor group. Let p be a real number greater
than 1 and different from 2. It suffices for our purpose to show that the set
L = {X ∈ S; X ∼ℓ Lp(G)} is non Borel.

The dual of G is the group Ĝ of all finite subsets of C where we identify b, a
finite subset of C, and its Walsh function wb. For any tree T on ω, let us define
the set FB(T ) of all finite branches of T . The space LT

p is the closed (for the Lp

norm) linear span of the set {wb; b ∈ FB(T )}. Theorem 4.34 in [7] shows that all

the spaces LT
p are complemented subspaces of Lp(G). According to Theorem 4.35

in [7], Lp(G) does not embed in LT
p if T is well-founded (that we write T ∈WF ).

Conversely, if T has an infinite branch, then obviously Lp(G) is isomorphic to a

complemented subspace of LT
p . Pe lczyński’s decomposition method then implies

that Lp(G) is isomorphic to LT
p if and only if T /∈WF . Now we need the following

fact:

Fact 4. The map θ defined on the set T of all trees on ω by θ(T ) = LT
p is Borel.

Let O be an open set of E. It is enough to show that the set Ω = {T ∈
T ; θ(T )∩O 6= ∅} is Borel. Since θ(T ) = span{wb; b ∈ FB(T )}, we have, defining

Λ = {(λb) ∈ QFB(C);
∑

b λbwb ∈ O}:

Ω =
⋃

(λb)∈Λ

⋂

{b; λb 6=0}

{T ; b ⊆ T }.

It is now clear that Ω is a Borel set, which ends the proof of Fact 4.
According to Corollary 2.9 in [6], L = {X ∈ S; X isomorphic to Lp(G)}. Thus,

L = θ(T \WF ) is non Borel. Indeed, if it was Borel then, since T \WF = θ−1(L)
and θ is Borel, T \WF would be Borel which is absurd. �

It would come as a very big surprise for us if the relation of Lipschitz-quotient
is actually Borel.
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2. Control on the Szlenk index of a Lipschitz quotient

Our main result is a consequence of Proposition 1:

Theorem 6. There exists a universal function ψ1 : ω1 → ω1 such that, if X is a
Banach space with countable Szlenk index and Y a Lipschitz-quotient of X , then
Sz (Y ) ≤ ψ1(Sz (X)).

Proof: Let us recall that, for separable Banach spaces, having a countable Szlenk
index is equivalent to having a separable dual (see Proposition 4.12 of [3] for
example). Thus, we will show that the general case boils down to the separable
case and then use Theorem 3.18 of [2] concerning Asplund spaces.

According to Corollary 3.17 in [2], if f is a Lipschitz-quotient from a Banach
space X onto another Banach space Y , then for any separable subspaces X0 and
Y0 in X and Y respectively, there exist X1 and Y1, separable subspaces of X
and Y respectively such that X0 ⊆ X1, Y0 ⊆ Y1 and the restriction of f to X1

is a Lipschitz quotient mapping from X1 onto Y1. Moreover, the Szlenk index
of a Banach space, when countable, is the supremum of the Szlenk indices of
its separable subspaces (Proposition 3.1 in [4]). Thus, it is enough to deal with
separable Banach spaces in our proof. Since the Szlenk index is invariant under
linear isomorphism and since E is universal for separable Banach spaces, we can
restrict our study to subspaces of E. It is shown in Lemma 3.5 and Theorem 4.13
of [3] that the set of all separable Asplund subspaces of E is a co-analytic set and
that the Szlenk index is a Π1

1-rank on it (see page 140 of [5] for a definition of Π1
1-

rank). For any ordinal ξ, let us call Sξ the set of all subspaces of E whose Szlenk
index is less than or equal to ξ and Pξ the set of all subspaces of E Lipschitz
homeomorphic to some element of Sξ . With this notation, Sω1 is the co-analytic
set of all Asplund subspaces of E. Let ξ be a countable ordinal. The set Sξ is
Borel. According to Proposition 1, the set H = {(X,Y ); X ∈ Sξ and X →→ℓ Y }
is analytic. Since Pξ is the projection of H on the second coordinate, it is also
analytic. Theorem 3.18 in [2] shows that Pξ is included in Sω1 . Kunen-Martin’s
theorem (see Theorem 7 p. 148 in [5] for instance) then proves that Pξ is included
in Sζ for some countable ordinal ζ. We can define ψ1 by ψ1(ξ) = ζ. �

In the special case of Lipschitz-homeomorphisms, we obtain the following re-
sult:

Corollary 7. There exists a universal function ψ2 : ω1 → ω1 such that, if X is
a Banach space with a countable Szlenk index and Y is a Banach space which is
Lipschitz-homeomorphic to X , then Sz (Y ) ≤ ψ2(Sz (X)).

Theorem 5.5 in [1] proves that, if X and Y are uniformly homeomorphic, then
Sz (X) ≤ ω if and only if Sz (Y ) ≤ ω. Thus, if we consider the minimal choices for
ψ1 and ψ2, we have ψ2(ω) = ω. It is not clear to us whether ψ2(ω2) equals ω2.
We do not know either the value of ψ1(ω). More generally, it could be possible
that, in fact, ψ1 and ψ2 are simply the identity.
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As a corollary of Theorem 6, we get the following theorem about the Cantor
index of scattered compact sets:

Corollary 8. There exists a universal function λ : ω1 → ω1 such that, if K is a
scattered compact with a countable derivative empty and if C(L) is a Lipschitz-
quotient of C(K), then the Cantor index i(L) of L is less than or equal to
λ(i(K)).

Proof: This corollary is a straightforward consequence of Theorem 6 and of
Theorem 5.1 in [4]. �

Example 4.9 from [11] shows that there exist two non metrizable scattered
compact sets K and L with a countable derivative empty such that C(K) and
C(L) are Lipschitz-isomorphic but not isomorphic. Thus Corollaries 7 and 8 deal
with a situation which is known not to be linear. In the linear case, the Bessaga-
Pe lczyński result (see Theorem 3 in [13]) gives a necessary and sufficient condition
for two countable compact sets K and L to be such that C(K) is isomorphic
to C(L) (namely, that i(K) < i(L) · ω and conversely). Thus, in the context
of countable compact sets, it would be natural to compare λ and the function
ξ 7→ ξ · ω.
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