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Multiplicity of positive solutions for some quasilinear

Dirichlet problems on bounded domains in R
n

Dimitrios A. Kandilakis, Athanasios N. Lyberopoulos

Abstract. We show that, under appropriate structure conditions, the quasilinear Dirich-
let problem (

− div(|∇u|p−2∇u) = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a bounded domain in R
n, 1 < p < +∞, admits two positive solutions u0, u1

in W 1,p
0 (Ω) such that 0 < u0 ≤ u1 in Ω, while u0 is a local minimizer of the associated

Euler-Lagrange functional.

Keywords: p-Laplacian, positive solutions, sub- and supersolutions, local minimizers,
Palais-Smale condition

Classification: 35J20, 35J60, 35J70

1. Introduction

Let Ω be a bounded domain in R
n, n ≥ 2, with boundary of class C2 and

consider the quasilinear elliptic problem

(1.1)

{
−∆pu = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where ∆pu := div(|∇u|p−2∇u) is the so-called p-Laplace operator with 1 < p <

+∞ and f : Ω × R → R is a Carathéodory function, i.e. continuous in u for a.e.
x ∈ Ω and measurable in x for all u ∈ R.
Questions concerning the effect of the nonlinear term f(x, u) on the existence

and multiplicity of solutions of (1.1) have been extensively investigated in recent
years. A comprehensive review of the existing literature is beyond the present
scope and the interested reader should consult the survey in [2]. Confining our-
selves to the class of positive solutions, it is essential, however, to report the
results which are closely related to the theme discussed in the present article.
These pertain, in particular, to the model case provided by the function

f(x, u) = λ|u|r−2u+ |u|s−2u,
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where 1 < r ≤ p < s and λ > 0 is a real parameter. As a matter of fact,
with the aid of variational techniques it was shown in [3] that when 1 < r <

p = 2 < s ≤ 2∗ := 2n
n−2 , there exists a constant Λ > 0 such that problem (1.1)

admits at least two positive solutions in W
1,p
0 (Ω) for all λ ∈ (0,Λ), at least one

positive solution if λ = Λ and no solution if λ > Λ. This multiplicity result
was then extended via topological degree arguments in [1] for the quasilinear case
p 6= 2 with 1 < r < p < s < p∗ := np

n−p , albeit for the special class of radial

solutions. Note that when 1 < r < p < s < ∞, the existence of one positive
solution, without any symmetry assumptions on the domain Ω, was established
in [8] via Sattinger’s iteration scheme [17]. Nevertheless, this method cannot yield
more solutions. The issue of existence and multiplicity in the nonradial setting
and with p 6= 2 was studied in [7] via an extension to p-Laplace equations of a
theorem by Brezis and Nirenberg [10] which concerns the relationship between

local minimizers of the associated Euler-Lagrange functional in the W
1,p
0 and C10

topologies. More specifically, by applying arguments similar to those used in the
semilinear case, it was shown in [7] that one positive solution can be obtained as a
local minimizer of the above functional while a second positive solution can then
be found by means of a variant of the Mountain-Pass Theorem.

In this paper we are concerned with the issue of multiplicity as above, but in the
context of a much larger class of nonlinearities. Our approach remains variational
in nature and combines several ideas from [3], [10] and [13]. In particular, we show
the existence of two positive solutions u0, u1 which are ordered; i.e. 0 < u0 ≤ u1
in Ω. Note that this property has been established so far only in the semilinear
case p = 2 where, in fact, due to the linearity of the principal part of (1.1), the
ordering is strict (i.e. 0 < u0 < u1 in Ω), [3].

Let us finally mention that the critical semilinear case 1 < r ≤ p = 2 < s = 2∗

was originally studied in the pioneering paper of Brezis and Nirenberg [9] and their
results were then extended to the quasilinear case in [13] for 1 < r = p < s = p∗

and in [6] for 1 < r < p < s = p∗.

2. Existence and multiplicity of positive solutions

Throughout this section we are concerned with the problem of finding posi-
tive solutions for (1.1), assuming that the lower order nonlinearity f satisfies the
structure conditions:

(H1) f(x, u) is nondecreasing in u with f(x, 0) = 0 for a.e. x ∈ Ω.

