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Korn’s First Inequality with variable

coefficients and its generalization

Waldemar Pompe

Abstract. If Ω ⊂ R
n is a bounded domain with Lipschitz boundary ∂Ω and Γ is an open

subset of ∂Ω, we prove that the following inequality�Z
Ω
|A(x)∇u(x)|p dx

�1/p

+

�Z
Γ
|u(x)|p dHn−1(x)

�1/p

≥ c ‖u‖W1,p(Ω)

holds for all u ∈ W 1,p(Ω; R
m) and 1 < p < ∞, where

(A(x)∇u(x))k =
mX

i=1

nX
j=1

aij
k (x)

∂ui

∂xj
(x) (k = 1, 2, . . . , r; r ≥ m)

defines an elliptic differential operator of first order with continuous coefficients on Ω.
As a special case we obtain

(∗)

Z
Ω

��∇u(x)F (x) + (∇u(x)F (x))T
��p dx ≥ c

Z
Ω
|∇u(x)|p dx ,

for all u ∈ W 1,p(Ω; R
n) vanishing on Γ, where F : Ω → Mn×n(R) is a continuous

mapping with det F (x) ≥ µ > 0. Next we show that (∗) is not valid if n ≥ 3, F ∈ L∞(Ω)
and det F (x) = 1, but does hold if p = 2, Γ = ∂Ω and F (x) is symmetric and positive
definite in Ω.

Keywords: Korn’s Inequality, coercive inequalities

Classification: 35F15, 35J55

1. Introduction

In the recent paper [10] Neff proves that if Ω ⊂ R3 is a bounded domain with
Lipschitz boundary and if the mapping F : Ω → M3×3(R) is of class C2(Ω) with
det F (x) ≥ µ > 0, then the following inequality

(1.1)

∫

Ω

∣

∣∇u(x)F (x) + (∇u(x)F (x))T
∣

∣

2
dx ≥ c

∫

Ω
|∇u(x)|2 dx ,

holds for all u ∈ W 1,2(Ω; R3) vanishing on some open, fixed subset Γ of ∂Ω. If
F (x) is constant and equal to the identity matrix, the above inequality is well-
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known and called (First) Korn’s Inequality (see cf. Ciarlet [4, p. 292], or Nečas-
Hlaváček [9, p. 85]). Recently, Korn’s Inequality was also generalized to hold on
Riemann manifolds (see Chen-Jost [3] for details).

Neff [12] uses inequality (1.1) to obtain an existence result in the nonlinear
theory of elasto-viscoplasticity. The coefficients F (x), denoted in Neff’s papers by
Fp(x), represent the plasticity part of a model (see Neff [12] for details). They also
satisfy det F (x) = 1 and appear as a solution of some evolution problem, which
gives few information about the smoothness of F (x). Therefore the natural task
is to minimize the smoothness assumptions on the coefficients F (x) in (1.1). Neff
[11] was later able to relax the assumption in (1.1) from F ∈ C2(Ω) to F ∈ C(Ω),
rot F ∈ L3(Ω). The proof, very similar to that one in [10], is complicated and the
method applies only to the case n = 3.

If F (x) = F does not depend on x, inequality (1.1) is quite easy to obtain: after
suitable affine transformation it reduces to the classical Korn’s Inequality. The
situation changes diametrally, if one deals with variable coefficients: Trying to fol-
low the method from Ciarlet [4], or Nečas-Hlaváček [9] for the case F (x) = Id, one
encounters unpleasant technical difficulties, which seem to be hard to overcome,
even having some extra (superfluous) regularity assumptions on the coefficients.
On the other hand, the standard way to pass from constant coefficients to variable
ones by localization, like in the coercive inequalities (Theorem 2.2 below), does
not work, because of the lack of the term ‖u‖2

L2(Ω)
on the left hand side of (1.1).

In the present paper we propose another, simpler approach to inequality (1.1)
obtaining at the same time generalization to any elliptic operator A of degree 1
(see Definition 2.1 and inequality (2.4)) in any dimension n ≥ 2. We will require

only that the coefficients a
ij
k (x) are continuous. In particular, if we choose

A(x)∇u(x) = ∇u(x)F (x) + (∇u(x)F (x))T ,

we strengthen the result of Neff obtaining inequality (1.1) for F ∈ C(Ω). For this
particular choice of A our proof will turn out to be extremally short and simple.

