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Abstract. We prove a Lyapunov type theorem for modular measures on lattice ordered
effect algebras.
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1. Introduction

The celebrated Lyapunov’s theorem says that the range of a non-atomic finite
dimensional measure µ on a σ-algebra is convex. In general, this is not true if µ is
infinite dimensional. On the other hand, Knowles showed that when µ is properly
non-injective with values in a locally convex linear space, then its range is still
convex. In [11], De Lucia and Wright, after introducing a notion of a convex set,
generalize Knowles’ result to the case when µ is group-valued.

In noncommutative measure theory it is known (see [5, Example 3.7]) that
there are examples of nonatomic R

n-valued measures on effect algebras which
do not have a convex range. Nevertheless, in [5] it is proved (see 3.12) that a
Lyapunov type theorem holds for R

n-valued modular measures on lattice ordered
effect algebras. Moreover, in [2], the result of [11] has been extended to modular
functions on complemented lattices. Then a natural question arises:

Is it possible to extend the result of [11] to modular measures on effect algebras?

In this paper we give an affirmative answer to this question, introducing the
notion of a pseudo non-injective measure (see Definition 4.1) in an effect algebra
which is equivalent to the notion of properly non-injective measures in the Boolean
case.

We recall that effect algebras have been introduced by D.J. Foulis and
M.K. Bennett in 1994 (see [7]) for modelling unsharp measurement in a quan-
tum mechanical system. They are a generalization of many structures which arise
in quantum physics (see [6]) and in Mathematical Economics (see [14] and [9]), in
particular of orthomodular lattices in noncommutative measure theory (e.g. see
[12]) and MV-algebras in fuzzy measure theory.
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2. Preliminaries

We will fix some notations. First we will give the definition of a D-poset.
Examples of D-posets can be found in [10] and [13].

Definition 2.1. Let (L,≤) be a partial ordered set (a poset for short). A partial
binary operation ⊖ on L such that b ⊖ a is defined iff a ≤ b is called a difference
on (L,≤) if the following conditions are satisfied for all a, b, c ∈ L:

(1) if a ≤ b then b ⊖ a ≤ b and b ⊖ (b ⊖ a) = a,
(2) if a ≤ b ≤ c then c ⊖ b ≤ c ⊖ a and (c ⊖ a)⊖ (c ⊖ b) = b ⊖ a.

Definition 2.2. Let (L,≤,⊖) be a poset with difference and let 0 and 1 be the
least and greatest elements in L, respectively. The structure (L,≤,⊖) is called a
difference poset (D-poset for short), or a difference lattice (D-lattice for short) if
L is a lattice.

An alternative structure to a D-poset is that of an effect algebra introduced by
Foulis and Bennett in [7]. These two structures, D-posets and effect algebras, are
equivalent as shown in [13, Theorem 1.3.4].

We recall that a D-lattice is complete (σ-complete) if every set (countable set)
has a supremum and an infimum.

If a ∈ L, we set a⊥ = 1⊖ a.
We say that a and b are orthogonal if a ≤ b⊥ and we write a ⊥ b. If a ⊥ b,

we set a⊕ b = (a⊥ ⊖ b)⊥. If a1, . . . , an ∈ L we define inductively a1 ⊕ · · · ⊕ an =
(a1⊕· · ·⊕an−1)⊕an if the right-hand side exists. The sum is independent of any
permutation of the elements. We say that {a1, . . . , an} is orthogonal if a1⊕· · ·⊕an

exists. We say that a family {aα}α∈A is orthogonal if every finite subfamily is
orthogonal. If {aα}α∈A is orthogonal, we define

⊕
α∈A aα := sup{

⊕
α∈F aα :

F ⊂ A finite} if the left-hand side exists.
If (G,+) is an abelian group, a function µ : L → G is called modular if, for

every a, b ∈ L, µ(a∨b)+µ(a∧b) = µ(a)+µ(b); µ is called a measure if, for every
a, b ∈ L, with a ⊥ b, µ(a ⊕ b) = µ(a) + µ(b). It is easy to see that µ is a measure
iff for every a, b ∈ L with b ≤ a, µ(a ⊖ b) = µ(a)− µ(b).
A measure µ is said to be σ-additive if, for every orthogonal sequence in L

such that a =
⊕

n∈N
an exists, µ(a) =

∑
n∈N

µ(an). A measure µ is said to
be completely additive if for every orthogonal family {aα}α∈A in L such that
a =

