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A semifilter approach to selection principles

Lubomyr Zdomsky

Abstract. In this paper we develop the semifilter approach to the classical Menger and
Hurewicz properties and show that the small cardinal g is a lower bound of the additivity
number of the σ-ideal generated by Menger subspaces of the Baire space, and under u < g

every subset X of the real line with the property Split(Λ,Λ) is Hurewicz, and thus it is

consistent with ZFC that the property Split(Λ,Λ) is preserved by unions of less than b

subsets of the real line.

Keywords: Menger property, Hurewicz property, property Split(Λ,Λ), semifilter, multi-
function, small cardinals, additivity number

Classification: 03A, 03E17, 03E35, 54D20

Introduction

In this paper we shall present two directions of applications of semifilters in
selection principles on topological spaces. First, we shall consider preservation by
unions of the Menger property.
Trying to describe the σ-compactness in terms of open covers, K. Menger in-

troduced in [15] the following property, called the Menger property: a topological
space X is said to have this property if for every sequence (un)n∈ω of open cov-
ers of X there exists a sequence (vn)n∈ω such that each vn is a finite subfamily
of un and the collection {

⋃
vn : n ∈ ω} is a cover of X . The class of Menger

topological spaces, i.e. spaces having the Menger property appeared to be much
wider than the class of σ-compact spaces (see [5], [7], [10] and many others), but
it has interesting properties itself and poses a number of open questions. One of
them, namely the question about the value of additivity of corresponding σ-ideal,
will be discussed in this paper. Let us recall that a collection I of subsets of a
set X is called a σ-ideal if it is closed under taking subsets and countable unions.
Therefore, the union

⋃
J belongs to I for every countable subfamily J of I. In

light of this property of σ-ideals it is interesting to find the smallest cardinality τ
such that the union

⋃
J is not in I for some J ⊂ I with |J | = τ . If

⋃
I = X

and X /∈ I such a cardinality obviously exists and we denote it by add(I). It is
easy to prove (see, for example, [10]) that the collection M(X) of subspaces of
a topological space X contained in subspaces with the Menger property form a
σ-ideal, so one can ask about the value of add(M(X)). According to [4], for the
Baire space N

ω this additivity number is situated between cardinals b and cf(d),
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where b and d are well-known bounding and dominating numbers respectively,
see [25]. It was also asked in [4] whether add(M(X)) = b, see Problem 2.4 there.
We shall prove here that another small cardinal, namely g, is a lower bound of
add(M(X)) for each hereditarily Lindelöf topological space X . Since there are
models of ZFC with b < g (see [25]), this answers the above mentioned problem in
negative1. Concerning topological spaces which contain non-Lindelöf subspaces,
the straightforward proof of the fact that this additivity equals ℵ1 is left to the
reader.

Another direction is devoted to splittability of open covers. Following [8] and
[10] we say that a family u of subsets of a set X is

• a large cover of X , if every x ∈ X belongs to infinitely many U ∈ u;

• an ω-cover , if for every finite subset K of X the family {U ∈ u : K ⊂ U}
is infinite;

• a γ-cover , if for every x ∈ X the family {U ∈ u : x /∈ U} is finite.

From now on we denote by Λ(X) (resp. Ω(X), Γ(X)) the family of all large
(resp. ω-, γ-) covers of X . A topological space X satisfies the selection hypothesis
Split(Λ,Λ), if for every u ∈ Λ(X) there are v1, v2 ∈ Λ(X) such that v1 ∩ v2 = ∅
and v1 ∪v2 ⊂ u. The class Split(Λ,Λ) contains all Hurewicz spaces and all spaces
with the Rothberger property, see [17, Corollary 29, Theorem 15]. Recall, that a
topological space X has the Hurewicz property, if for every sequence (un)n∈ω of
open covers of X there exists a γ-cover {Bn : n ∈ ω} of X such that each Bn is
un-bounded, which means that Bn ⊂

⋃
v for some finite v ⊂ un. Substituting “γ”

for “ω” in the above sentence, we obtain the definition of the property
⋃
fin(Γ,Ω),

which will be referred in this paper as the property of Scheepers. If, additionally,
each vn in the definition of the Menger property contains only one element of un,
we obtain the definition of the Rothberger property.

The following problem is open.

Problem 1 ([20, Issue 9, Problem 4.1], [24, Problem 6.7]). Is the property
Split(Λ,Λ) preserved by unions of subsets of R?

We shall show that under additional strong set-theoretic assumption u < g

every Lindelöf paracompact topological space X is Hurewicz provided it has the
property Split(Λ,Λ), which implies that the positive answer to the above problem
is consistent. In particular, this implies that under u < g every Rothberger space
is Hurewicz. It is worth to mention here, that under CH there are so called Luzin
subsets of the Baire space N

ω, which have the Rothberger property but fail be
Hurewicz, see [10] for details. Therefore the statement “the family of Hurewicz
subspaces and the family of subspaces with the property Split(Λ,Λ) of the real
line coincide” is independent of ZFC.

1See Remark 3 for further explanation
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The reason why such different results of these two parts are unified in one paper
is that both of them are proved with the use of semifilters.

Semifilters

To begin with, let us recall from [25] the definition of the small cardinal g.