In the next part of the present paper we concentrate on inequality (1.1) and
show that the continuity of F is essential, in the sense that (1.1) does not hold
if n ≥ 3, F ∈ L∞(Ω) and det F (x) = 1. The case n = 2 is of a quite different
nature (see remarks after Corollary 4.1).

Moreover, we prove that (1.1) does hold (at least when Γ = ∂Ω) if F is not
continuous but possesses some algebraic structure, instead.

We remark that taking in our inequality as A(x) the identity mapping we
obtain Friedrich’s Inequality:

(
∫

Ω
|∇u(x)|p dx

)1/p

+

(
∫

Γ
|u(x)|p dHn−1(x)

)1/p

≥ c ‖u‖W 1,p(Ω) .
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From this point of view, inequality (2.4) obtained below is a common general-
ization of Korn’s and Friedrich’s Inequalities, but of course the main point is to
explain how to overcome the difficulties caused by the variable coefficients keeping
at the same time minimal assumptions on their regularity.

2. Preliminaries and the general inequality

Let Ω be an open, bounded domain in R
n (n ≥ 2) with Lipschitz boundary ∂Ω.

Let Γ be an open subset of ∂Ω. We consider the space W 1,p(Ω) = W 1,p(Ω; R
m)

with 1 < p < ∞ of the (vector-valued) Sobolev functions u : Ω → Rm (m ≥ 1),
equipped with the norm

‖u‖W 1,p(Ω) =

(
∫

Ω
|u(x)|p dx

)1/p

+

(
∫

Ω
|∇u(x)|p dx

)1/p

.

For a subset S of Ω denote by W
1,p
0 (Ω, S) the set of those functions from

W 1,p(Ω), which vanish on S. In the sequel S will be either an open subset of the
boundary ∂Ω or an open subset of Ω itself.

Moreover, let A : Mm×n(C) → Cr be a linear mapping represented by the

matrix (a
ij
k ) (1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ r), equipped with the Euclidean

norm:

|A| =

(

∑

i,j,k

|aij
k |2

)1/2

.

Definition 2.1. We shall say that the mapping A : Mm×n(C) → Cr with r ≥ m

is elliptic if the condition A(η ⊗ ξ) 6= 0 holds for all η ∈ Cm, ξ ∈ Cn with η 6= 0,
ξ 6= 0.

We denote by E = E(m, n, r) the set of all elliptic mappings.
Having defined the linear mapping A, we can introduce the r × m matrix

(cki(ξ)) of linear homogeneous polynomials given by

cki(ξ) =

n
∑

j=1

a
ij
k ξj (ξ ∈ C

n).

Obviously, A is elliptic if and only if rank (cki(ξ)) = m for every ξ ∈ Cn with
ξ 6= 0.

The importance of the above definition lies in the following coercive inequality,
due to Nečas [8]. It was later generalized by Besov [1] to anisotropic Sobolev
spaces. More recently, the paper of Ka lamajska [5] contains a version with Muck-
enhoupt weights.
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Theorem 2.2. Let A(x) (x ∈ Ω) be a family of elliptic mappings, whose coeffi-

cients a
ij
k (x) are continuous on Ω. Then the family (A(x)∇u(x))k (1 ≤ k ≤ r) of

differential operators, given by

(2.1) (A(x)∇u(x))k =

m
∑

i=1

n
∑

j=1

a
ij
k (x)

∂ui

∂xj
(x)

is coercive, i.e. there is a constant c > 0 such that the following inequality

(2.2)

(
∫

Ω
|A(x)∇u(x)|p dx

)1/p

+ ‖u‖Lp(Ω) ≥ c ‖u‖W 1,p(Ω)

holds for all u ∈ W 1,p(Ω). �

Our goal is to modify inequality (2.2) by replacing the term ‖u‖Lp(Ω) with

(
∫

Γ
|u(x)|p dHn−1(x)

)1/p

.

We achieve this using Theorem 2.2 and the following theorem, which reflects the
typical method of obtaining inequalities similar to (2.4).