(H2) There exists C > 0 such that |f(x, u)| ≤ C(1+ |u|k−1) for a.e. x ∈ Ω, where
(i) k ∈ (1, p∗] if p < n, with p∗ := np

n−p ,

(ii) k ∈ (1,+∞) if p ≥ n.

(H3) lim infs→0+
f(x,s)
sp−1 > λ1 for a.e. x ∈ Ω, where λ1 is the principal eigenvalue

of −∆p on Ω with zero Dirichlet boundary conditions.
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Before we proceed, a few preliminary facts that will be used repeatedly in the
sequel are in order. First, a basic ingredient in our approach is provided by the
following proposition which concerns the boundary regularity of weak solutions
of (1.1).

Theorem 1. Let u ∈ W
1,p
0 (Ω) be a weak solution of the quasilinear Dirichlet

problem (1.1) where f(x, u) conforms with (H2). Then u ∈ C1,α(Ω) for some
α ∈ (0, 1).

A proof of Theorem 1 in the case where 1 < p ≤ n and f(x, u) is continuous
in Ω×R can be found in [13]. A different proof covering the present situation, as
well as the full range of the exponent p, is provided in the Appendix.
Consider now the Euler-Lagrange functional associated with (1.1),

(2.1) Φ(u) :=
1

p

∫

Ω
|∇u|p dx −

∫

Ω
F (x, u) dx,

where

(2.2) F (x, u) :=

∫ u

0
f(x, t) dt.

As is well known, on account of (H2), Φ(·) defines a continuous functional from

W
1,p
0 (Ω) to R which is also weakly lower semicontinuous unless p < n and k = p∗.

Moreover, it is easy to show that any minimizer u ∈ W
1,p
0 (Ω) of Φ(·) is a weak

solution of (1.1). Even more, according to the following remarkable theorem, any
local minimizer of Φ(·) in the C10 -topology must also be a local minimizer in the

W
1,p
0 -topology.

Theorem 2. Let (H2) hold and assume that there exist w ∈ W
1,p
0 (Ω) and ρ > 0

such that

(2.3) Φ(w) ≤ Φ(w + v) for every v ∈ C10 (Ω) with ‖v‖C1 ≤ ρ.

Then there exists ρ′ > 0 such that

(2.4) Φ(w) ≤ Φ(w + z) for every z ∈ W
1,p
0 (Ω) with ‖z‖W 1,p ≤ ρ′.

As already mentioned in the introduction, this rather surprising result was first
proved by Brezis and Nirenberg when p = 2 in [10] and then it was extended for
all p ∈ (1,+∞) by Azorero, Alonso and Manfredi in [7]. It should be pointed out
here, however, that this property may not hold for a general functional since it is
the special structure of (2.1) which plays an essential role in the proof.
Finally, the following lemma is essentially a variant regarding the monotonicity

of the −∆p operator and can be easily proved via Hölder’s inequality.
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Lemma 3. Let 1 < p < +∞. Then for any u, v ∈ W
1,p
0 (Ω) the following

inequality holds

∫

Ω

[
|∇u|p−2∇u − |∇v|p−2∇v

]
(∇u −∇v) dx

≥
(
‖u‖p−1 − ‖v‖p−1)(‖u‖ − ‖v‖

)
≥ 0,

where ‖u‖ :=
(∫
Ω |∇u|p dx

)1/p
.

Definition 4. A nonnegative function w ∈ C1(Ω) is said to be a strict su-
persolution (resp. strict subsolution) for (1.1) if −∆pw > f(x, w) in Ω (resp.
−∆pw < f(x, w) in Ω) and w = 0 on ∂Ω.

Observe that, on account of the strong maximum principle of Vázquez [18] and
(H1), a strict supersolution is necessarily positive everywhere in Ω.
Our first result is the following

Theorem 5. Suppose that (H1), (H2) and (H3) hold. Assume further that a
strict supersolution u for (1.1) exists. Then, problem (1.1) admits a positive

solution u0 which is also a local minimizer of Φ(·) in the W
1,p
0 -topology.