Let C be a countable set. A family D ⊂ [C]ℵ0 is said to be open, if X ∈ D
provided X ⊂∗ Y for some Y ∈ D (here and subsequently X ⊂∗ Y means

that the complement X \ Y is finite, and [A]ℵ0 (A<ℵ0) denotes the set of all
countable infinite (finite) subsets of a set A). A family D is called groupwise
dense, if for every infinite collection Π of finite pairwise disjoint subsets of C
there exists an infinite H ⊂ Π such that

⋃
H ∈ D. By definition, g equals

the smallest cardinality of a collection of groupwise dense families with empty
intersection. Given an arbitrary groupwise dense family D, consider the family
F = {C \ D : D ∈ D} ∪ Fr(C), where Fr(C) denotes the Fréchet filter on
C consisting of cofinite subsets. From the above it follows that F satisfies the
following conditions:

(1) G ∈ F provided F ⊂∗ G for some F ∈ F ;

(2) every collection Π of pairwise disjoint finite subsets of C contains an infi-
nite subset H such that C \

⋃
H belongs to F .

Following [6], we call a family F of infinite subsets of C a semifilter , if it satisfies
the above mentioned condition (1).

However, another approach to the definition of groupwise dense families is not
the purpose of introduction of semifilters. Quite the contrary, semifilters seem
to constitute some rather interesting area of Set Theory, see [6]. In particular,
they inherited many useful properties of filters, for example the following classical
theorem due to Talagrand holds, see [18] or [6].

Theorem 1. Let F be a semifilter on a countable set C. Then F fails to be
meager if and only if it satisfies the above mentioned condition (2).

(Since every semifilter F on a countable set C is a subset of the powerset

P(C), which can be identified with the product {0, 1}C, we can speak about

topological properties of semifilters. Since C is countable, P(C) and [C]ℵ0 are
nothing else but homeomorphic copies of the Cantor and Baire space respectively.
For example, the base of the topology on [C]ℵ0 consists of subsets of the form

G(s, t) = {A ∈ [C]ℵ0 : A ∩ s = t}, where s and t are finite subset of C.)

Theorem 1 implies the following characterization of groupwise dense families:
a family D ⊂ [C]ℵ0 is groupwise dense if and only if the family {C \D : D ∈ D}∪
Fr(C) is a nonmeager semifilter. Therefore g is equal to the smallest cardinality
of a collection F of nonmeager semifilters such that

⋂
F = Fr(C). We shall prove

a bit more.
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Observation 1. The cardinal g is equal to the smallest cardinality of a family F
of semifilters on a countable set C such that

⋂
F is meager.

Proof: Let F be a family of semifilters such that
⋂
F is meager. The only thing

to be proved is that |F| ≥ g. For this aim let us fix a sequence (In)n∈ω of pairwise
disjoint finite subsets of C such that each member of

⋂
F meets all but finitely

many In. Without loss of generality,
⋃

n∈ω In = C. For each F ∈ F let us make
the notation GF = {G ⊂ ω :

⋃
n∈G In ∈ F}. Now, it suffices to observe that each

GF is a nonmeager semifilter on ω and
⋂

F∈F GF = Fr(ω). �

The family of all semifilters on a set C is evidently closed under taking unions
and intersections of arbitrary subfamilies. In addition to these operations there
is another unary one. Given any semifilter F , let F⊥ = {G ⊂ C : ∀F ∈ F(F ∩
G 6= ∅)}. (For a filter F the family F⊥ is nothing else but F+ in notations of
C. Laflamme, see [14]). It is clear that F⊥ is a semifilter too. In other words,

F⊥ = P(C) \ {C \ F : F ∈ F}. Consequently (F⊥)⊥ = F and F⊥ is comeager

if and only if F is meager. Let us also observe that (
⋂
F)⊥ =

⋃
F∈F F

⊥ for an
arbitrary collection of semifilters F. Thus we obtain another characterization of
the cardinal g: it is the smallest size of a family F of non comeager semifilters
on a countable set C such that

⋃
F is comeager. In what follows we shall simply

write Fr in place of Fr(ω).
Next, similarly to [3], for every semifilter F on ω we shall define a cardinal

characteristic b(F). Its definition involves a special relation ≤F on N
ω :

(xn)n∈ω ≤F (yn)n∈ω iff {n ∈ ω : xn ≤ yn} ∈ F .

Now, b(F) stands for the smallest size of unbounded subset of N
ω with respect

to ≤F . When F = Fr, then ≤F is nothing else but the well-known eventual
dominance preorder ≤∗. For example, b(Fr⊥) = d and b(Fr) = b. Almost literal
repetition of the proof of Theorem 16 from [3] gives us the following

Proposition 1. b(F) ≥ g for each nonmeager semifilter F on ω.

Next, in what follows we shall intensively use set-valued maps. By a set-valued
map Φ from a set X into a set Y we understand a map from X into P(Y ) and
write Φ : X ⇒ Y (here P(Y ) denotes the set of all subsets of Y ). For a subset
A of X we put Φ(A) =

⋃
x∈A Φ(x) ⊂ Y . When the sets X and Y are endowed

with some topologies, it is interesting to consider set-valued maps with certain
topological properties. The set-valued map Φ between topological spaces X and
Y is said to be

• compact-valued , if Φ(x) is compact for every x ∈ X ;

• upper semicontinuous , if for every open subset V of Y the set Φ−1⊂ (V ) =
{x ∈ X : Φ(x) ⊂ V } is open in X .
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Lemma 1. Let Φ : X ⇒ Y be a compact-valued upper semicontinuous map
between topological spaces X and Y such that Φ(X) = Y . Then Y is Menger
(Hurewicz) provided so is X .