Theorem 2.3. If the family (A(x)∇u(x))k of differential operators given by (2.1)

with variable coefficients a
ij
k (x) is coercive and if the following implication holds

(2.3) A(x)∇u(x) = 0, u ∈ W
1,p
0 (Ω, Γ) ⇒ u = 0,

then there is a constant c > 0 such that the inequality

(2.4)

(
∫

Ω
|A(x)∇u(x)|p dx

)1/p

+

(
∫

Γ
|u(x)|p dHn−1(x)

)1/p

≥ c ‖u‖W 1,p(Ω)

holds for all u ∈ W 1,p(Ω).

The proof of Theorem 2.3 uses standard compactness argument, used already
by many authors, for example Nečas-Hlaváček [9, p. 85], or Neff [10, Theorem 3].
Since it is neither long nor difficult, we represent it here for the convenience of
the reader.

Proof of Theorem 2.3: Suppose (2.4) does not hold.
Then there exists a sequence uk ∈ W 1,p(Ω) with ‖uk‖W 1,p(Ω) = 1 such that

(2.5)

(
∫

Ω
|A(x)∇uk(x)|p dx

)1/p

+

(
∫

Γ
|uk(x)|p dHn−1(x)

)1/p

≤
1

k
.
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Therefore there is a subsequence of (uk) (still denoted by (uk)) and a function
u ∈ W 1,p(Ω) such that uk → u strongly in Lp(Ω) and uk ⇀ u weakly in W 1,p(Ω).
From (2.2) we obtain

c‖uk − ul‖W 1,p(Ω) ≤ ‖uk − ul‖Lp(Ω) +

(
∫

Ω
|A(x)∇uk(x)|p dx

)1/p

+

(
∫

Ω
|A(x)∇ul(x)|p dx

)1/p

,

which by (2.5) implies that (uk) is a Cauchy sequence in W 1,p(Ω), so uk → u

strongly in W 1,p(Ω). This, together with (2.5) implies that u vanishes on Γ,

i.e. u ∈ W
1,p
0 (Ω, Γ) and A(x)∇u(x) = 0 a.e. on Ω. Finally, using (2.3) we obtain

u = 0, which provides a contradiction, since ‖uk‖W 1,p(Ω) = 1 and uk → 0 strongly

in W 1,p(Ω). �

Assuming that A(x) is continuous, Theorem 2.2 implies that the differential
operators (2.1) are coercive. So in order to prove inequality (2.4) it remains to
check if (2.3) holds. In the applications condition (2.3) seems to be difficult to
verify, even if the coefficients are smooth enough. It turns out, however, that deal-
ing with continuous coefficients A(x) this unpleasant implication can be removed
from the assumptions. To prove this assertion is our goal in the next section.
Namely, we prove the following

Theorem 2.4. Let A(x) (x ∈ Ω) be a family of elliptic mappings, whose coeffi-

cients a
ij
k (x) are continuous on Ω. Then the implication (2.3) holds. In particular,

there is a constant c > 0 such that the inequality (2.4) holds for all u ∈ W 1,p(Ω).

3. Proof of Theorem 2.4

We start with the following

Lemma 3.1. Let B be a ball in R
n. Denote by Bλ an open cone whose vertex

coincides with the center of the ball B and such that the surface measure Hn−1

of (∂B) ∩ Bλ is equal to λHn−1(∂B). Moreover, let A be elliptic (with constant
coefficients). Then there exists a constant c > 0 such that the inequality

(3.1)

(
∫

B
|A(∇u(x))|p dx

)1/p

≥ c ‖u‖W 1,p(B)

holds for all u ∈ W
1,p
0 (B, Bλ).



62 W. Pompe

Remark. Readers interested in the special case m = n and

A(x)∇u(x) = ∇u(x)F (x) + (∇u(x)F (x))T ,

where det F (x) ≥ µ > 0, may omit the proof of Lemma 3.1 and replace it by the
following short reasoning: Inequality (3.1), which in this case reads

(
∫

B
|∇u(x)F + (∇u(x)F )T |p dx

)1/p

≥ c ‖u‖W 1,p(B) ,

(F is constant here) is after the affine coordinate transformation x 7→ F−1x

equivalent to

(
∫

E
|∇v(y) + (∇v(y))T |p dy

)1/p

≥ c′ ‖v‖W 1,p(E) ,

where c′ is a positive constant and v(y) = u(Fy) vanishes on some fixed part
of the boundary of E = F−1(B). The last displayed inequality is just Korn’s
Inequality, so it is valid.