Proof: Let ϕ1 be the eigenfunction corresponding to the principal eigenvalue
λ1 of −∆p on Ω with zero Dirichlet boundary conditions, normalized so that
‖ϕ1‖∞ = 1. Since λ1 > 0 and ϕ1(·) > 0 in Ω (see [5]), in view of (H3), there
exists ε > 0 such that u = εϕ1 is a strict subsolution of (1.1). Moreover, by virtue
of the strong maximum principle ([18]) it is straightforward to check that if ε is
chosen sufficiently small then

(2.5) u < u, in Ω.

Let us now define

(2.6) f̂(x, t) :=






f(x, u(x)), if t > u(x),

f(x, t), if u(x) ≤ t ≤ u(x),

f(x, u(x)), if t < u(x),

and consider the problem

(2.7)

{
−∆pu = f̂(x, u(x)), x ∈ Ω,

u = 0, x ∈ ∂Ω,

with the associated Euler-Lagrange functional

Φ̂(u) :=
1

p

∫

Ω
|∇u|p dx −

∫

Ω

∫ u

0
f̂(x, t) dt dx.
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From (H2) and (2.6), it is easily seen that Φ̂(·) is bounded from below and weakly

lower semicontinuous in W
1,p
0 (Ω). Therefore, the infimum of Φ̂(·) is achieved at

some point u0 ∈ W
1,p
0 (Ω) which is a solution of (2.7). In particular, u0 ∈ C1(Ω)

by Theorem 1. We claim that u ≤ u0 ≤ u in Ω. Indeed, let us define the set

Ω0 := {x ∈ Ω : u0(x) < u(x)},

and assume that it is nonempty. Since Ω0 is open, it must have positive measure.
Furthermore, in view of (2.6),

(2.8) −∆pu0 = f(x, u(x)), x ∈ Ω0,

while

(2.9) −∆pu < f(x, u(x)), x ∈ Ω0.

Hence, by multiplying (2.8) and (2.9) with u−u0 and integrating over Ω0, we get

∫

Ω0

|∇u0|
p−2∇u0∇(u − u0) dx =

∫

Ω0

f(x, u(x))(u − u0) dx,

and ∫

Ω0

|∇u|p−2∇u∇(u − u0) dx <

∫

Ω0

f(x, u(x))(u − u0) dx,

which combined yield

∫

Ω0

{
|∇u|p−2∇u − |∇u0|

p−2∇u0

}
∇(u − u0) dx < 0.

However, the last inequality contradicts Lemma 3 and so Ω0 must be empty. The
proof of u0 ≤ u in Ω is analogous. Because now f(x, u) is nondecreasing in u for
a.e. x ∈ Ω, on account of (2.5), (2.6) and (2.7), we have

(2.10) 0 < −∆pu < f(x, u) ≤ −∆pu0 = f(x, u0) ≤ f(x, u) < −∆pu, x ∈ Ω,

and so, by the strong comparison principle in [13], we eventually deduce that

(2.11) u(x) < u0(x) < u(x), x ∈ Ω,
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while

(2.12)
∂u

∂ν
(x) <

∂u0

∂ν
(x) <

∂u

∂ν
(x), x ∈ ∂Ω,

where ν denotes the exterior unit normal at x ∈ ∂Ω. Moreover, by virtue of the
strong maximum principle in [18],

(2.13)
∂u

∂ν
(x) < 0, x ∈ ∂Ω.

Note that this inequality holds under the assumption that the boundary ∂Ω sa-
tisfies the so-called interior sphere condition. However, this condition is automat-
ically true here because ∂Ω was taken to be of class C2. In the sequel we shall
show that there exists δ > 0 such that

(2.14) u(x) + δ dist(x, ∂Ω) ≤ u0(x) ≤ u(x)− δ dist(x, ∂Ω), x ∈ Ω.

Note first that, since ∂Ω is compact, an immediate implication of (2.13) is the
existence of positive constants β, σ such that

(2.15) |∇u(x)| > β > 0,

for all x in the annular region

R := {x ∈ Ω : dist(x, ∂Ω) ≤ σ}.

Furthermore, (2.12), (2.13) and (2.15) imply that there exists a constant γ > 1
and a continuous function µ(·) such that

(2.16)
∂u0

∂ν
(x) = µ(x)

∂u

∂ν
(x), x ∈ ∂Ω,

with

(2.17) µ(x) > γ > 1.