Proof: Let us fix an arbitrary sequence (wn)n∈ω of open covers of Y . For every

n ∈ ω consider the family un = {Φ−1⊂ (
⋃

v) : v ∈ [wn]
<ℵ0}. Since Φ is upper

semicontinuous and compact-valued, each un is an open cover of X . The Menger
property of X implies the existence of a sequence (cn)n∈ω, where each cn is a
finite subset of un, such that {

⋃
cn : n ∈ ω} is a (γ-) cover of X . From the

above it follows that for every n ∈ ω we can find a finite subset vn of wn with
Φ(

⋃
cn) ⊂

⋃
vn. Therefore {

⋃
vn : n ∈ ω} is a (γ-) cover of Y , consequently Y is

Menger (Hurewicz). �

The main idea of this paper is to assign to a topological space X the collection
U(X) = {U(u, X) : u ∈ Λω(X)} of semifilters on countable sets, where Λω(X)
denotes the family of all countable large open covers of X and U(u, X) is the
smallest semifilter on u containing the family {I(x, u, X) = {U ∈ u : x ∈ U} : x ∈
X}. It is clear that U(u, X) can be represented in the form

⋃
v∈[u]<ℵ0

⋃
x∈X ↑v

I(x, u, X), where for a subsets A and B of a set Z we denote by ↑A B the family
{C ⊂ Z : C ⊃ B \A}. When A = ∅, we shall simply write ↑ in place of ↑A. When
X (and u) are clear from the context, we shall write U(u) and I(x, u) (I(x))
instead of U(u, X) and I(x, u, X).
We are in a position now to present a characterization of the properties of

Menger and Hurewicz in terms of topological properties of semifilters, which im-
plies the results mentioned in Introduction.

Theorem 2. Let X be a Lindelöf topological space. Then X is Menger (Hure-
wicz) if and only if so is each U(u) ∈ U(X). Moreover, if X is paracompact, then
it is Hurewicz provided each semifilter U(u) ∈ U(X) is meager.

Remark 1. 1. Every Hurewicz semifilter on a countable set C is meager. Indeed,
[10, Theorem 5.7] implies that each Hurewicz semifilter F on C is contained in

a σ-compact subset of [C]ℵ0 , and each σ-compact subset of the Baire space is
meager.
2. The “meager” part of the characterization of the Hurewicz property from

Theorem 2 was independently proven by B. Tsaban for zero-dimensional metriz-
able spaces, see [22, Theorem 4]. �

We shall divide the proof of Theorem 2 into a sequence of lemmas.

Lemma 2. Let X be a topological space and u ∈ Λω(X). Then the set-valued
map Φ : X ⇒ P(ω), Φ : x 7→↑ I(x), is compact-valued and upper semicontinuous.

Proof: It is clear that Φ is compact-valued, because Φ(x) =↑ I(x) is a closed
and precompact subspace of P(u). Let us show that Φ is upper semicontinuous.
For this aim let us consider arbitrary x ∈ X and an open subset G of P(u)
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containing Φ(x). For every v ∈ Φ(x) we can find sv ∈ [u]<ℵ0 such that G(sv, sv ∩
v) ⊂ G. Since Φ(x) is compact, we can find a finite family v ⊂ Φ(x) such that
Φ(x) ⊂

⋃
{G(sv, sv ∩ v) : v ∈ v}. Put s =

⋃
{sv : v ∈ v}, c = s ∩ I(x) and

U =
⋂

c. It is clear that x ∈ U and U is open. Thus the upper semicontinuity
of Φ will be proven as soon as we show that Φ(U) ⊂ G. For this purpose let us
fix an arbitrary x1 ∈ U and observe that I(x1) ∩ s ⊃ c = I(x) ∩ s, consequently
Φ(x1) ⊂

⋃
{G(s, v ∩ s) : v ∈ Φ(x)} = G, and finally Φ(U) ⊂ G, which implies the

upper semicontinuity of Φ. �

Corollary 1. Let X be a Menger (Hurewicz) topological space and u ∈ Λω(X).
Then the semifilter U(u, X) is Menger (Hurewicz).

Proof: Given any v ∈ [u]<ℵ0 , consider the set-valued map Φv : X ⇒ P(u),
Φv : x 7→↑v I(x, u). Let us observe, that Φv is a composition Ψ2 ◦ Ψ1, where
Ψ1 : X ⇒ P(u\v), Ψ1 : x 7→↑ I(x, u\v), and Ψ2 : P(u\v)⇒ P(u), Ψ2 : w 7→↑ w.
It is clear that Ψ2 is compact-valued upper semicontinuous, while Ψ1 is so by
Lemma 2. Now, Lemma 1 implies that

⋃
x∈X ↑v I(x, u) = Φv(X) is Menger

(Hurewicz). Since the property of Menger (Hurewicz) is preserved by countable
unions, the semifilter U(u) =

⋃
v∈[u]<ℵ0 Φv(X) is Menger (Hurewicz). �

Lemma 3. Let X be a Lindelöf topological space which fails to be Menger
(Hurewicz). Then there exists u ∈ Λω(X) such that the semifilter U(u) is not
Menger (Hurewicz).