Proof of Lemma 3.1: Since the proof uses standard and well-known methods,
we only outline it briefly indicating the main steps.

Fix a function ω ∈ C∞
0 (B′), where B′ is a fixed ball, whose closure lies in Bλ.

Assume that u is a smooth (i.e. C∞(B)) function vanishing on B′.
Using the Hilbert Nullstellensatz and the method from [8] or [1] we find a pos-

itive integer N and homogeneous polynomials piα
k (ξ) (with complex coefficients)

of degree N − 1 such that

(3.2) Dαui =

r
∑

k=1

piα
k (D)(Aku)

holds for all 1 ≤ i ≤ m and all multiindices α with |α| = N , where

(Aku)(x) =

m
∑

i=1

n
∑

j=1

a
ij
k

∂ui

∂xj
(x) (1 ≤ k ≤ r) .

Using the integral representation of Sobolev (see Maz’ya [6]) and observing
that ω and u have disjoint supports, we find that

(3.3) ui(x) =
∑

|α|=N

∫

B
Kα(x, y) Dαui(y) dy (1 ≤ i ≤ m) ,
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where

Kα(x, y) =
(−1)N ·N

α!
·

θα

rn−N

∫ ∞

r
ω(x + tθ)tn−1 dt.

In the last formula we have substituted r = |y − x| and θ =
y − x

|y − x|
. Then for

every fixed x ∈ B, the function Kα(x, · ) is smooth on B \ {x} and vanishes near
the boundary ∂B. Write

θα

rn−N

∫ ∞

r
ω(x + tθ)tn−1 dt =

θα

rn−N
c(x, θ) −

θα

rn−N
d(x, θ, r),

where

c(x, θ) =

∫ ∞

0
ω(x + tθ)tn−1 dt and d(x, θ, r) =

∫ r

0
ω(x + tθ)tn−1 dt .

The function c(x, θ) is smooth on B × (Rn \ {0}). Then for any y 6= x and any
multiindex β with |β| = N − 1 we obtain that

Dβ
y

(

θα

rn−N
c(x, θ)

)

is the sum of the terms of the form

(3.4)
p(θ)

rn−1

∫ ∞

0
w(x + tθ)tk dt,

where k ≥ n−1, w ∈ C∞
0 (B′) and p is a polynomial. Therefore

∂

∂xj
Dβ

y

(

θα

rn−N
c(x, θ)

)

is the sum of the terms of the form

(3.5)
p1(θ)

rn

∫ ∞

0
w1(x + tθ)tk dt +

p2(θ)

rn−1

∫ ∞

0
w2(x + tθ)tl dt,

where k, l ≥ n−1, w1, w2 ∈ C∞
0 (B′) and p1, p2 are polynomials.

Similarly, the function d(x, θ, r) is smooth on B × (Rn \ {0}) × (0,∞). Differ-
entiating with respect to the multiindex β with |β| = N − 1 we obtain that

Dβ
y

(

θα

rn−N
d(x, θ, r)

)
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is the sum of the terms of the following form

(3.6)
p1(θ)

rn−1

∫ r

0
w1(x + tθ)tk dt + w2(y)rlp2(θ) ,

where k ≥ n−1, l ≥ 1, w1, w2 ∈ C∞
0 (B′) and p1, p2 are polynomials.

From the above computations and expressions (3.4) and (3.6) we see that for

a fixed x ∈ B and for a multiindex β with |β| ≤ N − 1, the function D
β
y Kα(x, y)

is integrable with respect to y on B. Thus using (3.2), (3.3) and integrating by
parts we obtain

ui(x) =

r
∑

k=1

∑

|α|=N

∫

B
(−1)N−1piα

k (Dy)(Kα(x, y))Aku(y) dy ,

where the kernels piα
k (Dy)Kα(x, y) are of the form (3.4) plus the terms of the

form (3.6).
Differentiating the terms (3.6) with respect to xj and using that

1

r

∫ r

0
w(x + tθ)tk dt ≤ C ,

for all w ∈ C∞
0 (B′) appearing in (3.6) and all |θ| = 1, r > 0, k ≥ 1, we see that

Dβ
y

(

θα

rn−N
d(x, θ, r)

)

≤
C

rn−2
and

∂

∂xj
Dβ

y

(

θα

rn−N
d(x, θ, r)

)

≤
C

rn−1
.