Since now u0 = u = 0 on ∂Ω, the projections of ∇u0(x) and ∇u(x) on the
hyperplane which is tangent to ∂Ω at x must be equal to zero. Consequently,
(2.16) reduces to

(2.18)
∂u0

∂xi
(x) = µ(x)

∂u

∂xi
(x), i = 1, . . . , n, x ∈ ∂Ω.
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On the other hand, by the mean value theorem we can write, as in [13],

(2.19) −∆pu0 +∆pu = −
∑

i,j

∂

∂xi

(
aij(x)

∂

∂xj
(u0 − u)

)
, x ∈ Ω,

where

aij(x) := |ti∇u0 + (1 − ti)∇u|p−4

(
δij |ti∇u0 + (1 − ti)∇u|2

+ (p − 2)

(
ti

∂u0

∂xi
+ (1 − ti)

∂u

∂xi

)(
ti

∂u0

∂xj
+ (1 − ti)

∂u

∂xj

))
, x ∈ Ω,

and ti ∈ (0, 1), i = 1, . . . n. By setting now

di(x) := |∇u0|
p−2 ∂u0

∂xi
− |∇u|p−2

∂u

∂xi
, i = 1, . . . , n, x ∈ Ω,

and using (2.17), (2.18), we have

(2.20) di(x) =
µp−1 − 1

µ − 1
|∇u|p−2

∂

∂xi
(u0 − u), i = 1, . . . , n, x ∈ ∂Ω.

But since

(2.21) −∆pu0 +∆pu = −
∑

i

∂

∂xi
di(x), x ∈ Ω,

on combining (2.15), (2.17), (2.19), (2.20) and (2.21), we deduce by continuity that
the second order differential operator appearing on the righthand side of (2.19)
is uniformly elliptic in the region R. Hence, in view of (2.10), the extension of
the classical Hopf’s lemma (see [18]) implies the existence of δ1 > 0 such that
u0(x) − u(x) ≥ δ1 dist(x, ∂Ω) for all x ∈ R. In a similar fashion it can be shown
that there exists δ2 > 0 such that u(x) − u0(x) ≥ δ2 dist(x, ∂Ω) for all x ∈ R.
The validity of (2.14) for every x ∈ Ω then follows by using (2.11) and choosing
δ > 0 appropriately. Let now u ∈ C10 (Ω) with ‖u − u0‖C10

≤ δ. Then, u ≤ u ≤ u

in Ω by (2.14). At the same time, Φ = Φ̂ on the set

{
u ∈ C10 (Ω) : ‖u − u0‖C10

≤ δ
}
.

Therefore, u0 is a local minimizer of Φ(·) in C10 (Ω) and by Theorem 2, also a

local minimizer of Φ(·) in W
1,p
0 (Ω). Consequently, u0 is a positive solution of

problem (1.1). �
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Remark 6. The assumption for the existence of a strict supersolution u in Theo-
rem 5 appears to be very essential. Its importance can also be verified by consult-
ing the proofs of the related theorems in [1], [3] and [8] where strict supersolutions
are actually constructed. On the other hand, when a strict supersolution u for
(1.1) is known, it follows from (H3) that a strict subsolution u can easily be found
with u < u.

Our next result provides the existence of a second positive solution u1 of (1.1),
with u0 ≤ u1 in Ω, if more conditions on the structure of the nonlinearity f(x, u)
are imposed. In particular, our strategy involves the use of the Mountain-Pass
Theorem for a modified functional Ψ(·) which satisfies the Palais-Smale condition
and is unbounded from below under the assumptions:

(H2)′ The same growth condition in (H2) holds but with 1 < k < p∗ if p < n.

(H4) There exist ̺ > 0 and θ ∈ (0, 1p) such that

(2.22) F (x, u) ≤ θf(x, u)u when |u| ≥ ̺.

(H5) There exist η > 0 and r > p such that lim infs→+∞
f(x,s)
sr−1 > η for a.e.

x ∈ Ω.

Theorem 7. Suppose that (H1), (H2)′, (H3), (H4) and H(5) hold. Assume
further that (1.1) possesses a strict supersolution u. Then problem (1.1) admits

two solutions u0, u1 in W
1,p
0 (Ω) such that 0 < u0 ≤ u1 in Ω.