Proof: Assuming that X is not Menger (Hurewicz), we can find a sequence
(un)n∈ω of countable open large covers of X such that there is no sequence
(vn)n∈ω such that each vn is a finite subset of un and the family {

⋃
vn : n ∈ ω}

is a (γ-)cover of X . Let us denote by u the union
⋃
{un : n ∈ ω}.

We claim that the semifilter U(u) is not Menger (Hurewicz). Indeed, consider
the sequence (on)n∈ω of countable families of open subsets of P(u), where on =
{{w ∈ P(u) : U ∈ w} : U ∈ un}. Since each un is a large cover of X , every on

covers U(u). It suffices to show that there is no sequence (cn)n∈ω such that every
cn is a finite subset of on and {

⋃
cn : n ∈ ω} is a large (γ-) cover of U(u), see

[17, Corollary 5]. Assume, to the contrary, that such a sequence (cn)n∈ω exists.
Then for every n ∈ ω we can find a finite subset vn of un such that cn = {{w ∈
P(u) : w ∋ U} : U ∈ vn}. For every w ∈ U(u) set Jw = {n ∈ ω : w ∈

⋃
cn} =

{n ∈ ω : w ∩ vn 6= ∅}. From the above it follows that J = {Jw : w ∈ U(u)}
consists of infinite (cofinite) subsets of ω. From the above it follows that the
family {JI(x,u) : x ∈ X} consists of infinite (cofinite) subsets of ω too. But

JI(x,u) = {n ∈ ω : I(x, u) ∩ vn 6= ∅} = {n ∈ ω : x ∈
⋃

vn},

consequently {
⋃

vn : n ∈ ω} is a (γ-) cover of X , which contradicts our choice of
the sequence (un)n∈ω . �
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Let u be a family of a set X and B ⊂ X . From now on St(B, u) denotes the
set

⋃
{U ∈ u : U ∩ B 6= ∅}.

Lemma 4. Let X be a paracompact Lindelöf topological space. Then X is
Hurewicz provided each semifilter U(u) ∈ U(X) is meager.

Proof: Assuming that X is not Hurewicz, we shall show that X possess a
countable large open cover u such that the semifilter U(u) is not meager. Let
(un)n∈ω be a sequence of open covers of X such that {

⋃
vn : n ∈ ω} is a γ-cover

ofX for no sequence (vn)n∈ω such that each vn is a finite subcollection of un. Now,
it is a simple exercise to construct a sequence (wn)n∈ω of open covers of X , where
wn = {Un,k : k ∈ N} is a refinement of un, such that Un2,k ⊂

⋃
{Un1,l : l ≤ k} for

all n2 ≥ n1 and St(B, wn) is wn-bounded for every wn-bounded subset B of X .
From the above it follows that for every n ∈ ω there exists a sequence (p(n, k))k∈ω

of natural numbers such that
⋃
{Um,i : i ≤ k, n ≤ m}∩

⋃
{Un,i : i ≥ p(n, k)} = ∅.

Without loss of generality, un = wn.
Denote by u the union

⋃
{un : n ∈ ω}. Let ν : u → ω, ν : Un,k 7→ mn,k be

a bijective enumeration of u. Let us write ω in the form ω = ⊔n∈ωΩn, where
Ωn = {mn,k : k ∈ N}. We claim that the semifilter U(u) fails to be meager. For
this aim we shall show that the image F = ν(U(u)) of U(u) is not meager in P(ω).
Otherwise, by Theorem 1 there exists a sequence (ml)l∈ω of natural numbers such
that every F ∈ F (and, in particular, ν(I(x, u)) for every x ∈ X) meets all but
finitely many half-intervals [ml, ml+1). Passing to a subsequence, if necessary,
we may assume that ml+1 > max{mn1,p(n2,k) : mn2,k ≤ ml, [0, ml] ∩ Ωn1 6= ∅}.

Consider a function ϕ : ω → ω such that ϕ−1(l) = [ml, ml+1) for all l ∈ ω and

denote by Bl the union
⋃
{ν−1(m) : m ∈ ϕ−1(l)}. Then for every x ∈ X there

exists n ∈ ω such that (ϕ ◦ ν)(I(x, u)) ⊃ [n,+∞). From the above it follows that

X =
⋃

x∈X

⋂

m∈ν(I(x,u))

ν−1(m) ⊂

⊂
⋃

x∈X

⋂

l∈(ϕ◦ν)(I(x,u))

⋃

m∈ϕ−1(l)

ν−1(m) ⊂
⋃

n∈ω

⋂

i≥n

Bi.

A crucial observation here is that the intersection
⋂

l∈A Bl is un-bounded for
every n ∈ ω and all infinite subsets A of ω. Before proving this observation, let
us note, that we can limit ourselves to subsets A such that |l1 − l2| > 1 for all
l1, l2 ∈ A. Given arbitrary l ∈ ω, denote by Kn,l the intersection Ωn∩ [ml, ml+1).
Equipped with these notations, we can write

⋂

l∈A

Bl =
⋂

l∈A

⋃

n∈ω

⋃

m∈[ml,ml+1)∩Ωn

ν−1(m) =
⋂

l∈A

⋃

n∈ω

⋃

m∈Kn,l

ν−1(m).