⊕
α∈A aα exists, the family {µ(aα)}α∈A is summable in G and µ(a) =∑

α∈A µ(aα).
Recall that by 3.1 of [17] every modular function µ : L → G on any lattice gen-

erates a lattice uniformity, U(µ), i.e. a uniformity which makes ∧ and ∨ uniformly
continuous.
We say that U(µ) is exhaustive if every monotone sequence {an} is a Cauchy

sequence. We say that U(µ) is σ-order (order) continuous if every sequence (net)
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{an} which is order converging to a is converging to a. We say that a modular
measure is exhaustive, σ-order (order) continuous iff U(µ) is so. By 2.2 of [4],
a measure is σ-additive iff it is σ-order continuous.

Throughout this article, (G,+) is an abelian topological Hausdorff group which
has not Z2 as a subgroup, L is a σ-complete D-lattice and µ : L → G is a
σ-additive modular measure.

3. Semi-convexity

We shall call x ∈ G infinitely divisible if for every n ∈ N there exists y ∈ G
such that 2ny = x. Since Z2 is not a subgroup of G it is clear that when 2

ny = x,
y is uniquely determined. In what follows we shall denote such a y by 1

2n x. If
d = s

2n is a dyadic rational number of the real interval [0, 1] and x ∈ G is infinitely

divisible, we define dx to be sy, where y = 1
2n x. By [11] the definition of dx does

not depend on the representation of d. Let D be the set of dyadic rationals in
[0, 1]. For every infinite divisible x ∈ G, let gx : D → G be defined by gx(d) = dx
for d ∈ D. If t ∈ [0, 1] and limd→t gx(d) exists in G, we define tx = limd→t gx(d).
If M ⊂ G, M is said to be convex if for every x, y ∈ M and t ∈ [0, 1], tx, (1− t)y
exist and tx+ (1− t)y ∈ M .

Definition 3.1. A measure µ is said to be semiconvex if, for each b ∈ L, there
exists c ∈ L such that c ≤ b and µ(b) = 2µ(c).

Lemma 3.2. If µ is semiconvex, then every element of µ(L) is infinitely divisible.

Proof: For every a ∈ L and n ∈ N, there exists b ≤ a such that µ(a) = 2nµ(b).
�

Lemma 3.3. Suppose that µ is semiconvex. Then for every a ∈ L and
d ∈ D, there exists ad ≤ a such that µ(ad) = dµ(a). Moreover, if d1 < d2, then
ad1 ≤ ad2 .

Proof: Let a ∈ L.
(i) Claim 1: For every n ∈ N there exists an orthogonal family Πn =

{an,1, . . . , an,2n} in L such that
⊕2n

j=1 an,j = a and, for every i ∈ {1, . . . , 2n}
we have:

(a) 2nµ(an,i) = µ(a),
(b) an,2i−1 ⊕ an,2i = an−1,i.

This is trivial for n = 1: Since µ is semiconvex, we can choose a1,1 ≤ a
such that 2µ(a1,1) = µ(a). Let a1,2 := a ⊖ a1,1. Then a1,1 ⊕ a1,2 = a and
2µ(a1,2) = 2µ(a)− 2µ(a1,1) = µ(a).
By induction, suppose that Claim 1 holds for n ∈ N. Since µ is semiconvex, for

every i ∈ {1, . . . , 2n} we can find an+1,2i−1, an+1,2i in L such that an+1,2i−1 ⊕
an+1,2i = an,i and 2µ(an+1,2i−1) = 2µ(an+1,2i) = µ(an,i).
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Set Πn+1 = {an+1,1, an+1,2, . . . , an+1,2n+1}. Then Πn+1 is orthogonal since

a =
⊕2n

i=1 an,i =
⊕2n

i=1(an+1,2i−1 ⊕ an+1,2i) =
⊕2n+1

i=1 an+1,i and for every i ∈

{1, . . . 2n+1} we have 2n+1µ(an+1,i) = 2
nµ(an,i) = µ(a).

(ii) Now we obtain a family {bn,s : n ∈ N} with s ∈ {0, 1, . . .2n} such that:

(1) bn,0 = 0 and bn,2n = a,
(2) bn,i−1 ≤ bn,i,
(3) 2nµ(bn,i) = iµ(a),
(4) if r

2m =
s
2n , then bm,r = bn,s.

It is sufficient to set bn,0 = 0 and, for i ∈ {1, . . . 2n}, bn,i =
⊕

j≤i an,j.