Proof: Let u0 be the solution obtained in Theorem 5 and consider the problem

of finding v ∈ W
1,p
0 (Ω) such that v 6≡ 0 and

(2.23)

{
−∆p(u0 + v) = f(x, u0 + v), x ∈ Ω,

v = 0, x ∈ ∂Ω.

For this set

(2.24) k(x, t) :=

{
f(x, u0 + t), if t ≥ 0,

f(x, u0), if t < 0,

(2.25) K(x, v) :=

∫ v

0
k(x, t) dt,

and define the functional

(2.26) Ψ(v) :=
1

p
‖u0 + v‖p −

∫

Ω
K(x, v) dx.
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We claim that v = 0 is a local minimizer of Ψ(·) in W
1,p
0 (Ω). Indeed, if v+ and

v− denote the positive and negative parts of v respectively, we have

∫

Ω
K(x, v) dx =

∫

{v≥0}
K(x, v+) dx +

∫

{v<0}
K(x, v−) dx

=

∫

Ω

∫ v+

0
k(x, t) dt dx +

∫

Ω

∫ v−

0
k(x, t) dt dx

=

∫

Ω

∫ v+

0
f(x, u0 + t) dt dx+

∫

Ω

∫ v−

0
f(x, u0) dt dx

=

∫

Ω

∫ u0+v+

u0

f(x, t) dt dx +

∫

Ω
f(x, u0)v

− dx.

Thus,

Ψ(v) =
1

p

∥∥u0 + v+
∥∥p
+
1

p

∥∥u0 + v−
∥∥p

−
1

p
‖u0‖

p

−

∫

Ω

∫ u0+v+

u0

f(x, t) dt dx −

∫

Ω
f(x, u0)v

− dx

= Φ(u0 + v+) +

∫

Ω

∫ u0+v+

0
f(x, t) dt dx +

1

p

∥∥u0 + v−
∥∥p

−
1

p
‖u0‖

p

−

∫

Ω

∫ u0+v+

u0

f(x, t) dt dx −

∫

Ω
f(x, u0)v

− dx

= Φ(u0 + v+) +
1

p

∥∥u0 + v−
∥∥p

−
1

p
‖u0‖

p

+

∫

Ω

∫ u0

0
f(x, t) dt dx −

∫

Ω
f(x, u0)v

− dx.

Moreover, since u0 solves (1.1),

∫

Ω
|∇u0|

p−2∇u0∇v− dx =

∫

Ω
f(x, u0)v

− dx,

and so

Ψ(v) = Φ(u0 + v+)− Φ(u0) +
1

p

∥∥u0 + v−
∥∥p

−

∫

Ω
|∇u0|

p−2∇u0∇v− dx.

On the other hand, by the strict convexity of the mapping ξ 7−→ |ξ|p for any
p > 1, the following inequality holds

(2.27) |ξ2|
p ≥ |ξ1|

p + p |ξ1|
p−2 ξ1 · (ξ2 − ξ1) , ξ1, ξ2 ∈ R

n,
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which yields

Ψ(v) ≥ Φ(u0 + v+)− Φ(u0) +
1

p
‖u0‖

p .

But since u0 is a local minimizer of Φ(·) in W
1,p
0 (Ω), this implies

Ψ(v) ≥
1

p
‖u0‖

p = Ψ(0),

if ‖v‖ is small enough, thereby proving the claim. At the same time it is easily
checked that, on account of (H2)′ and (H4), the functional Ψ(·) satisfies the Palais-
Smale condition (see [4]). Moreover, by using (H5), Ψ(tu0)→ −∞ as t → +∞ and
so there exists t0 > 0 such that Ψ(t0u0) < 0. Hence, by applying the Ghoussoub-
Preiss version of the Mountain-Pass Theorem [12] we get the existence of a second
critical point v0 6≡ 0 of Ψ(·). In particular, v0 ∈ C1(Ω) by virtue of Theorem 1.
We shall now show that v0 ≥ 0. Indeed, since Ψ

′(v0) = 0, we have

∫

Ω
|∇u0 +∇v0|

p−2 (∇u0 +∇v0)∇z dx =

∫

Ω
k(x, v0)z dx, z ∈ W

1,p
0 (Ω),

and by choosing z = v−0 ,

(2.28)

∫

Ω
|∇u0 +∇v−0 |

p−2(∇u0 +∇v−0 )∇v−0 dx =

∫

Ω
k(x, v−0 )v

−
0 dx

=

∫

Ω
f(x, u0)v

−
0 dx.