Set Bn,l =
⋃
{ν−1(m) : m ∈ Kn,l}. Then

⋂
l∈A Bl =

⋂
l∈A

⋃
n∈ω Bn,l =⋃

z∈NA

⋂
l∈A Bz(l),l. By our choice of the sequence (ml)l∈ω and the subset A
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of ω we have Bz(l1),l1 ∩ Bz(l2),l2 = ∅ provided z(l2) ≤ z(l1) for some l1, l2 ∈ A

with l2 > l1. Consequently

⋂

l∈A

Bl =
⋃

z∈N↑A

⋂

l∈A

Bz(l),l =
⋂

l∈A

⋃

n≥|A∩[0,l)|

Bn,l,

where N
↑A = {z ∈ N

A : z(l2) > z(l1) for all l2 > l1}. Since the union⋃
n≥|A∩[0,l)| Bn,l is u|A∩[0,l)|-bounded and |A∩ [0, l)| → +∞, l → +∞, the above

intersection is un-bounded for all n ∈ ω (recall, that each un+1-bounded subset
of X is un-bounded). Therefore there exists a sequence (vn)n∈ω, where vn is
a finite subset of un, such that

⋃
vn ⊃

⋃
k≤n

⋂
i≥k Bi, consequently the family

{
⋃

vn : n ∈ ω} is a γ-cover of X , which contradicts our choice of the sequence
(un)n∈ω . �

Proof of Theorem 2: Follows from Lemmas 1, 3, 4, Corollary 1, and the
remark after the formulation of Theorem 2. �

The following statement is of great importance in evaluation of additivity of
the family of subspaces with the Menger property of a topological space X .

Proposition 2. No comeager semifilter F on ω is Menger.

Proof: If F is comeager in the space [ω]ℵ0 , which is homeomorphic to the Baire
space N

ω, there exists a dense Gδ subset G of [ω]ℵ0 such that G ⊂ F . Thus G is

an analytic and not σ-compact subset of [ω]ℵ0 , consequently it contains a closed

in [ω]ℵ0 subset D homeomorphic to N
ω, see [12, Theorem 29.3]. But N

ω simply
fails to be Menger, consequently so is F , a contradiction. �

Theorem 2 and Proposition 2 enable us to introduce a new class of topological
spaces. A topological space X is defined to be almost Menger , if the semifilter
U(u) is not comeager for every u ∈ Λω(X). Theorem 2 implies that every Lindelöf
Menger space is almost Menger.

Problem 2. Is every (metrizable separable) Lindelöf almost Menger space
Menger?

Sometimes it is more convenient to use a modification of Theorem 2. Let
X ⊂ Y and u = (Un)n∈ω be a sequence of subsets of Y . For every x ∈ X let
Is(x, u, X) = {n ∈ ω : x ∈ Un}. If every Is(x, u, X) is infinite, then we shall
denote by Us(u, X) the smallest semifilter on ω containing all Is(x, u, X) (the
letter s comes from “sequence”). In what follows we shall denote by Λs(X) the set
of all sequences u = (Un)n∈ω of open nonempty subsets of a topological space X
such that all Is(x, uX) are infinite. Again, we shall often simplify these notations
by writing Us(u) and Is(x, u) or Is(x) in place of Us(u, X) and Is(x, u, X).
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Theorem 3. Let X be a Lindelöf topological space. Then X is Menger (Hure-
wicz) if and only if for every sequence u = (Un)n∈ω ∈ Λs(X) the semifilter
Us(x, u) is Menger (Hurewicz). In addition, if X is paracompact, then it is
Hurewicz provided Us(u) is meager for every u ∈ Λs(X).

Proof: Assuming that X is Menger (Hurewicz), let us fix any sequence u =
(Un)n∈ω ∈ Λs(X) and denote by Y the product X × N. The space Y is Menger
(Hurewicz) being a countable union of its Menger (Hurewicz) subspaces. Consider
the cover w = {Wn : n ∈ ω} of Y , where Wn = Un ×{1, . . . , n}, and observe that
w ∈ Λω(Y ). Applying Theorem 2, we conclude that U(w) is a Menger (Hurewicz)
subspace of P(w). Now, it suffices to observe that Us(u) is a continuous image of
U(w) under the map f : w → ω, f :Wn 7→ n.

Next, assume that the semifilter Us(u) is Menger (resp. Hurewicz, meager)
for all u ∈ Λs(X) and fix any w ∈ Λw(X). Let w = {Wn : n ∈ ω} be a
bijective enumeration of w and u be a sequence (Wn)n∈ω. Then f(Us(u)) = U(w),
where f : n 7→ Wn is a bijection. Therefore the semifilter U(w) is Menger (resp.
Hurewicz, meager). Now, it suffices to apply Theorem 2. �

Additivity of the Menger property

As we have already said in Introduction, one of the main result of this paper
is the following

Theorem 4. Let X a hereditarily Lindelöf space. Then

add(M(X)) ≥ add(M(Nω)) ≥ g.