(iii) If d = r
2m , set ad = bm,r. Then by (ii), ad ≤ a and 2mµ(ad) = rµ(a), from

which µ(ad) = dµ(a). Moreover, by (ii), if d1 < d2 then ad1 ≤ ad2 . �

Lemma 3.4. Suppose that µ is semiconvex. Then for every a ∈ L and for every
0-neighborhood W in G there exists m ∈ N such that for every p ∈ D with
p ≤ 1

2m , pµ(a) ∈ W .

Proof: Let a ∈ L and W be a 0-neighborhood in G. Since µ is semiconvex, we
can construct a decreasing sequence {an} in L such that an ≤ a and 2nµ(an) =
µ(a) for every n ∈ N. Let b1 := a ⊖ a1 and for every n ≥ 2, let bn := an−1 ⊖ an.
By 3.3 of [1], {bn} is orthogonal and for every n ∈ N, 2nµ(bn) = 2

nµ(an−1) −
2nµ(an) = 2µ(a) − µ(a) = µ(a). Suppose that for every m ∈ N there exists cm

such that µ(bm∧cm) /∈ W . Since {bn} is orthogonal, {cm∧bm} is orthogonal, too.
Moreover, by 8.1.2 of [16], µ is exhaustive. By 2.4 of [3], µ is exhaustive if and
only if µ(an)→ 0 for every orthogonal sequence {an} in L. Therefore, we obtain
that limm µ(bm ∧ cm) = 0, a contradiction. Hence we can choose m ∈ N such

that µ(bm ∧ b) ∈ W for every b ∈ L. Set p = r
2n , with p ≤ 1

2m . By 3.3, we can
find c ≤ bm such that µ(c) = r

2n−m
µ(bm). Then pµ(a) = r

2n µ(a) = r
2n−m

µ(bm) =

µ(c) = µ(c ∧ bm) ∈ W . �

Lemma 3.5. Suppose that µ is semiconvex. Then for every a ∈ L and every t ∈
[0, 1] there exists at ≤ a such that tµ(a) is defined and tµ(a) = µ(at). Moreover,
the map t 7→ at is increasing.

Proof: We repeat the same argument as in [2]. It follows from 3.3 that there
exists a family of elements of L {ad}d∈D such that µ(ad) = dµ(a) for each d ∈ D
and, also, for d1 < d2, ad1 ≤ ad2 ≤ a. Let t ∈ [0, 1] \ D. We define αt, βt

by αt =
∨
{ad : d ∈ D and d < t} and βt =

∧
{ad : d ∈ D and d > t}. By

using the σ-order continuity of µ we find that µ(αt) = limdրt µ(ad) µ(βt) =
limdցt µ(ad). Let V be any symmetric 0-neighbourhood in G. It follows from
the construction and from 3.4 that we can find n ∈ N and r ∈ {0, 1, . . . , 2n}
such that d = r

2n < t < r+1
2n = d′, µ(βt) − µ(αd′ ) ∈ V , µ(αt) − µ(ad) ∈ V , and

1
2n µ(a) ∈ V . Then (µ(βt)− µ(αt)) ∈ µ(ad′)− µ(ad) + 2V =

1
2n µ(a) + 2V ⊂ 3V .

Since the symmetric neighbourhoods form a base for 0-neighbourhoods, and since
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the topology is Hausdorff, µ(βt) = µ(αt). Hence we can define at, for t ∈ [0, 1]\D
to be αt. Then it is clear that µ(at) = tµ(a) for each t ∈ [0, 1]. �

Lemma 3.6. Let t ∈ [0, 1] and νt : L → G be defined as νt(a) = tµ(a). Then νt

is a modular measure.

Proof: Let a, b ∈ L.
First suppose t = s

2n ∈ D. By 3.3 we can find at, bt ∈ L with at ≤ a, bt ≤ b,
2nµ(at) = sµ(a) and 2nµ(bt) = sµ(b). Then we have 2nµ(at ∨ bt) + 2

nµ(at ∧
bt) = 2

nµ(at) + 2
nµ(bt) = sµ(a) + sµ(b) = sµ(a ∧ b) + sµ(a ∨ b), from which

νt(a ∨ b) + νt(a ∧ b) = νt(a) + νt(b).
Now let t /∈ D and choose an increasing sequence {dn} in D which converges

to t. Then tµ(a∨b)+ tµ(a∧b) = limn dnµ(a∨b)+limn dnµ(a∧b) = tµ(a)+ tµ(b),
from which νt(a ∨ b) + νt(a ∧ b) = νt(a) + νt(b).
In a similar way we prove that νt is a measure. �

4. Lyapunov measures

In this section we set

I(µ) = {a ∈ L : µ([0, a]) = {0}}
and

N(µ) = {(a, b) ∈ L × L : µ is constant on [a ∧ b, a ∨ b]}.