At the same time, since Φ′(u0) = 0,

(2.29)

∫

Ω
|∇u0|

p−2∇u0∇v−0 dx =

∫

Ω
f(x, u0)v

−
0 dx,

and so, on combining (2.28) and (2.29),

(2.30)

∫

Ω

{
|∇u0 +∇v−0 |

p−2(∇u0 +∇v−0 )− |∇u0|
p−2∇u0

}
∇v−0 dx = 0,

which, by applying Lemma 3, yields

(2.31)
∥∥u0 + v−0

∥∥ = ‖u0‖ .

On the other hand, by applying (2.27) with ξ1 = ∇u0+∇v−0 , ξ2 = ∇u0 and using
(2.31), we get

(2.32)

∫

Ω
|∇u0 +∇v−0 |

p−2(∇u0 +∇v−0 )∇v−0 dx ≥ 0,
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while by doing the same with ξ1 = ∇u0, ξ2 = ∇u0 +∇v−0 ,

(2.33)

∫

Ω
|∇u0|

p−2∇u0∇v−0 dx ≤ 0.

Thus, from (2.29), (2.30), (2.32) and (2.33) we conclude that

∫

Ω
f(x, u0)v

−
0 dx = 0,

which, since f(x, u0) > 0, implies v−0 = 0; i.e. v0 ≥ 0. Hence, u1 := u0 + v0 is a
second positive solution of (1.1). The proof is complete. �

Appendix

Proof of Theorem 1: We proceed by examining separately three different
ranges of the exponent p and showing first that u ∈ L∞(Ω).

(I) Let 1 < p < n. Clearly, u ∈ Lp∗(Ω) by Sobolev’s inequality. We now
distinguish two cases:

Case 1 : 1 < k < p∗.

Then, by virtue of Theorem 7.1, Chapter IV, of [14], we immediately conclude
that u ∈ L∞(Ω).

Case 2 : k = p∗.

Here Theorem 7.1, Chapter IV, of [14] cannot be applied directly. Hence,
motivated by [10], we proceed by decomposing f(·, u(·)) as follows:

f(x, u(x)) = a(x)|u(x)|p−2u(x) + b(x),

where

(2.34) a(x) :=

{
f(x,u(x))

|u(x)|p−2u(x)
, |u(x)| > 1,

0, |u(x)| ≤ 1,

and

(2.35) b(x) :=

{
0, |u(x)| > 1,

f(x, u(x)), |u(x)| ≤ 1.

Then, in view of (H2), it is easily seen that b ∈ L∞(Ω) while a(·) satisfies the
growth estimate

|a(x)| ≤ C1(1 + |u(x)|p
∗−p),

which, since u ∈ Lp∗(Ω), implies that a ∈ Ln/p(Ω).
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For any m ∈ N we set

um :=






m if u ≥ m,

u if |u| < m,

−m if u ≤ −m.

Clearly, if r ≥ 2 then |um|r−2um ∈ W
1,p
0 (Ω) and so by multiplying (1.1)1 with

|um|r−2um and integrating over Ω we get

(r − 1)

n∑

i=1

∫

Ω

(
|∇um|p−2

∂um

∂xi

)(
|um|r−2

∂um

∂xi

)

=

∫

Ω
a |u|p−2u|um|r−2um +

∫

Ω
b|um|r−2um,

which, since uum ≥ 0 a.e. in Ω, gives

(2.36) (r − 1)

∫

Ω
|∇um|p|um|r−2 ≤

∫

Ω
a+|u|p−1 |um|r−1 +

∫

Ω
b|um|r−2um,

where a+ denotes the positive part of a(·). At the same time, it can be easily
verified that

(2.37)

∫

Ω
|∇um|p|um|r−2 =

(
p

p+ r − 2

)p ∫

Ω

∣∣∣∣∇
(
|um|

r−2
p um

)∣∣∣∣
p

.