Proof: Let Y be a subfamily of M(X) of size |Y| < add(M(Nω)) and u =
(Un)n∈ω ∈ Λs(

⋃
Y). Then the semifilter Us(u,

⋃
Y) is equal to the union⋃

Y ∈Y Us(u, Y ). Theorem 3 implies that every Us(u, Y ) is Menger, consequently
so is their union Us(u,

⋃
Y) by our choice of Y. Applying Theorem 3 once again,

we conclude that
⋃
Y is Menger, which implies the inequality add(M(X)) ≥

add(M(Nω)).
Next, we shall show that add(M(X)) ≥ g. Let (wn)n∈ω be a sequence of

open covers of
⋃
Y. Since X is hereditarily Lindelöf, we can assume that every

wn is a countable cover of
⋃
Y of the form wn = {Wn,k : k ∈ ω}. For every

Y ∈ Y let us find a sequence (kn(Y ))n∈ω of natural numbers such that the
sequence uY = (Bn(Y ))n∈ω , where Bn(Y ) =

⋃
k≤kn(Y )Wn,k, belongs to Λs(Y ).

Now, Theorem 3 and Proposition 2 imply that the semifilter Us(uY , Y ) fails to
be comeager. Since |Y| < g, the semifilter F =

⋃
Y ∈Y Us(uY , Y ) is not comeager

too, consequently F⊥ fails to be meager. Using |Y| < g ≤ b(F⊥), we can find
a sequence (kn)n∈ω such that (kn(Y ))n∈ω ≤F⊥ (kn)n∈ω for every Y ∈ Y. Let
us make the following notation: Bn =

⋃
{Un,k : k ≤ kn}. We claim that {Bn :

n ∈ ω} is a cover of
⋃
Y. Indeed, let us fix arbitrary Y ∈ Y and y ∈ Y . Since



534 L. Zdomsky

(kn(Y ))n∈ω ≤F⊥ (nk)k∈ω , the set A = {n ∈ ω : kn ≥ kn(Y )} belongs to F⊥ and
thus there exists m ∈ A ∩ Is(y, uY , Y ). It suffices to observe that y ∈ Bm. �

Problem 3. Is the equation add(M(X)) = add(M(Nω)) true for every heredi-
tarily Lindelöf topological space?

Additivity of the property Split(Λ,Λ)

Throughout this paragraph, which is devoted to the property Split(Λ,Λ), every
topological space is hereditarily Lindelöf. Since every large open cover of a space
X contains a countable large subcover (see [21, Proposition 1.1]), we can restrict
ourselves to countable ones.

Theorem 5. Under u < g every paracompact space X with the property
Split(Λ,Λ) is Hurewicz.

In our proof of Theorem 5 we shall use the following straightforward conse-
quence of a fundamental result of C. Laflamme. A semifilter F on a countable
set C is said to be bi-Baire, if it is neither meager nor comeager.

Theorem 6 ([1, Theorem 9.22], [13]). Let C be a countable set and F be a
semifilter on C. If F is comeager (u < g and F is bi-Baire), then there exists
a sequence (Kn)n∈ω of pairwise disjoint finite subsets of C such that the set

U = {{n ∈ ω : F ∩ Kn 6= ∅} : F ∈ F} equals Fr⊥ (is an ultrafilter on ω).

Remark 2. Let us observe, that if a sequence (Kn)n∈ω is such as in Theorem 6,
then for every increasing sequence (mn)n∈ω of natural numbers the sequence
(K ′

n =
⋃

m∈[mn,mn+1)
Km)n∈ω satisfies the condition of this theorem too. �

Proof of Theorem 5: In light of Corollary 29 from [17] asserting that each
Hurewicz space has the property Split(Λ,Λ), the only step to be proven is the
inverse implication under u < g. Suppose that the paracompact space X is not
Hurewicz. Then Theorem 2 supplies us with a cover u ∈ Λω(X) such that the
semifilter U(u) is not meager. Therefore there exists a finite subset v of u such
that no finite subset v1 of u \ v is a cover of X , because otherwise we can simply
construct by induction a sequence (vn)n∈ω of pairwise disjoint finite subsets of u
such that each w ∈ U(u) meets all but finitely many vn, and thus U(u) is meager
by Theorem 1. Two cases are possible.

1. U(u) is comeager. Then we can find a sequence (vn)n∈ω of finite subsets of u
as in Theorem 6. Let n0 ∈ ω be such that no finite subset of

⋃
n≥n0

vn covers X .

Since every w ∈ U(u) meets u0 =
⋃

n≥n0
vn, we conclude that u0 ∈ Λω(X).

From the above it follows that there exists an increasing sequence (mn)n∈ω of
natural numbers such that m0 ≥ n0 and Un1 6= Un2 for all n1 6= n2, where Un =⋃

m∈[mn,mn+1)

⋃
vm, n ∈ ω. Let us denote by v′n the union

⋃
m∈[mn,mn+1)

vm

and observe that the sequence (v′n)n∈ω satisfies the condition of Theorem 6.
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It is clear that the family u′ = {Un =
⋃

v′n : n ∈ ω} is a large cover of X .
We claim that u′ is not splittable. Assuming the converse, we would find two
disjoint infinite subsets A and B of ω such that both of uA = {Un : n ∈ A} and
uB = {Un : n ∈ B} are large covers of X . Since the sequence (v′n)n∈ω satisfies the
condition of Theorem 6, there exists w ∈ U(u) such that {n ∈ ω : w∩v′n 6= ∅} = A.
By the definition of the semifilter U(u), I(x, u) ⊂∗ w for some x ∈ X . Therefore
the set {n ∈ B : x ∈ Un} is a subset of a finite set {n ∈ B : (I(x, u)\w)∩v′n 6= ∅},
and thus uB is not a large cover of X , a contradiction.