By 3.1 of [17] and 4.3 of [4] N(µ) is a congruence relation and the quotient L̂ =

L/N(µ) is a D-lattice. Moreover, the function µ̂ : L̂ → G defined as µ̂(â) = µ(a)

for a ∈ â ∈ L̂ is trivially a modular measure.
We say that µ is closed if L̂ is complete with respect to the uniformity U(µ̂)

generated by µ̂.

Definition 4.1. We say that µ is pseudo non-injective if for every a ∈ L \ I(µ)
there exist b, c ∈ L \ I(µ), b ⊥ c, b ⊕ c ≤ a and µ(b) = µ(c).

Lemma 4.2. (1) µ is exhaustive.

(2) µ is closed iff µ is order continuous and (L̂,≤) is complete.
(3) If G is metrizable, then µ is closed.
(4) If µ is order continuous, then µ is completely additive.

Proof: (1) By 8.1.2 of [16], every σ-order continuous lattice uniformity on a
σ-complete lattice is exhaustive.
(2) By (1) and 1.2.6 of [16], the Hausdorff uniformity U(µ̂) generated by µ̂

on L̂ is exhaustive. Then, by 6.3 of [16], (L̂,U(µ̂)) is complete iff U(µ̂) is order

continuous and (L̂,≤) is complete. Therefore, if µ is closed, we have that (L̂,≤)
is complete and µ̂ is order continuous, too.
Conversely, if (L̂,≤) is complete and µ is order continuous, then µ̂ is order

continuous by 7.1.9 of [16], and therefore µ is closed.
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(3) Since G is metrizable, U(µ) is metrizable and, by (1), it is exhaustive. By
8.1.4 of [16] (see also 3.5 and 3.6 of [17]), we get that (L,≤) is complete and µ

is order continuous. By 7.1.9 of [16], (L̂,≤) is complete, too. Hence µ is closed
by (2).
(4) Let {aα}α∈A be an orthogonal family in L such that a = sup{

⊕
α∈F aα :

F ⊂ A finite} exists in L. For every finite F ⊂ A, let aF =
⊕

α∈F aα. Then
{aF : F ⊂ A, F finite} is an increasing net in L, with a = supF aF . Since µ is
order continuous, µ(a) = limF µ(aF ). On the other hand µ(aF ) =

∑
α∈F µ(aα).

Thus µ(a) =
∑

α∈A µ(aα). �

Theorem 4.3. Let L be complete and let µ be completely additive with I(µ) =
{0}. Then µ is semiconvex if and only if µ is pseudo non-injective.

Proof: ⇒: Let a ∈ L \ I(µ).
First, suppose µ(a) 6= 0. Then there exists b ≤ a such that 2µ(b) = µ(a). Put

c := a⊖b. Then b ⊥ c, b⊕c = a and µ(b) = µ(c), as 2µ(c) = 2µ(a)−2µ(b) = µ(a).
Moreover, b, c /∈ I(µ), since µ(b) = µ(c) 6= 0.
Now let µ(a) = 0. As a /∈ I(µ), there exists d ≤ a such that µ(d) 6= 0. From

above, there exist b, c ∈ L \ I(µ), b ⊥ c, b ⊕ c ≤ d and µ(b) = µ(c). Obviously,
b ⊕ c ≤ a.

⇐: Let a 6= 0. We can suppose µ(a) 6= 0.

(i) We will show that ∃h, 0 < h ≤ a such that µ(h) = µ(a) and µ(k) 6= 0 for
each 0 < k ≤ h.
We can suppose that there exists b ≤ a, b 6= 0 and µ(b) = 0, since otherwise

(i) is satisfied with h = a.
Recall that in a complete D-lattice, if {bγ}γ∈Γ is an orthogonal family then, for

every γ̄ ∈ Γ, the set {γ ∈ Γ : bγ = bγ̄} is finite (see [DP] p.17). Then by Zorn’s
lemma we can find an orthogonal family {aα}α∈A with the following properties:
(1) For every α ∈ A, aα 6= 0 and µ(aα) = 0.
(2) For every finite F ⊂ A,

⊕
α∈F aα ≤ a.