Therefore for any f ∈ L1(B),

∂

∂xj

∫

B
Dβ

y

(

θα

rn−N
d(x, θ, r)

)

f(y) dy =

∫

B

∂

∂xj
Dβ

y

(

θα

rn−N
d(x, θ, r)

)

f(y) dy.

Now using Theorem 1.29 from [7], the fact that the terms (3.5) are bounded on
B×Sn−1 (Sn−1 is the unit sphere in Rn) and the result of Calderón and Zygmund
(see [2, Theorem 2] or [7, Theorem 2.1]), we obtain

(3.7)

∥

∥

∥

∥

∂ui

∂xj

∥

∥

∥

∥

p

Lp(B)
≤ c

r
∑

k=1

‖Aku‖
p
Lp(B)

(1 ≤ i ≤ m, 1 ≤ j ≤ n),

for some constant c > 0 independent of u (vanishing on B′).

Since every u ∈ W
1,p
0 (B, Bλ) can be approximated in the norm ‖ · ‖W 1,p(B)

by C∞(B) functions vanishing on B′, we get from (3.7) and from the Poincaré

inequality, inequality (3.1) for all u ∈ W
1,p
0 (B, Bλ). �

We shall also need the following lemma, which states that there is a common
positive constant c in (3.1) for all elliptic mappings A lying in some compact
subset of E .
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Lemma 3.2. Let B and Bλ be like in Lemma 3.1. Let moreover K be a compact
subset of E . Then there exists a constant c > 0 such that the inequality (3.1)

holds for all mappings A ∈ K and all u ∈ W
1,p
0 (B, Bλ).

Proof: For a fixed mapping A, denote by cA the best constant in (3.1). It is
enough to show that c = inf{cA : A ∈ K} > 0. Suppose, to the contrary, that

c = 0. Then there exist a sequence An ∈ K and a sequence un ∈ W
1,p
0 (B, Bλ)

such that ‖un‖W 1,p(B) = 1 and

‖An(∇un)‖Lp(B) → 0.

Since K is compact, we can choose a subsequence from (An), still denoted by (An)
and A∞ ∈ K, such that |An − A∞| → 0. Then

‖A∞(∇un)‖Lp(B) ≤ ‖(A∞ − An)(∇un)‖Lp(B) + ‖An(∇un)‖Lp(B)

≤ |A∞ − An|·‖un‖W 1,p(B) + ‖An(∇un)‖Lp(B) ,

which implies that ‖A∞(∇un)‖Lp(B) → 0. On the other hand, since A∞ is

elliptic, we apply inequality (3.1) to obtain

‖A∞(∇un)‖Lp(B) ≥ c∞ ‖un‖W 1,p(B) = c∞ .

Letting n → ∞ we get c∞ ≤ 0, a contradiction. �

Using Lemma 3.2 and scaling we arrive at the following

Corollary 3.3. Let B, Bλ and K be like in Lemma 3.2. Then there is a constant
c > 0 such that the inequality

(3.8) ‖A(∇u)‖Lp(B) ≥ c ‖∇u‖Lp(B)

holds for all A ∈ K and all u ∈ W
1,p
0 (B, Bλ) and the constant c does not depend

on the radius of the ball B. �

Now we are ready to prove Theorem 2.4:

Assume that A(x)(∇u(x)) = 0 a.e. in Ω and u ∈ W
1,p
0 (Ω, Γ).

Denote by B(x, ρ) the ball with center x and radius ρ and by Bλ(x) the corre-
sponding cone, like in Lemma 3.1.