2. U(u) is not comeager. Then the same argument as in the first case implies
that there exists a sequence (vn)n∈ω of finite subsets of u with the following
properties:

(1) it satisfies the conditions of Theorem 6;

(2) no finite subset of
⋃

n∈ω vn covers X ;

(3)
⋃

vn 6=
⋃

vm, n 6= m, and the family u′ = {
⋃

vn : n ∈ ω} is a large cover
of X .

We claim that u′ is not splittable. Assume, to the contrary, that there are infinite
disjoint subsets A and B of ω such that uA, uB ∈ Λω(X), where uA and uB

are defined as above. Enlarging A, if necessary, we can additionally assume that
A ∪ B = ω. Since the family F = {{n ∈ ω : w ∩ vn 6= ∅} : w ∈ U(u)} is an
ultrafilter, either A ∈ F or B ∈ F . Without loss of generality, A ∈ F , which
means that there exists x ∈ X such that {n ∈ ω : I(x, u) ∩ vn 6= ∅} ⊂∗ A, and
thus {n ∈ B : I(x, u) ∩ vn 6= ∅} = {n ∈ B : x ∈

⋃
vn} is finite, a contradiction.

�

Other applications of Theorem 2

Here we shall show that we cannot restrict ourselves to ω-covers in Theorem 2,
and thus the family U(X) of semifilters cannot be reduced to the family {U(u) :
u ∈ Ω(X)} of filters corresponding to ω-covers of a space X . Thus Theorems 2
and 3 are “purely semifilter statements”.

Proposition 3. Let u be an ω-cover of Nω . Then U(u) is meager. Moreover, the
smallest filter V containing U(u) is meager.

Proof: Since u is an ω-cover, the semifilter U(u) is centered and the filter V is
free. As it was shown in the proof of Corollary 1, there exists a sequence (Φn)n∈ω

of compact-valued upper semicontinuos multifunctions from N
ω into P(u) such

that U(u) =
⋃

n∈ω Φn(N
ω). Each Φn(N

ω) is an image of N
ω under a compact-

valued upper semicontinuous set-valued map (≡ Φn(N
ω) is K-analytic). Since

every K-analytic metrizable space X is analytic (see [11]), so is the semifilter
U(u) being a countable union of analytic spaces, see [12, 25.A]. Let us note, that
V =

⋃
n∈ω Un, where U0 = U(u) and Un+1 is a continuous image of U

2
n under

the map (U1, U2) 7→ U1 ∩ U2. From the above it follows that V is analytic too,
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consequently by [19, Theorem 1, p. 30] it has the Baire property in P(u), and thus
is meager by [19, Theorem 1, p. 32]. �

Reformulating the above proposition in other terms, we obtain the subsequent
result proved in [16].

Theorem 7. Every ω-cover of N
ω is ω-groupable.

Proposition 2 and Theorem 6 imply the subsequent

Corollary 2. Under u < g every Menger space is Scheepers (≡ has the property⋃
fin(Γ,Ω)).

Proof: Let (un)n∈ω be a sequence of open covers of X such that un+1 is a
refinement of un for all n ∈ ω. Since X is Menger, there exists a sequence
(vn)n∈ω such that each vn is a finite subset of un and w = (

⋃
vn)n∈ω belongs to

Λs(X). Applying Theorem 3 and Proposition 2, we conclude that the semifilter
Us(w) is not comeager.
If Us(w) is meager, then Theorem 1 gives us an increasing sequence (mn)n∈ω

of natural numbers such that each A ∈ Us(w) meets all but finitely many half-
intervals [mn, mn+1). Let Bn =

⋃
m∈[mn,mn+1)

⋃
vm, n ∈ ω. From the above

it follows that each Bn is un-bounded and the family {Bn : n ∈ ω} is a γ-cover
of X .
If Us(w) is bi-Baire, then by Theorem 6 there exists a sequence (Kn)n∈ω of

finite subsets of ω such that the family F = {{n ∈ ω : A ∩ Kn 6= ∅} : A ∈
Us(w)} is an ultrafilter on ω. Let (mn)n∈ω be an increasing sequence of natural
numbers with the property min

⋃
{Km : m ∈ [mn+2, mn+3)} > max

⋃
{Km : m ∈

[mn, mn+1)}. Since F is an ultrafilter, either Feven =
⋃
{[mn, mn+1) : n is even}

or Fodd =
⋃
{[mn, mn+1) : n is odd} belongs to F . Without loss of generality, F =

Feven ∈ F . For every n ∈ ω denote by Bn the set
⋃

m∈[m2n,m2n+1)

⋃
k∈Km

⋃
vk

and note that Bn is un-bounded. We claim that {Bn : n ∈ ω} is an ω-cover of X .
Indeed, given any finite subset S of X , for every x ∈ S denote by Fx the set
{n ∈ ω : Is(x, w) ∩ Kn 6= ∅} and note that Fx ∈ F . Since F is centered, there
exists m ∈ F ∩