(3) If {bγ}γ∈Γ is an orthogonal family in L with (1) and (2), then for each
γ̄ ∈ Γ the set {α ∈ A : aα = bγ̄} 6= ∅ and {γ ∈ Γ : bγ = bγ̄} ⊂ {α ∈ A : aα = bγ̄}.
Since L is complete, e =

⊕
α∈A aα is well-defined. By (2) we get e ≤ a. Since

µ is completely additive we have µ(e) =
∑

α∈A µ(aα) = 0. Put h := a ⊖ e. Then
h ≤ a and µ(h) = µ(a).
We will show that, if 0 < b ≤ h, µ(b) 6= 0.
By way of contradiction, assume b ∈ L, 0 < b ≤ h and µ(b) = 0. Since

b ≤ h ≤ e⊥ ≤ (
⊕

α∈F aα)
⊥ for each finite F ⊂ A, we have, by 4.2 of [7] that

every finite subfamily of {aα}α∈A ∪ {b} is orthogonal. Moreover, if F ⊂ A is
finite, we have b

⊕
(⊕α∈F aα) ≤ h ⊕ e = (a ⊖ e) ⊕ e = a. Then {aα}α∈A ∪ {b}

gives a contradiction with (3).

Let h be as in (i).
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We claim that, if 0 < k ≤ h, then there exist c, d ∈ L such that 0 < c < d ≤ k
and 2µ(c) = µ(d).
If 0 < k ≤ h, µ(k) 6= 0 by (i) and, by pseudo non-injectivity, there exist

b1, b2 ∈ L, b1 ⊥ b2, b1 ⊕ b2 ≤ k, b1 6= 0, b2 6= 0 and µ(b1) = µ(b2). Then for
c := b1 and d := b1 ⊕ b2 we have 0 < c < d ≤ k as b1 and b2 are not zero and
µ(d) = µ(b1) + µ(b2) = 2µ(c).

(ii) Zorn’s lemma ensures the existence of an orthogonal family {dα}α∈A with
the following properties:

(1) for every α ∈ A, dα 6= 0 and there exists cα such that 0 < cα < dα and
2µ(cα) = µ(dα);

(2) for every finite F ⊂ A,
⊕

α∈F dα ≤ h;
(3) if {cγ : γ ∈ Γ} is an orthogonal family in L with properties (1) and (2),
then for every γ̄ ∈ Γ the set {α ∈ A : dα = cγ̄} 6= ∅ and {γ ∈ Γ : cγ =
cγ̄} ⊂ {α ∈ A : dα = cγ̄}.

It is easy to see that the set {cα : α ∈ A} is orthogonal. Put d =
⊕

α∈A dα

and c =
⊕

α∈A cα. We get c 6= 0, since cα 6= 0 for every α ∈ A. By (2) d ≤ h.
Moreover, as µ(d) =

∑
α∈A µ(dα) = 2

∑
α∈A µ(cα) = 2µ(c) and c ≤ d, we obtain

c < d.

(iii) We will show that d = h.
Suppose d < h. Then h ⊖ d 6= 0. From above, there exist c1, c2 ∈ L with

0 < c1 < c2 ≤ h ⊖ d and µ(c2) = 2µ(c1).
We will check that {dα}α∈A ∪ {c2} has the same properties as {dα}α∈A.

Since c2 ≤ h ⊖ d ≤ d⊥ ≤ (
⊕

α∈F dα)
⊥ for every finite F ⊂ A, from 4.2 of

[7] it follows that every finite subfamily of {dα}α∈A ∪ {c2} is orthogonal and so,
the family is orthogonal. Moreover, if F ⊂ A is finite, then c2 ⊕ (

⊕
α∈F dα) ≤

(h ⊖ d) ⊕ d = h. Obviously, c2 verifies (1). Then {dα}α∈A ∪ {c2} contradicts
property (3). Hence d = h.
It follows that µ(a) = µ(h) = µ(d) = 2µ(c). Therefore µ is semiconvex. �

Theorem 4.4. Let µ be closed and pseudo non-injective. Then µ(L) is convex.