Fix x0 ∈ Γ. Choose ρ > 0, such that B(x0, ρ) ∩ (∂Ω) ⊂ Γ. Extend u by 0

on B(x0, ρ) \ Ω. Then for some λ > 0 we have u ∈ W
1,p
0 (B(x0, ρ), Bλ(x0)). By
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inequality (3.8) we obtain

c

∫

B(x0,ρ)
|∇u(x)|p dx ≤

∫

B(x0,ρ)
|A(x0)(∇u(x))|p dx

=

∫

B(x0,ρ)
|(A(x0) − A(x))(∇u(x))|p dx

≤

∫

B(x0,ρ)
|A(x0) − A(x)|p · |∇u(x)|p dx

≤ εp
∫

B(x0,ρ)
|∇u(x)|p dx.

Since the above constant c does not depend on ρ, and since A(x) is continuous
on Ω, we use the above inequality to find a number ρ > 0 such that

∫

B(x0,ρ)
|∇u(x)|p dx = 0.

This implies that u(x) = 0 for x ∈ B(x0, ρ).
Now fix x ∈ Ω. Take any curve γ lying within Ω and connecting x0 with x. We

repeat the above argument with x1 = γ ∩ ∂B(x0, ρ) in place of x0. The continuity

of the coefficients a
ij
k (x) implies that K = {A(x) | x ∈ γ} is a compact subset

of E . It follows therefore (by Corollary 3.3 and by repeating the above reasoning)
that we can cover γ with a finite sequence of the balls B(xk, ρ) with xk ∈ γ and

equal radii ρ (λ can be chosen the same is each step and the coefficients a
ij
k (x) are

uniformly continuous on Ω), proving in each step that u = 0 on B(xk, ρ). This
shows that u = 0 on Ω. �

4. Special case: First Korn’s Inequality with variable coefficients

From now on assume that m = n. Directly from Theorem 2.4 we obtain the
following

Corollary 4.1. Let F : Ω → Mn×n(R) (n ≥ 2) be a continuous mapping with
det F (x) ≥ µ > 0. Then there is a constant c > 0 such that the following
inequality

(4.1)

∫

Ω

∣

∣∇u(x)F (x) + (∇u(x)F (x))T
∣

∣

p
dx ≥ c

∫

Ω
|∇u(x)|p dx

holds for all u ∈ W
1,p
0 (Ω, Γ).

Proof: It is enough to check that an n×n (real) matrix F with det F 6= 0 verifies

(η ⊗ ξ)F + ((η ⊗ ξ)F )T 6= 0
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whenever η ∈ Cn, ξ ∈ Cn and η 6= 0, ξ 6= 0.

Indeed, if the matrix B = (η ⊗ ξ)F were nonzero and antisymmetric, then we
would get rankB ≥ 2, which would imply that rank (η ⊗ ξ) ≥ 2, a contradiction.
Therefore B = 0, which gives η ⊗ ξ = 0, whence η = 0 or ξ = 0. �

Remarks. (a) If n = 2, p = 2 and Γ = ∂Ω, then inequality (4.1) holds with
F ∈ L∞(Ω) instead of being continuous on Ω. This was shown by Neff [10], who
assumed additionally that det F (x) is constant and positive. His proof can be
easily modified to the much more general case det F (x) ≥ µ > 0. Indeed, in the
inequality (see Neff [10, Theorem 4.14])

|∇u(x)F (x) + (∇u(x)F (x))T |2 ≥ 2 |∇u(x)F (x)|2 − 4 det(∇u(x)) det F (x)

we first divide both sides by det F (x) and then integrate.

(b) The class of the mappings F (x) for which (4.1) holds is larger than the
class of continuous mappings F with det F ≥ µ > 0, also when n ≥ 3. Indeed, if
inequality (4.1) holds for a mapping F0 ∈ L∞(Ω), then it also holds (perhaps with
another constant c > 0) for all mappings F lying in some L∞(Ω)-neighborhood
of F0.

(c) Inequality (4.1) is also valid if we assume that F (x) = ∇G(x), where
G : Rn → Rn is a bi-Lipschitz mapping — just make the coordinate transfor-
mation like in the remark after Lemma 3.1, or see Neff [10, Theorem 4.13] for
details.

The above remarks suggest the following question: Does (4.1) hold if n ≥ 3,
F ∈ L∞(Ω) and det F (x) ≥ µ > 0 ?