Moreover, by Sobolev’s inequality

(2.38)

∥∥∥∥|um|
p+r−2

p

∥∥∥∥
Lp∗

≤ CS

∥∥∥∥∇|um|
p+r−2

p

∥∥∥∥
Lp

= CS

∥∥∥∥∇
(
|um|

r−2
p um

)∥∥∥∥
Lp

where CS is the best Sobolev constant. Hence, on combining (2.36), (2.37) and
(2.38), we deduce that

(2.39)

∥∥∥∥|um|
p+r−2

p

∥∥∥∥
p

Lp∗

≤ c1

(∫

Ω
a+|u|p−1 |um|r−1 +

∫

Ω
b|um|r−2um

)

where c1 > 0 is a constant depending only on p, r and CS . Fix now k > 0 and
let Ω1 := {x ∈ Ω : a+(x) ≤ k} and Ω2 := {x ∈ Ω : a+(x) > k}. Since |um| ≤ |u|
a.e. in Ω, (2.39) gives

(2.40)

∥∥∥∥|um|
p+r−2

p

∥∥∥∥
p

Lp∗

≤ kc1

∫

Ω1

|u|p+r−2 + c1

∫

Ω2

a+|u|p+r−2 + c1

∫

Ω
b|um|r−2um.
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Because Ω is bounded, there exists a constant c2 > 0, depending only on Ω, p

and r, such that
‖um‖Lr−1 ≤ c2‖um‖Lp+r−2,

and so

(2.41)

∫

Ω
b|um|r−2um ≤ c2 ‖b‖L∞ ‖um‖r−1

Lp+r−2 .

On the other hand, by virtue of Hölder’s inequality,

(2.42)

∫

Ω2

a+|u|p+r−2 ≤

(∫

Ω2

∣∣a+
∣∣np
) p

n

(∫

Ω2

|u|
n

n−p
(p+r−2)

)n−p

n

≤
∥∥a+

∥∥
L

n

p (Ω2)
‖u‖

p+r−2

L
p∗

p
(p+r−2)

.

Thus, in view of (2.41) and (2.42), inequality (2.40) yields

‖um‖p+r−2

L
p∗

p
(p+r−2)

≤ kc1

∫

Ω
|u|p+r−2 + c1 ‖a+‖

L
n

p (Ω2)
‖u‖p+r−2

L
p∗

p
(p+r−2)

+ c3 ‖b‖L∞ ‖um‖r−1
Lp+r−2,

and by choosing k > 0 large enough so that c1
∥∥a+

∥∥
L

n

p (Ω2)
≤ 1
2 ,

‖um‖
p+r−2

L
p∗

p
(p+r−2)

≤ 2kc1

∫

Ω1

|u|p+r−2 + 2c3‖b‖L∞‖um‖r−1
Lp+r−2 .

Assuming now that u ∈ Lp+r−2(Ω), if we allow m → ∞ in the last inequality, we
get

(2.43) ‖u‖p+r−2

L
p∗

p
(p+r−2)

≤ 2kc1‖u‖
p+r−2
Lp+r−2 + 2c3 ‖b‖L∞ ‖u‖r−1

Lp+r−2,

which implies that u ∈ L
p
∗

p
(p+r−2)

(Ω). Hence, by starting from r = p∗ − p + 2
and bootstrapping (2.43) we easily deduce that u ∈ Ls(Ω) for every s ∈ [p,+∞).

Therefore, u ∈ W
1,p
0 (Ω) ∩ Ls(Ω) for every s ∈ [p∗,+∞) and so, by virtue of

Theorem 7.1, Chapter IV, of [14], we deduce again that u ∈ L∞(Ω).

(II) Suppose now p = n. Then, u ∈ Lq(Ω) for any q ∈ [1,+∞) by the Sobolev
embedding. Hence, on account of (H2), f(·, u(·)) ∈ Lq(Ω) for any q ∈ [1,+∞)
and so by a standard bootstrap procedure in the spirit of Moser [16] we infer that
u ∈ L∞(Ω) (see e.g. the proof of Proposition 2.1 in [11]).

(III) Finally, let p > n. Then, u ∈ L∞(Ω) directly by the Sobolev embedding.
The assertion of the proposition now follows by applying Theorem 1 of [15].

�
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