⋂
x∈S Fs. Let n ∈ ω be such that m ∈ [m2n, m2n+1). We claim

that S ⊂ Bn. Indeed, for every x ∈ S there exists k ∈ Km ∩ Is(x, w), and thus
x ∈

⋃
vk ⊂ Bn, which finishes our proof. �

Another application of Theorem 2 takes its origin in the classical paper [9] of
W. Hurewicz, where it was shown that a metrizable separable space X is Menger
if and only if for every continuous function f : X → R

ω the image f(X) is not
dominating with respect to the eventual dominance preorder. When X is zero
dimensional, the same assertion holds for continuous functions f : X → N

ω.
Trying to generalize the above result outside of metrizable separable spaces, all
one can hope is the realm of Lindelöf spaces (every Menger topological space X
is obviously Lindelöf). However, this obstacle may be overcome by restriction to
countable covers in the definitions of the Menger property.
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Definition 1. A topological space X has the property E∗
ω , if for every sequence

(un)n∈ω of countable open covers of X there exists a sequence (vn)n∈ω such that
every vn is a finite subset of un and

⋃
n∈ω

⋃
vn = X .

It is clear that a topological space X is Menger if and only if it has the property
E∗

ω and is Lindelöf, and every countably compact noncompact space has the
property E∗

ω but fails to be Menger. The ideas of Hurewicz still work for perfectly
normal spaces: a perfectly normal space X has the property E∗

ω if and only if
there is no continuous function f : X → R

ω such that f(X) is dominating,
see [2]. However, because of topological spaces X such that every continuous
function f : X → R is constant the above characterization of the property E∗

ω is
not true for all topological spaces. For example, consider the topological space
Z = (R, τ), where τ = {(−∞, a) : a ∈ R}. It is a simple exercise to show that
Zω is Lindelöf and not Menger, but every continuous function f : Zω → R is
constant.
Theorem 2 enables us to prove a general characterization of the property E∗

ω

involving compact-valued upper semicontinuous maps.

Theorem 8. A topological space X has the property E∗
ω if and only if Φ(X) 6=

N
ω for every compact-valued upper semicontinuous function Φ : X ⇒ N

ω.

Proof: The “only if” part follows from Lemma 1, which remains valid for the
property E∗

ω. To prove the “if” part, we have to find an upper semicontinu-
ous compact-valued surjective map Φ : X ⇒ N

ω provided X does not have the
property E∗

ω. A literal repetition of the proof of Lemma 3 gives us a semifilter
U ∈ U(X) which fails to be Menger. As it was shown in the proof of Corollary 1,
there exists a sequence (Φn)n∈ω of compact-valued upper semicontinuous maps

from X into [ω]ℵ0 such that U =
⋃

n∈ω Φn(X). Since the union of countably
many spaces with the Menger property is Menger, there exists Φ ∈ {Φn : n ∈ ω}
such that the topological space Φ(X) does not have the Menger property. Us-
ing the already mentioned result of Hurewicz, we can find a continuous map
f : Φ(X) → N

ω such that T = f(Φ(X)) is dominating in N
ω with respect to

≤∗. Next, we shall find a continuous map g : T → N
ω such that g(T ) is dom-

inating in the following stronger sense: for every x ∈ N
ω there exists y ∈ g(T )

such that yn ≥ xn for all n ∈ ω. To find such a map g it suffices to note, that
if none of the maps gi : T ∋ (xn)n∈ω 7→ (xn+i)n∈ω has this property, then T
fails to be dominating. And finally, consider the set-valued map Ψ : g(T )⇒ N

ω,
Ψ : g(T ) ∋ x 7→ {y ∈ N

ω : ∀n ∈ ω(yn ≤ xn)}. A direct verification shows that Ψ
is compact-valued and upper semicontinuous and (Ψ ◦ g ◦ f ◦ Φ)(X) = N

ω. �

Remark 3. The additivity number add(I) is well-defined for an arbitrary family
I of subsets of a set X such that

⋃
I /∈ I and stands for the smallest size τ of a

subfamily J of I with the property
⋃
J /∈ I. B. Tsaban noted that the authors

considered in [4] the family
⋃
fin(O,O) of all Menger subspaces of the Baire space,

while M(Nω) is the smallest σ-ideal generated by
⋃
fin(O,O). In light of this the
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following question naturally arises: does Theorem 4 really answer Problem 2.4
from [4] in negative? The answer is “yes”. In order to show this we shall simply
prove that add(M(Nω)) = add(

⋃
fin(O,O)). It is a simple exercise to prove

that add(
⋃
fin(O,O)) ≤ add(M(Nω)). To show the inverse inequality, consider

a family J ⊂
⋃
fin(O,O) of size add(

⋃
fin(O,O)) with

⋃
J /∈

⋃
fin(O,O). Then

Theorem 8 supplies us with a compact-valued upper semicontinuous surjective
map Φ :

⋃
J ⇒ N

ω. Applying Lemma 1, we conclude that Φ(J) ∈
⋃
fin(O,O) ⊂

M(Nω) for all J ∈ J , consequently N
ω /∈ M(Nω) is a union of add(

⋃
fin(O,O))-

many Menger subspaces, which means add(M(Nω)) ≤ add(
⋃
fin(O,O)). �
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