Proof: It is clear that we can replace L by L/N(µ) and µ by µ̂. Then by 4.2 we
can suppose L complete, µ completely additive and I(µ) = {0}. Hence by 4.3 µ
is semiconvex.
Let b, c ∈ L and t ∈ [0, 1].
First, suppose b ∧ c = 0.
By 3.3 there exist d, e ∈ L such that d ≤ b, e ≤ c, µ(d) = tµ(b) and µ(e) =

(1− t)µ(c). Since b∧c = 0, we have d∧e = 0. It follows that tµ(b)+(1− t)µ(c) =
µ(d) + µ(e) = µ(d ∨ e) + µ(d ∧ e) = µ(d ∨ e).
Now let b, c ∈ L. Put b1 := b⊖ (b∧ c) and c1 = c⊖ (b∧ c). By 1.8.5 of [13] we

have b1 ∧ c1 = 0. Then, from above, there exist b2, c2 ∈ L with b2 ≤ b1, c2 ≤ c1
and tµ(b1) + (1− t)µ(c1) = µ(b2 ∨ c2).
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Since b = (b∧c)⊕b1 and c = (b∧c)⊕c1, by 3.6 we obtain tµ(b) = tµ(b1)+tµ(b∧c)
and (1− t)µ(c) = (1− t)µ(b∧c)+(1− t)µ(c1). It follows that tµ(b)+(1− t)µ(c) =
µ(b ∧ c) + tµ(b1) + (1− t)µ(c1) = µ(b ∧ c) + µ(b2 ∨ c2).
We claim that b∧ c ⊥ b2 ∨ c2. By 1.8.4 of [13] applied with c = a∧ b, we obtain

b1 ∨ c1 = (b ⊖ (b ∧ c)) ∨ (c ⊖ (b ∧ c)) = (b ∨ c)⊖ (b ∧ c), hence b2 ∨ c2 ≤ b1 ∨ c1 ≤
1⊖ (b ∧ c) = (b ∧ c)⊥.
It follows that µ(b ∧ c) + µ(b2 ∨ c2) = µ((b ∧ c) ⊕ (b2 ∨ c2)) and, therefore,

tµ(b) + (1− t)µ(c) ∈ µ(L). �

Corollary 4.5. Let µ be closed. Then µ is pseudo non-injective iff for every
a ∈ L, µ([0, a]) is convex.

Proof: ⇐: From the assumptions we get that µ is semiconvex. Hence, µ̂ is
semiconvex, too. Moreover, since µ is closed, by 4.2 we have that L/N(µ) is

complete and µ̂ is completely additive. Since I(µ̂) = {0̂}, by 4.3 we have that
µ̂ is pseudo non-injective. We see that µ is pseudo non-injective, too. Let a ∈
L \ I(µ) and choose b ≤ a such that µ(b) 6= 0. Since µ̂ is pseudo non-injective,

there exist ĉ, d̂; ĉ, d̂ 6= 0̂, ĉ ⊥ d̂, ĉ ⊕ d̂ ≤ b̂ and µ̂(ĉ) = µ̂(d̂). Then there exist
c, d ∈ L \ I(µ), c ⊥ d, c ⊕ d ≤ b ≤ a and µ(b) = µ(c).

⇒: As in 4.4 we can suppose L = L/N(µ). Let a ∈ L and denote by µa the
restriction of µ to [0, a]. Observe that [0, a] is a complete D-lattice and µa is a
σ-order continuous pseudo non-injective modular measure, since U(µa) coincides
with the restriction of U(µ) to [0, a] and N(µa) = N(µ) ∩ ([0, a] × [0, a]). Hence
by 4.4 we have that µ([0, a]) is convex. �
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[13] Dvurečenskij A., Pulmannová S., New Trends in Quantum Structures, Mathematics and
its Applications, 516, Kluwer Acad. Publ., Dordrecht; Ister Science, Bratislava, 2000.

[14] Epstein L.G., Zhang J., Subjective probabilities on subjectively unambiguous events, Econo-
metrica 69 ((2001)), no. 2, 265–306.

[15] Knowles G., Liapunov vector measures, SIAM J. Control 13 (1975), 294–303.
[16] Weber H., Uniform lattices I, II. A generalization of topological Riesz spaces and topo-

logical Boolean rings; Order continuity and exhaustivity, Ann. Mat. Pura Appl. (4) 160
(1991), 347–370 (1992); (4) 165 (1993), 133–158.

[17] Weber H., On modular functions, Funct. Approx. Comment. Math. 24 (1996), 35–52.

University of Basilicata, Contrada Macchia Romana, 85100 Potenza, Italy

E-mail : avallone@pzuniv.unibas.it

University of Udine, via delle Scienze 208, 33100 Udine, Italy

E-mail : barbieri@dimi.uniud.it

(Received March 25, 2003, revised May 20, 2003)


		webmaster@dml.cz
	2012-04-30T21:49:33+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