The answer turns out to be negative, even if Γ = ∂Ω and det F (x) = 1 in Ω.
So for n ≥ 3 the class of the mappings F (x) for which (4.1) holds lies somewhere
strictly between C(Ω) and L∞(Ω). Theorem 4.3 below shows that this class
contains also the symmetric, positive definite a.e. mappings F (x), at least when
p = 2 and Γ = ∂Ω.

Theorem 4.2. Assume that n ≥ 3. Then there exist a nonzero function u ∈

W
1,∞
0 (Ω; Rn) and a mapping F ∈ L∞(Ω; Mn×n(R)) with det F (x) = 1 in Ω such
that

∇u(x)F (x) + (∇u(x)F (x))T = 0 a.e. on Ω.

Proof: Denote by e1, e2, . . . , en the standard orthonormal basis of Rn and let
R : R

n → R
n be any fixed rotation satisfying R(ei) 6= ±ej for all i, j = 1, 2, . . . , n.

Let {Qi} (where i ∈ N) be a Vitali covering of Ω, such that the cubes Qi

have pairwise disjoint entries and their edges are parallel to the coordinate axes
(i.e. to the vectors e1, e2, . . . , en). Let moreover {Pj} (where j ∈ N) be another
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Vitali covering of Ω with the cubes Pj , whose edges are parallel to the vectors
R(e1), R(e2), . . . , R(en). Define

u1(x) = dist(x, ∂Qi) if x ∈ Qi ,

u2(x) = dist(x, ∂Pj) if x ∈ Pj ,

u3(x) = . . . = un(x) = 0 .

Then the function u = (u1, u2, . . . , un) is nonzero, Lipschitz continuous and u = 0
on ∂Ω. Moreover |∇u1(x)| = |∇u2(x)| = 1 a.e. in Ω. The vectors ∇u1 and ∇u2

attain only a finite number of values for x ∈ Ω and v, w are linearly independent
for all v ∈ {∇u1(x) | x ∈ Ω} and w ∈ {∇u2(x) | x ∈ Ω}. Therefore there
exist functions g3, g4, . . . , gn ∈ L∞(Ω; Rn) such that the determinant of the n×n

matrix

G(x) =













∇u2(x)
−∇u1(x)

g3(x)
...

gn(x)













is equal to 1 for every x ∈ Ω. Take F (x) = (G(x))−1. Then

(∇u(x)F (x))ij =











1 if i = 2, j = 1

−1 if i = 1, j = 2

0 otherwise.

Thus ∇u(x)F (x) + (∇u(x)F (x))T = 0 a.e. in Ω. �

Theorem 4.3. Let n ≥ 2 and F ∈ L∞(Ω; Mn×n(R)) be such that F (x) is
symmetric and positive definite a.e. in Ω and det F (x) ≥ µ > 0. Then there is a
constant c > 0 such that the inequality

(4.2)

∫

Ω

∣

∣∇u(x)F (x) + (∇u(x)F (x))T
∣

∣

2
dx ≥ c

∫

Ω
|∇u(x)|2 dx

holds for all u ∈ W
1,2
0 (Ω).

Proof: From the assumptions it follows that the eigenvalues λ1(x), λ2(x), . . . ,
λn(x) of F (x) lie in the interval [a, b], where 0 < a < b. Writing F−1(x) in
the orthonormal basis composed of its eigenvectors and using that λi(x) ≥ a, we
obtain for any real n × n matrix C,

〈F−1(x)C, CF−1(x)〉 ≤
1

a2 |C|2
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for any x ∈ Ω. Similarly we get

〈CF (x), F−1(x)C〉 ≥
a

b
|C|2 .

Setting F = F (x) and using the above inequalities we get

1

a2
|CF + FCT |2 ≥ 〈F−1(CF + FCT ), (CF + FCT )F−1〉

= 〈F−1CF + CT , C + FCT F−1〉

= 〈CF, F−1C〉 + 2〈C, CT 〉 + 〈CT F−1, FCT 〉

≥
2a

b
|C|2 + 2〈C, CT 〉 .

Substituting C = ∇u(x), where u ∈ W
1,2
0 (Ω) and integrating yields

∫

Ω

∣

∣∇u(x)F (x) + (∇u(x)F (x))T
∣

∣

2
dx ≥

2a3

b

∫

Ω
|∇u(x)|2 dx,

which proves (4.2). �
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